
153

Published in the Proceedings of the 5th International Conference on Information and Communications Technology, 2007, IEEE Press, December 2007, Cairo,
Egypt, pp 309 -314.

1

Abstract— In virtual business place, organizations store

information of its members. Federated Access Control Systems
such as Shibboleth, Active Directory Federation Service allow
virtual organizations to share their member’s information. Based
on this information, members enjoy seamless access to federated
resources. However in this federated world, a member’s
information is divulged by her home organization. The member
has little say in it. We have presented an extension to this work
where members can personalize their own attribute release
policy. As opposed to simple request reply based communication,
such personalization inherently necessitates a mechanism of
negotiation. To facilitate such personalization, we have presented
negotiation enabled framework in federation. In this paper, we
provide an extension to this framework to facilitate selection of
negotiation flavor on per-need-basis. This is supported by
negotiation protocol which defines the ordering of the messages
and unique message structure that carries negotiation
information.

Index Terms— Privacy, Security, Negotiation, Federation,
Authentication

I. INTRODUCTION
Federation is an association of organizations that uses
common set of attributes, practices and policies to

exchange information about their members. Based on this
exchanged information, members enjoy seamless access to
federated services. Such services are provided by service
provider organizations subject to Access Control Policy.
When a member requests a service, service provider
organization enables backend exchange protocol to retrieve
necessary attributes of that member by querying member’s
home organization. Such system is called Federated Access
Control System (FACS) and examples are Active Directory
Federation Services [6], and Shibboleth [5]. FACS facilitates
service provider organizations to receive federated member’s
attributes issued by her home organization. So it has claimed
to increase privacy of federated members. In a way it is true,
but private person is actually absent from such system so does
individualized privacy. In FACS, access control policy is set

Manuscript received July 30, 2007.
J. I. Khan is Professor with Kent State University, Kent, OH 44241 USA

(e-mail: javed@kent.edu).
K. B. Bobade is Graduate Student with Kent State University, Kent, OH

44241 USA (e-mail: kbobade@kent.edu).
M. S. Hardas is Doctoral Student with Kent State University, Kent, OH

44241 USA (e-mail: mhardas@kent.edu).

by home organizations- not by individuals. Individuals have
very little knowledge- least say in how their information is
released by home organization. However there are additional
aspects of privacy. Alan Westin [7] has defined privacy as:
“The right of individuals to determine for themselves when,
how and to what extent information about them is
communicated to others.” There could be various scenarios
where a home organization has to disclose member’s private
information by her acquiescence. Let’s consider federation of
Universities and Companies.

In this federation, students will apply for jobs in federated
companies to schedule an interview. Companies request
information like Transcript, SSN, and Email from students.
University could release student’s information as per her
acquiescence. But students often prefer to release same
information to different companies under different conditions.
For example, provide a student’s Transcripts only when
company is offering job in Operating System or Software
Engineering. Same could be true for the companies. To
provide such facility, it is imperative to have Individualized
Policies for federated members. Individualized policy is a
course of action created according to the specifications of an
individual to determine information release decisions in
context of service provider’s offer.

Impact of such personalization is however non-trivial. As
opposed to simple request reply based communication, such
personalization inherently triggers exchange of information
between parties which is called as negotiation. In [4], we
presented a negotiation enabled framework. This framework
has Negotiation Agent which negotiates with its peer, both
acting on behalf of the individual members, to produce
customized negotiation results. In this paper, we extend that
framework to facilitate selection of negotiation flavor on per-
need-basis For example; users might be interested in less
number of communication steps or disclosing only necessary
credentials or releasing credentials only when it becomes clear
that successful negotiation is possible. To accommodate most
of these likely requirements, we are presenting a negotiation
protocol in section 2 and algorithm in section 3.
Previously, [1] proposed a model to authorize action on
personal data i.e. Individualization. But it doesn’t provide
interaction-mechanism between policy holders - an inherent
need of Individualization. Also, [3] has integrated trust
negotiation with federation. But this work does not consider
negotiation of attributes, negotiation protocol, and multiple
negotiation flavors.

