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ABSTRACT

The paper presents a scheme for reducing memory space
of a holographic associative memory for content-based
learning, searching and retrieval of sparse patterns.
Multidimensional holographic associative memory
developed on the properties of complex valued Riemann
space is one of the most promising models of associative
memory. It has demonstrated the unique ability to
perform dynamically localizable sub-pattern matching,
without requiring to learn each individual sub-patterns.
The rrelation space of the sparse patterns, is also sparse
in information, but representationally dense. Therefore,
holograph of sparse patterns (such as images) becmes
extremely large. In this paper we describe a holographic
memory model which can prune a holograph by several
fold. The resulting hol ographic model also simultaneoudy
increases the encoding, searching and decoding speed.

Keywords: partial-pattern matching, asociative
computing, holographic memory, target reaognition,
adaptive mntral.

1.INTRODUCTION

Since the advancement of synoptic theory of signal
transmisson by McCulloch and Pitts (1943, and Hebb
(1949 a number of modds of artificial aswociative
memories have been developed to mimic the behavior of
human brain by researchers such as Marr (1969,
Anderson (1989, Will shaw (1971), Kanerva (1988 and
many others [Carp89, HiAn85, Kane88, Will 89]. These
pioneaing models were able to reproduce some of the
intriguing behaviors of human brain.

Two o the most serious concern with most of these
asociative memories are their capacity and dfficulty in
storing arbitrary patterns. However, for image
appli cations, the problem becomes more acute in terms of
enormous physical memory requirement. Among the
previous researchers, Kanerva [Kane88] has diredly
addressed the issue of physical space requirement. Also
Khan and Yun have investigated feature based space
contraction of memory using principal component
analysis on patterns [KhYu94, Oja83].

A typical image pattern generaly consists of a large
number of pixels, and by nature individually they carry
smal amount of significant information. As a
consequence the rrelation space of the image pattern
beames physically large but sparse in information. The
objedive of our research is to find ways to extract useful
information from this garsenessof the wrrelation space
and to contract the physical space of associative memory.

Our research is gedficaly amed at a novel complex
numeric representation based associative memory
paradigm. In 1995K han [Khan95, Khan98] demonstrated
a generalized computational model Multidimensional
Holographic Associative Computing (MHAC), which
demonstrated the unique ability of dynamic search
localization. It has already been demonstrated that it can
remlled the best match with resped to a dynamically
defined sub-patterns, without requiring to learn sub-
patterns sparately, even when the window of focus drops
as low as 20%. Research also demonstrated its superior
spead and capacity performance [Khan95, Suth9Q].
Experiments have revealed speedup of factors 10 to 100
times compared to aher paradigms.

The result is particularly important not only in associative
computing paradigm, but alsoin general pattern matching
appli cations because, multi dimensional best-match partial
pattern search degenerates to expensive exhaustive search
even with known procedural algorithms [Khan95]. The
model potentially opens up the power of asxciative
computing to numerous complex pattern matching
applications. This particular research focuses on the space
contraction of the arrelation substrate of MHAC. It
presents the performance of a filtered reinforcement
learning (FRL) algorithm that can offer the design trade-
off between space requirement and predsion of
reconstruction.

2.HOLOGRAPHIC ASSICIATIVE
COMPUTING

2.1. Representation

MHAC represents information as a two tire quantity, the
actual measurement and a meta-information “attention”
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(or focus) . For example for an image the pixel value is
the measurement. Each pixel may also take an asociated
second meta-quantity representing the “importance’ of
the pixel. Computationally, this bi-modal information is
represented as a multidimensional complex number
(MCN) spanned in a hyperspherical space In this sheme
an eement of information is represented as:
[d'h ..(D
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Here, a isthe measurement and is mapped onto a set of

phase dements 8, , intherangeof T=6 = —1T. A, is

the meta-quantity focus. Foll owing are the representations
of a complete stimulus pattern and a response pattern:
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2.2, Training and Retrieval

