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ABSTRACT 
The paper presents a scheme for reducing memory space 
of a holographic associative memory for content-based 
learning, searching and retrieval of sparse patterns. 
Multidimensional holographic associative memory 
developed on the properties of complex valued Riemann 
space is one of the most promising models of associative 
memory. It has demonstrated the unique abilit y to 
perform dynamicall y locali zable sub-pattern matching, 
without requiring to learn each individual sub-patterns. 
The correlation space of the sparse patterns, is also sparse 
in information, but representationally dense. Therefore, 
holograph of sparse patterns (such as images) becomes 
extremely large. In this paper we describe a holographic 
memory model which can prune a holograph by several 
fold. The resulting holographic model also simultaneously 
increases the encoding, searching and decoding speed.  

Keywords: partial-pattern matching, associative 
computing, holographic memory, target recognition, 
adaptive control. 

1.INTRODUCTION 
Since the advancement of synoptic theory of signal 
transmission by McCulloch and Pitts (1943), and Hebb 
(1949) a number of models of artificial associative 
memories have been developed to mimic the behavior of 
human brain by researchers such as Marr (1969), 
Anderson (1989), Will shaw (1971), Kanerva (1988) and 
many others [Carp89, HiAn85, Kane88, Will 89]. These 
pioneering models were able to reproduce some of the 
intriguing behaviors of human brain.  

Two of the most serious concern with most of these 
associative memories are their capacity and diff iculty in 
storing arbitrary patterns. However, for image 
applications, the problem becomes more acute in terms of 
enormous physical memory requirement. Among the 
previous researchers, Kanerva [Kane88] has directly 
addressed the issue of physical space requirement. Also 
Khan and Yun have investigated feature based space 
contraction of memory using principal component 
analysis on patterns [KhYu94, Oja83]. 

A typical image pattern generall y consists of a large 
number of pixels, and by nature individually they carry 
small amount of significant information. As a 
consequence, the correlation space of the image pattern 
becomes physicall y large but sparse in information. The 
objective of our research is to find ways to extract useful 
information from this sparseness of the correlation space 
and to contract the physical space of associative memory.  

Our research is specificall y aimed at a novel complex 
numeric representation based associative memory 
paradigm. In 1995 Khan [Khan95, Khan98] demonstrated 
a generali zed computational model Multidimensional 
Holographic Associative Computing (MHAC), which 
demonstrated the unique abilit y of dynamic search 
locali zation. It has already been demonstrated that it can 
recollect the best match with respect to a dynamicall y 
defined sub-patterns, without requiring to learn sub-
patterns separately, even when the window of focus drops 
as low as 20%. Research also demonstrated its superior 
speed and capacity performance [Khan95, Suth90]. 
Experiments have revealed speedup of factors 10 to 100 
times compared to other paradigms.  

The result is particularly important not only in associative 
computing paradigm, but also in general pattern matching 
applications because, multidimensional best-match partial 
pattern search degenerates to expensive exhaustive search 
even with known procedural algorithms [Khan95]. The 
model potentiall y opens up the power of associative 
computing to numerous complex pattern matching 
applications. This particular research focuses on the space 
contraction of the correlation substrate of MHAC. It 
presents the performance of a filtered reinforcement 
learning (FRL) algorithm that can offer the design trade-
off between space requirement and precision of 
reconstruction.  

2.HOLOGRAPHIC ASSICIATIVE 
COMPUTING 
2.1. Representation  
MHAC represents information as a two tire quantity, the 
actual measurement and a meta-information “attention” 
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(or focus) . For example for an image the pixel value is 
the measurement. Each pixel may also take an associated 
second meta-quantity representing the “importance” of 
the pixel.  Computationally, this bi-modal information is 
represented as a multidimensional complex number 
(MCN) spanned in a hyperspherical space. In this scheme 
an element of information is represented as: 
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Here, kα   is the measurement and is mapped onto a set of 

phase elements kj,θ   in the range of πθπ −≥≥ . kλ is 

the meta-quantity focus. Following are the representations 
of a complete stimulus pattern and a response pattern: 
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2.2. Training and Retrieval 
Learning constitutes computation of individual complex 
associations, and superimposition of the associations on 
the holographic substrate. Following equation describes a 
reinforcement model of holographic learning: 