Negotiation Based on Individualization:
Incorporating Personalization into Federation

Javed I Khan, Kailas B Bobade, and Manas S Hardas

A

153

Published in the Proceedings of the 5th International Conference on Information and Communications Technology, 2007, IEEE Press, December 2007, Cairo,
Egypt, pp 309 -314.

2

II. NEGOTIATION PROTOCOL
This section provides a prototype of protocol for bi-partite

negotiation. Protocol determines the sequence of messages
and a message structure carrying negotiation information.

A. State Transition Diagram
A negotiation proceeds through six states namely

Advertisement, greetings, strategy, active, negotiation, and
adieu shown in figure 1. Important messages used in
negotiation are Greeting, Advertisement, Solicitation,
Strategy, Negotiation, Deal, No_Deal and Reporting.

Negotiation moves from start to greeting state, when one

party invites other for a negotiation session by offering initial
identity. After sending greetings message, each party waits for
greetings message from the opposite party. Opposite party can
accept or reject the invitation (and negotiation proceed to
adieu state). If both parties agree then negotiation enters into
active state. Here, negotiation can also moves to
advertisement or strategy state. In advertisement state, a party
sends advertisement messages naming Target Resources and
waits for the other party to reciprocate by sending solicitation
(advertisement) message. If one party is interested to offer the
Target Resource and other party is interested to obtain it then
negotiation moves to active state otherwise moves to adieu
state if any one of them is not interested. In strategy state, a
party accepts list of negotiation strategies from opposite party,
and if both parties agree on a strategy then proceed to active
state (or jump to adieu state). Negotiation moves from active
to negotiation state when both parties fulfilled prerequisite
like receiving each other’s identity or deciding strategy or
deciding resource to negotiate. In negotiation state, actual
negotiation starts by sending negotiation message and
protocol moves through series of exchanges until negotiation

becomes successful or unsuccessful. After this, negotiation
moves to adieu state. In adieu state both sides perform
reporting about current negotiation session and then moves to
the end state. Negotiation protocol moves to end state if any
error condition occurs at any given state.

B. Negotiation Message
Negotiation Message has two main compartments - header

and body. Header contains Action, Session Id, Strategy, and
Security fields. Strategy field carries negotiation strategy
chosen by Negotiation Initiator and Negotiation Responder.
This field is useful when two parties negotiate for negotiation
strategy. Security field carries encrypted identities of
participant organizations, and members. Action field contains
one of the messages described in section 2.1.

Body has Initiator's Resource List (IRL) and Responder’s
Resource List (RRL). Each item in these lists has the
following fields. Resource Descriptor (RID) is the name of
resource to uniquely identify it. The Value field contains the
value or an URL to the value of the resource. The type field of
a listed resource can have one of the following values namely
Personal (P), Credential (C), Attribute (A) or Information (I).
The License field contains the granted disclosure policy for
the resource. State field contains current state of negotiation of
a resource during negotiation process. Extra field carries state
information of every resource involved in negotiation, if
necessary. Previous two fields achieve stateless resolution
process i.e. Negotiation parties wouldn’t require maintaining
complex state information.

III. STATELESS PROXY ATTRIBUTE NEGOTIATION
We have presented one flavor of negotiation resolution

algorithm i.e. Stateless Eager Attribute Negotiation (SEAN) in
[4]. Here, we will discuss Stateless Proxy Attribute
Negotiation (SPAN) which is based on PRUNES [2]. Above
mentioned negotiation message can accommodate SEAN as
well as SPAN.

 In the first phase of proxy negotiation, two sides exchange
the resources’ name to let each other know their requirement
constraints without disclosing resources values. During this
phase both parties track the requirement dependencies. Here,
goal is to determine if the deal is possible and If it is, only
then they perform the actual resource exchange in second
phase. Based on tracked requirement dependencies in the first
phase, both parties exchange resources using optimum
sequence in second phase. We describe this algorithm next.

Symmetrical SPAN runs at both negotiating parties, but
here we assume that SPAN is running at Responder’s end.

153

Published in the Proceedings of the 5th International Conference on Information and Communications Technology, 2007, IEEE Press, December 2007, Cairo,
Egypt, pp 309 -314.