Learning congtitutes computation of individual complex
asciations, and superimposition of the assciations on
the holographic substrate. Foll owing equation describes a
reinforcement model of holographic learning:

[X" =[X"T+n.[X][S] e

The substrate [X] is dored as a MCN matrix. n is the
learning constant. The substrate acts as the memory. The
retrieval processis smilar to gptical convolution. During
reall, an excitatory stimulus pattern [se] is obtained

from the query pattern: In the event, that this new
stimulus resembles closely to a priory encoded stimulus,
then the @rresponding response pattern is generated with
high magnitude. The decoding operation is performed by
computing the inner product of the ecitatory stimulus
and the correation matrix [X]:.

[Re]=%[X][Se],WhereC=i)\k .-(4)

The mode treats the measurement component of
information in a fundamentally different way than any
NN. The dements of these vedors are complex humbers
and measurement components are exponents. A complete
theoretical and empirical analysis of the dharacteristics of
this mode can be found in [Khan95] and has appeared in
[Khan9g].

The underlying process can be eplained through the
remvery of a single response dement, through (1a). Let

the subscripts i and j refer to the dement index and t
refers to the association index. According to (1a) and (2),

the jth element of the query response If [S®]is close to
some priory encoded stimulus [S®™"], then the abowe

equation can be rewritten as:
& (i) (ltﬁ}(l )

The phase of the first summation term here is exactly
equally to the phase of ljr - Becuse, the product

Tie) = Z Fiaem Somy Bg T

Simy[Bie is dways a scalar quantity. For

symmetrically distributed associations, the sewnd
summation contributes as a random wak in the two
dimensional vedor space The length of this path grows
very dowly with the square roat of the number of vedors.
Thus, the resulting response phase dosely resembles the
phase of the wrred response. If bath the stimulus and
response patterns are identical, then holograph acts as a
content addressable auto associative memory. More
extensive analysis of this holographic process can be
found in [Suth92].

2.3. Filtered Reinforcement Learning

Now we will concentrate on the reduction of physica
space required by the holograph [X]. The basis for the
reduction is given by the following equation, where the
excitation of the holograph [X] is updated by the
following equations:

X; =X +[r - Z f (X, ) 5] L5, -(6)
=

where, f(t) =t fort< 3,else=0

In the oscill ation mode, the non-li nearity computation is
deferred. Instead of computing it in every training cycle,
rather alinear f()=t isused andin every p" training cycle,
the nonlinear reinforcament learning is used. The idea
behind the non-linearity is to suppress the positive
reinforcement for the holographic cdls which are timidly
excited below the threshold B. In thismodel when acdl is
weak, other cdls in the same moperation/competition
cluster receaves higher reinforcament, and grows. At the
end of learning, a large number of Holograph cdls
excitation falls to very small excitation level. Thisfeature
can be exploited to compressthe expli cit representation of
the holograph.

2.4, Search Localization

In general, this memory can accept focus mask bath
during encoding and retrieval. The masks are represented
as the magnitude of the @rresponding complex elements.
The mask used duing encoding is called the “assertion
mask’, and the mask used duing remlledion is called
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(@) Two archive photos A (left) and B (right)

(b) Aircraft view

(c) Detection

Fig-1 Example of Holographic sub-pattern matching-based target recogniti on. (a) Examples of two archive photos. The
target is at the intersedion of an industrial complex and vegetated region. (b) The sample image taken by aircraft. ( ¢)
Attentive masking on the target. This masked image finally matches image-A based on the focal zone. The locali zation
ability of MHAC made it posshleto retrieve amrred match, despite the large diff erences between A and the sample.

“attention mask”. Also this memory generates a complex
output during reall edion. The magnitude values of these
elements are related to the pattern distance A normali zed
average of theretrieved pattern strength can beinterpreted
as a ‘confidence feadback from the AAM for each
retrieved pattern.