]][.[][][ 1 SXXX tt η+=+
 …(3) 

The substrate [X] is stored as a MCN matrix. η is the 
learning constant. The substrate acts as the memory. The 
retrieval process is similar to optical convolution. During 
recall , an excitatory stimulus pattern [ ]S e  is obtained 
from the query pattern: In the event, that this new 
stimulus resembles closely to a priory encoded stimulus, 
then the corresponding response pattern is generated with 
high magnitude. The decoding operation is performed by 
computing the inner product of the excitatory stimulus 
and the correlation matrix  [X]:. 
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The model treats the measurement component of 
information in a fundamentall y different way than any 
NN. The elements of these vectors are complex numbers 
and measurement components are exponents.  A complete 
theoretical and empirical analysis of the characteristics of 
this model can be found in [Khan95] and has appeared in 
[Khan98]. 

The underlying process can be explained through the 
recovery of a single response element, through (1a). Let 

the subscripts i and j refer to the element index and t 
refers to the association index. According to (1a) and (2), 

the jth element of the query response If ][ eS is close to 

some priory encoded stimulus ][ )( TtS =
, then the above 

equation can be rewritten as:  
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The phase of the first summation term here is exactly 

equally to the phase of ),( Tjr . Because, the product 

),(),( eiTi ss ⋅  is always a scalar quantity. For 

symmetricall y distributed associations, the second 
summation contributes as a random walk in the two 
dimensional vector space, The length of this path grows 
very slowly with the square root of the number of vectors. 
Thus, the resulting response phase closely resembles the 
phase of the correct response. If both the stimulus and 
response patterns are identical, then holograph acts as a 
content addressable auto associative memory. More 
extensive analysis of this holographic process can be 
found in [Suth92].  

2.3. Filtered Reinforcement Learning 
Now we will concentrate on the reduction of physical 
space required by the holograph [X]. The basis for the 
reduction is given by the following equation, where the 
excitation of the holograph [X] is updated by the 
following equations:  
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In the oscill ation mode, the non-linearity computation is  
deferred. Instead of computing it in every training cycle, 
rather a linear f()=t  is used and in every pth training cycle, 
the nonlinear reinforcement learning is used. The idea 
behind the non-linearity is to suppress the positi ve 
reinforcement for the holographic cell s which are timidly 
excited below the threshold β. In this model when a cell i s 
weak, other cell s in the same cooperation/competition 
cluster receives higher reinforcement, and grows. At the 
end of learning, a large number of Holograph cell s 
excitation fall s to very small excitation level. This feature 
can be exploited to compress the explicit representation of 
the holograph. 

2.4. Search Localization 
In general, this memory can accept focus mask both 
during encoding and retrieval. The masks are represented 
as the magnitude of the corresponding complex elements. 
The mask used during encoding is called the “assertion 
mask’ , and the mask used during recollection is called 
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“attention mask” . Also this memory generates a complex 
output during recollection. The magnitude values of these 
elements are related to the pattern distance. A normalized 
average of the retrieved pattern strength can be interpreted 
as a ‘confidence feedback’  from the AAM for each 
retrieved pattern.  

3.EXPERIMENTS 
3.1. Partial Pattern Matching 
In its simplest form, a large number of patterns are first 
"folded" into the correlation memory substrate of MHAC. 
It is called the holograph. During the encoding, each input 
pattern is first converted into an MCN stimulus pattern S. 
This pattern is associated with the MCN response pattern 
called Response Label Pattern (RLP).  