3

A. Driver Process
The input to SPAN_State_Machine, in figure 3, is the

responder’s release policy and the newly received message
from Initiator. It’s output (line 22) is four sets- (1) those
ready to be released (NEW_RELSET), (2) pending
(NEW_PENSET), (3) those he would like to deny
(NEW_DENSET), and (4) a list of new resources he would
like to counter request (NEW_REQSET).

This routine calls the SPAN_Rule_Resolver routine (line
16) for each requested resource in the message list. Resolver
routine determines if the resource could be released and if not,
what other resources need to be counter requested, or if the
resource has to be denied. Resolver routine’s inputs are (i) a
resource in the set of old requests (OLD_REQSET), (ii)
resource lists in the message, and (iii) the rules particularly
linked to selected resource from old requests set. The routine
changes the states of the resources and it generates new
release set (RELSET) which contains resources that need to
be released (by owner) and the counter request set (REQSET)
which contains resources that need to be requested from
opposite party.

Corresponding to the four new sets, SPAN_State_Machine
maintains four copies of old sets (OLD_REQSET,

OLD_RELSET, OLD_DENSET, and OLD_PENSET)
extracted directly from an incoming message (lines 1-4). The
routine checks (lines 11-13) old sets to see if the negotiation
has resulted in a deal. Negotiation becomes successful if
Target Resource is now available in OLD_RELSET.
Negotiation becomes unsuccessful if Target Resource is in
OLD_DENSET (lines 7-9). If above conclusions cannot be
made, then the Resolver routine is called (line 16) to process
every resource in OLD_REQSET. Resolver routine generates
two sets - REQSET and RELSET. These new REQSET,
RELSET provided by the Resolver routine and already existed
old sets generate the new sets (NEW_REQSET,
NEW_RELSET, NEW_PENSET, and NEW_DENSET) for
the outgoing message (lines 17-21).

B. Resolver Process
SPAN_Rule_Resolver uses following important variables.

1) GARC (Global Attribute Release Count): Total number of
resources released by both parties. 2) ARC (Attribute Release
Count): When a resource is denied (by owner), its ARC is
used to save the current GARC value. 3) CQ (Counter
Request): Resource asked as a counter request for each
pending resource.4) LURA (Clause that causes release of
attribute): A clause in a rule that has resulted in release of
requested attribute and it is used to trace back the release

153

Published in the Proceedings of the 5th International Conference on Information and Communications Technology, 2007, IEEE Press, December 2007, Cairo,
Egypt, pp 309 -314.

4

sequence in second phase of proxy negotiation.
A rule in a policy is represented in the disjunctive normal

form (DNF) as R1 C1 V C2 … Cj, where, clause C1 = I1 Λ
I2 ….. IK, which means resource R1 will be released when
either of clauses C1, C2, or Cj is satisfied. Here, clause C1
requires all resources I1, I2 and IK from the other side. Each
rule and clause is processed from left to right.

Resolver routine considers requested resources one by one
and the rules associated with that resource and processes as
explained below: STEP-1) If a requested resource doesn’t
have CQ, means it is being requested for the first time, routine
executes (lines 6-7, lines 15-21, lines 29-33) as explained next
: If the first resource in requested resource’s first clause is not
released and not pending, then this first resource will be
counter requested (REQSET) and stored in requested
resource’s CQ (lines 17-21). But if this first resource is
already released (by opposite party), then the next resource in
the same clause is counter requested and so on until all
resources in one clause are exhausted. If all resources in one
clause are released, which can be found out from Resource
List available in the body of the message, then requested
resource can be released. When released, GARC is
incremented by 1 and current clause is saved in the LURA of
the released resource (lines 29-33) STEP-2) If a requested
resource already has CQ, then routine executes (lines 6-12 and
lines 6-21, 29-33) as explained next : 2.A) If CQ of requested
resource is still pending, then the routine will come out of the
current rule and keep CQ of requested resource as it is (lines
6-12) 2.B) If CQ of requested resource, however, has already
been released by opposite party, then as explained in STEP-1
next resource from the same clause is considered for CQ and
so on. STEP-3) If after STEP-1 or 2, there is a new counter
request and if this new counter request (which is different
from old counter request, if any) is already pending, then it
will skip that clause and move on to next clause. This is
because it indicates a cyclic dependency which cannot be
resolved with current set of released resources. If rest of the
clauses too has at least one resource whose request is already
pending, then the requested resource is denied and the GARC
is saved in its ARC (lines 34-35).STEP-4) Before finally
placing the counter requests, the routine will check if that
resource has been denied by the other side. If this new counter
request resource had been denied then (line 22-28, 34-35):
4.A) that resource become CQ only if it’s ARC > GARC
(lines 22-26). This is because, there are more releases now
since the last denial - so previous cycle may not be a problem
anymore. 4. B) that resource doesn’t become CQ if it’s ARC =
GARC. This is because nothing has changed since last denial.
In this case, the clause containing that resource is skipped for
next clause (line 28) to repeat STEP-1 or 2.