3.EXPERIMENTS

3.1 Partial Pattern Matching

In its smplest form, a large number of patterns are first
"folded" into the crreation memory substrate of MHAC.
It is call ed the holograph. During the encoding, each input
pattern isfirst converted into an MCN stimulus pattern S.
This pattern is asociated with the MCN response pattern
call ed Response Label Pattern (RLP).

During the realledion process the memory receves a
sample pattern and an attention mask. These two is used
to oltain the MCN query pattern. Oncethe query pattern
is constructed, the associative search medhanism of
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Fig-2 Oscill atory FRL convergence
MHAC performs assciative reall. It returns an MCN

pattern that corresponds to the RLP of the best match
among the stored image. The reclled RLP pattern
contains MCN elements with phases and magnitudes. A
vedor constructed out of the phase dements identifies the
actual matching pettern. The magnitude vedor
corresponds to the MHAC's fealback confidence. High
magnitude of the retrieved index pattern corresponds to
potential match. Conversely, low magnitude @rresponds
to potential absence of the given oljed in the holograph.

Fig-1 ill ustrates the power of search localizaion and the
method for target retrieval. As can be seen, the archived
target images (A&B), and the aircraft view (Fig-1(b))
with the target are quite dissmilar, because of the large
difference in the surrounds and backgrounds.
Unfortunately, a conventional AM depends on overall
statistical image simil arity and faces difficulty here.

As can be seen, MHAC has been able to dynamically (at
query time) adopt to the focus mask to easily redlize a
locali zed search within the region of focus (Fig-1(c) ), and
obtain the expeded match. Moreinterestingly, if needed a
send target in the same aerial view can be locked in by
just changing the region of focus during run time, without
requiring the memory to re-llearn the patterns. The
intrinsically different complex representation provides
MHAC this fundamental ability.

Although the above example ill ustrates the ase of target
reagnition, the same novel search localization can be
utilized in many other important application scenarios.
Detedion of smal irregular patterns (medical
diagnostics), detedion of tiny targets, background varying
target recognition, visual example based content-based
image retrieval, robust adaptive ntrol systems which
needs to continue operating with small number of
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HOLOGRAPH SPACE CONTRACTION
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Fig-3 Space saving with high beta.
surviving sensors, in the face of post learning loss of

sensors, arejust few of the aitical appli cations which can
benefit from the modd.

3.2. Performance

Below are the results of space reduction experiments are
shown. In this sheme 100 patterns of sizes 100x100
were enfolded in a Holograph using the oscill atory FRL
algorithm Fig-2 shows the wnvergence of the learning
algorithm with training cycles for two beta values (f=.1
and .5 respedively). The Y axiss plots the average
acauracy of retrieval over all the learned patterns. The
small er the 3, the better isthe accuracy.

Fig-3 shows the average space reduction of the nonlinear
reinforcement learning in the oscill ation mode.

Fig-4 shows the space vs. retrieval accuracy performance
trade-off. As evident, the holograph size @n be pruned
amost ten-fold (10%), and still patterns can be retrieved
with more than 30% accuracy.

4.CONCLUSIONS

The proposed work provides a formal mechanism for
trade-off between size of space and quality of space for
MHAC. As for other search problems, the reduction of
search space also simultaneoudy reduces the search
speal. The more is the sparseness of the pattern
information, the lessisthelossof quality in storage dueto
this contraction.

A further work will be to investigate how the holograph,
which can be onsidered a highly compact archive of an
enormous number of stored petterns, be wded for
efficient transmisson and reolledion. Compared to
feature based compaction [KhYu94], the actual number
and dstribution of excited cdls are not pre-determinable
in FRL algorithm. Variants of flexible techniques such as
run length encoding can be used for compacting the
holographic archive.

Fig-4 Spacevs. RLP retrieval accuracy

One of the attractive daracteristics of MHAC is the
potential ability of rea-time and fast retrieva in
thousands of patterns. Its retrieval algorithms can be
highly parall i zed. Further research can be undertaken to
investigate dever compaction schemes that will facilit ate
efficient block decomposition and fast computations in
parallel reclledion.
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