During the recollection process, the memory receives a 
sample pattern and an attention mask. These two is used 
to obtain the MCN query pattern. Once the query pattern 
is constructed, the associative search mechanism of 

MHAC performs associative recall . It returns an MCN 

pattern that corresponds to the RLP of the best match 
among the stored image. The recalled RLP pattern 
contains MCN elements with phases and magnitudes. A 
vector constructed out of the phase elements identifies the 
actual matching pattern. The magnitude vector 
corresponds to the MHAC's feedback confidence. High 
magnitude of the retrieved index pattern corresponds to 
potential match. Conversely, low magnitude corresponds 
to potential absence of the given object in the holograph.  

Fig-1 ill ustrates the power of search locali zation and the 
method for target retrieval. As can be seen, the archived 
target images (A&B), and the aircraft view (Fig-1(b)) 
with the target are quite dissimilar, because of the large 
difference in the surrounds and backgrounds. 
Unfortunately, a conventional AM depends on overall 
statistical image similarity and faces diff iculty here.  

As can be seen, MHAC has been able to dynamicall y (at 
query time) adopt to the focus mask to easil y reali ze a 
locali zed search within the region of focus (Fig-1(c) ), and 
obtain the expected match. More interestingly, if needed a 
second target in the same aerial view can be locked in by 
just changing the region of focus during run time, without 
requiring the memory to re-learn the patterns. The 
intrinsicall y different complex representation provides 
MHAC this fundamental abilit y. 

Although the above example ill ustrates the case of target 
recognition, the same novel search locali zation can be 
utili zed in many other important application scenarios. 
Detection of small i rregular patterns (medical 
diagnostics), detection of tiny targets, background varying 
target recognition, visual example based content-based 
image retrieval, robust adaptive control systems which 
needs to continue operating with small number of 
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Fig-1 Example of Holographic sub-pattern matching-based target recognition. (a) Examples of two archive photos. The 
target is at the intersection of an industrial complex and vegetated region. (b) The sample image taken by aircraft. ( c) 
Attentive masking on the target. This masked image finall y matches image-A based on the focal zone. The locali zation 
abilit y of MHAC made it possible to retrieve correct match, despite the large differences between A and the sample. 

 

(b) Aircraft view (c) Detection (a) Two archive photos A (left) and B (right) 

A B 
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surviving sensors, in the face of post learning loss of 
sensors, are just few of the criti cal applications which can 
benefit from the model. 

3.2. Performance 
Below are the results of space reduction experiments are 
shown. In this scheme 100 patterns of sizes 100x100  
were enfolded in a Holograph using the oscill atory FRL 
algorithm Fig-2 shows the convergence of the learning 
algorithm with training cycles for two beta values (β=.1 
and .5 respectively). The Y axis- plots the average 
accuracy of retrieval over all the learned patterns. The 
smaller the β, the better is the accuracy.  

Fig-3 shows the average space reduction of the nonlinear 
reinforcement learning in the oscill ation mode. 

Fig-4 shows the space vs. retrieval accuracy performance 
trade-off. As evident, the holograph size can be pruned 
almost ten-fold (10%), and still patterns can be retrieved 
with more than 30% accuracy. 

4.CONCLUSIONS 
The proposed work provides a formal mechanism for 
trade-off between size of space and qualit y of space for 
MHAC. As for other search problems, the reduction of 
search space also simultaneously reduces the search 
speed. The more is the sparseness of the pattern 
information, the less is the loss of qualit y in storage due to 
this contraction.  

A further work will be to investigate how the holograph, 
which can be considered a highly compact archive of an 
enormous number of stored patterns, be coded for 
eff icient transmission and recollection. Compared to 
feature based compaction [KhYu94], the actual number 
and distribution of excited cell s are not pre-determinable 
in FRL algorithm. Variants of flexible techniques such as 
run length encoding can be used for compacting the 
holographic archive.  

One of the attractive characteristics of MHAC is the 
potential abilit y of real-time and fast retrieval in 
thousands of patterns. Its retrieval algorithms can be 
highly paralleli zed. Further research can be undertaken to 
investigate clever compaction schemes that will facilit ate 
eff icient block decomposition and fast computations in 
parallel recollection.  
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