C. Release Process
At the end of successful proxy negotiation, message carries

release clause for every negotiated attribute. Using this
information each party generates logical dependency graph to
find out sequence for exchanging resource’s value. Based on
dependency graph, both parties release resources as explained
by Offered_Set routine.

Offered_Set routine executing at each end of negotiation
finds out which resources can be offered to opposite party
using i) logical dependency graph and ii) resources offered by
opposite party (i.e. . old_offeredset) till that time of resource
release phase, if any.

LDGraph_generator routine generates dependency graph

using rlist as input. A node in dependency graph is a resource
whose state of negotiation is offered or available and other
nodes are solved clause of its disclosure policy (with one edge
from each resource in that clause connecting to offered node).
This way resources in dependency graph are represented (lines
2-9). At the start of second phase, dependency graph is
generated from the resources whose state of negotiation is
available because none of the parties have offered any
resources yet. But once parties start offering resources to each
other, they will move state of negotiation of the resources
from available to offered, and then Logical Dependency
Graph is generated from resources whose state of negotiation
is either available or offered (line 1).

In offered_set routine, one of the parties will offer
resources from dependency graph which don’t have disclosure
policy (lines 3-7). After this, opposite party will

153

Published in the Proceedings of the 5th International Conference on Information and Communications Technology, 2007, IEEE Press, December 2007, Cairo,
Egypt, pp 309 -314.

5

offer his resource from dependency graph according to
offered resources it has got from first party (line 8-14). Thus
two parties keep on offering resources to each other till
Negotiation Requester gets his Target Resource.

IV. NEGOTIATION EXAMPLE
We consider a job seeker-hunter scenario in a complex

federation setup - group of Universities and Companies.
Students store Individualized Policies with their universities
and various managers in the companies set up their
requirements to search potential employees. In this setup, we
consider three students Alice, Pooja and Sajid with home
institution KSU and three hiring managers Bob, John, and
Yang from KLM Inc, ABC Inc, and DEF Inc respectively
with release policies in figure 5. Here, we will discuss one
negotiation in detail where Negotiation Agent of KLM Inc
initiates a search for potential candidate (Pooja) to fill-up the
vacancy under Bob. Before that, let’s understand state

information carried by each negotiation message.
In our notation we group resources against their respective

current states in a negotiation as STATEP ({R1:V1},
{R2:V2}…. {Rn: Vn}). STATE can be the states of a
resources specified in [4] such as REQ, AVL, PEN, DEN,
OFF etc. Each argument is a pair where Rn is the ID of the
resource and Vn is the special information about the resource.
The superscript p represents the party (negotiation initiator (I)
or negotiation responder (R)) involved in the latest update of a
state. Top portion and bottom portion of each message
corresponds to IRL and RRL as described in section 2.2.

KLM’s agent starts negotiation by requesting Interview i.e.
(REQI ({R1, Ø}) from Pooja’s agent in message 1 in fig 6
A).Here, Ø indicates that R1 has no counter request (CQ).
Bottom portion of this message i.e. Pooja’s dataspace is
empty. In response to message 1, Pooja’s agent will counter
request Job_Title (REQ R {I3, Ø}) in message 2 and also
changes state of negotiation of Interview from requesting to
pending i.e.

153

Published in the Proceedings of the 5th International Conference on Information and Communications Technology, 2007, IEEE Press, December 2007, Cairo,
Egypt, pp 309 -314.

6

PENR ({R1, I3}). Message 3 shows request of R7 i.e. REQI
({R1, I3}, {R7, Ø} and as per Pooja’s policy, she needs I3 to
unlock R7. But state of negotiation of I3 is already pending and
it requires R7 to unlock. This creates a cyclic dependency. To
resolve this, Pooja’s agent will deny R7 i.e. DENR (R7, 0) in
message 4. Here, 0 is GARC when R7 is denied. In response to
message 4, KLM’s agent will find out that R7 is counter
request of I3. So even though R7 is denied, I3 can still be
unlocked using R2. So KLM’s agent will request R2 in
message 5. This process of searching an alternative path to
unlock an attribute (I3 in this case) and thus breaking cyclic
dependency is called as backtracking. In backtracking, a
denied attribute is requested again only if number attributes
released by both participants (GARC) are more since last
denial of the same attribute. As per this rule R7 is again
requested by KLM’s agent in message 9. Here, GARC=1 in
message 8 is more than GARC = 0 when R7 was denied in
message 4.

Finally, in message 12 Pooja’s agent offers Interview i.e.
AVLR ({R2, ~}, {R7, I3}, {R1, {I3, I1}} to KLM’s agent to
finish first phase of negotiation. In second phase, agents will
exchange attribute values using dependency graph in figure 6
B). At the end of second phase, agents will generate
negotiation result for their participants in 6 C).

V. ANALYSIS OF SEAN AND SPAN
Figure 7 shows results of negotiation among three

organizations, and three students (policies shown in fig 5) for
SEAN and SPAN. In successful negotiation, SEAN releases
more attributes and fires more number of rules than SPAN but
with fewer messages. In unsuccessful negotiation (CDE-
Pooja) SEAN releases few attributes, but SPAN doesn’t
release any attribute. Here, users which are eager to reach a
deal can opt for SEAN at the cost of disclosing more attributes
while cautious users, with sensitive attributes, could opt for
SPAN to avoid unnecessary disclosure of the attributes.

Communication Complexity of SPAN and SEAN [4] is

shown in figure 8.

VI. CONCLUSION
We have contributed a novel negotiation enabled

framework and protocol to enhance privacy of federated
members. This framework facilitates federated members to
choose negotiation flavor on per-need-basis. Two such flavors
are Stateless Eager Attribute Negotiation (SEAN) and
Stateless Proxy Attribute Negotiation (SPAN). SEAN results
in successful negotiation with minimum communication steps
while SPAN discloses only necessary attributes for
negotiation.

 The privacy implications of this work are quite interesting.
With Federated Access Control System a member is no longer
at the mercy of Service Provider about the disclosure policy,
but still is at the mercy of the on-size-fits-all release policy set
by the home organization. Through this work the individual’s
privacy is further enhanced - a member is not at the mercy of
home organization.

REFERENCES
[1] Kathy Bohrer, Stephen Levy, “Individualized Privacy Policy Based

Access Control ,“ In Proceedings 6th International Conference on
Electronic Commerce Research (ICECR-6) October 2003, Dallas, Texas,
USA.

[2] T. Yu, X. Ma, and M. Winslett., “PRUNES: An Efficient and Complete
Strategy for Trust Negotiation over the Internet,” ACM Conference on
Computer and Communications Security, Athens, November 2000.

[3] Abhilasha Bhargav, Anna C. Squicciarini, “Trust Negotiation in Identity
Management”, IEEE Security & Privacy, March-April 2007.

[4] J. Khan, K. Bobade, M. Hardas, “Intra-Federation credential Negotiation
Based on Individualized Release Strategy,” International Association of
Science and Technology Development, Canada, July 2007.

[5] Shibboleth. [Online]
http://shibboleth.internet2.edu/shib-tech-intro.html

[6] Active Directory Federation Services. [Online]
http://www.microsoft.com/WindowsServer2003/R2/Identity_Manageme
nt/ADFSwhitepaper.mspx

[7] Alan F. Westin (1970) Privacy and Freedom

