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SUMMARY

This paper presents an associ ative techniquefor content-based retrieval into imagearchive, based
onanew computing paradigmcalled M ultidimensional Hologr aphic AssociativeComputingMHAC).
Unlike any prior Artificial Associative Memory (AAM), MHAC has the unique ability to focus on any
subset of pixelsin the sample image and retrieve learned images based on the similarity of the visual
objects. In addition, MHAC is adaptive, graciously accommodative of imprecision, efficient, paralle-
lizable, scalable, andoptically realizable. Together, theseexcellent propertiesof MHAC offer apromising
novel approach to content-based search into massive image archives. The paper presents the needed
transformational steps to incorporate this new mechanism into a complete image archival and retrieval
system. Thisisthefirst associative search approach for content-based retrieval inimage repository. The
results show that this search system is capable of retrievals by using pattern objects as small as 15-10%
of the query image frame at better than 90% accuracy. This demonstrates the potential of MHAC for
handing content-based image applications far beyond the capability of current associative memories.
The design, methodology and performance of this system have been illustrated in this paper through its
application in managing a M edical | mage Archive (MEDIA).

1 This paper has been accepted by the Journal of Computerized Medical Imaging and Graphics, and will appear
in the special issue on Medical Image Databasesin April 1996.
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ABSTRACT

This paper presents an associative technique for
content-based retrieval into animage archive based ona
new computing paradigm called Multidimensional
Holographic Associative Computing (MHAC). Unlike
any prior Artificial Associative Memory (AAM), MHAC
has the unique ability to focus on any subset of pixelsin
the sample image and retrieve learned images based on
thesimilarity of the visual objects. The paper presentsthe
required steps to incor porate this new mechanisminto a
complete image archival and retrieval system and pres-
ents the performance of an implemented prototype
content-based search system in querying into a medical
image archive.

Key Words. Associative Memory, Content-based
Retrieval, Attention.

1INTRODUCTION

I mage Information and Content-Based Retrieval:
The process of content-based imageretrieval (CBIR) can
be defined as a technique where images are identified
fromapart of it. This part generaly refersto an object or
agroup of objectsin theimage and the match is based on
the similarity between these objects. For instance, a
radiologist may want to find all the similar patient cases
that have tumor of a certain shape to confirm adiagnosis
at hand. In another situation, aradiologist can request for
kidneysthat are not of the normal shape likethe oneina
given exampleimage. However, the problem isthat these
imageobjectsand conceptsused as"index" are perceptual
and subjective.

Themore animageis non graphical® (such as medical
images), the conceptsin it, objects (such as atumor) and
their rel ationships (such as anatomical, compositional, or
spatial relations), tend to be increasingly subjective both
in the senses of concreteness of their definability and
precision of their measurability (in contrast, conceptsin
symbolicinformation canassumemuchfirmer objectivity
in both of the above senses).

Existing Retrieval Techniques. Because of the
prohibitively high cost of searching into real images, in
the recent years a number of techniques have been
developed which can perform pseudo-content-based
retrieval (suchas QBIC[14], IIDS[3], PICQUERY [10],
IDB [17]). These approaches rely on symbolic model of
the "content’ of images to mediate the search. These
techniques mostly use textua representations (natural
language or keywords) in terms of a set of pre-defined
attributes (color, shape, size, etc.) and their values[19, 8,
6]. Some other use machine detectable features (geo-
metric moments, triangular cover, points of maximum
curvature, etc.) to help automating the extraction process
[9, 15, 14]. These symbolic descriptions are then stored
into some form of data structures (ranging from plain text
[8], to complex semantic net [19], or ingenious 2D-string
[3]). Oncesuch descriptive modelsare avail able, variants
of conventional database techniquesare used to searchiit.

However these psudo-content-based retrieval tech-
niques face serious limitations because of their funda
mental dependance on such intermediate model of
"meaning” [12, 2, 5]. In the first level, it is difficult to
design a sufficient language that can contain al the

2 Although, both graphical and natural imagesare sensed visually, possibly the processinvolved inthe perceptualization
issignificantly different [12]. In arelative sense, graphical images (such astextual writings, engineering drawing) are

more pre-abstracted, and convey refined information.
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possible ranges of meaning. In the second level, even
assumingthedesignability of such alanguage, theprocess
of model extraction or interpretation itself seems to be
indefinite and imprecise. Consequently, these psudo-
content-based retrieval techniques can be used only for
applications where images are near graphical and the
archive is slow growing, static and small, allowing the
luxury of extensive domain-specific modeling and
tedious human involvement. Some innovative technique
is much needed to deal with majority applications where
none of the above applies.

In this paper we present an aternate approach for
content based retrieval which can overcome the above
limitations of the psudo-content based retrieval methods.
Itisbased on direct visual similarity and does not require
any adhoc intermediate modelling of "meaning", rather
allows the individual inquirer (also referred as the user)
to attach their own "meaning" dynamically during query.
The search engine of this approach is based on a new
associative computing model.

Associative Computing: Parallel and distributed
models of Artificial Associative Memory (AAM)
evolved from the phenomenal advancement of neural
network research demonstrate two interesting character-
isticswhich strongly suggest their potential applicability
in content-based retrieval [7, 13]. These models are
adaptiveand thuscan avoid the need for explicit symbolic
model extraction. Also, computationally they are fast®,
inherently distributed and parallel, and thus can offer
direct search ability intoimages. However, current AAMs
still exactly can not be used for searching into image
archive because they lack the ability to focus.

Focus, specially its post-learning dynamic specifi-
ability, is necessary for visua query. For example, in a
sample CT image depicting an abdominal cross-section,
it is up to the inquirer to decide whether the object of
interestisthe"spinal column” ora"tumor" ashis/her basis
for similarity. Current AAMs cannot focus on either of

them instead converge only to the statistically closest
match based on all the pixels in the sample scene. For
meaningful search, itisimportant that thememory beable
tofocus on demand on any image objectsthat the inquirer
wants to emphasize as the basis for similarity, and if
necessary should beabletoretrieve differentimagesfrom
the same sample based on the object of focus.

Very recently [11] has demonstrated that a new
associative computing mechanism caled as multidi-
mensional holographic associative computing (MHAC)
allows post-learning dynamic specification of attention
on the pixel fields in the sample. This model combines
the critical capability of attention with the usual advan-
tages of associative computing, and thusfor thefirst time
creates the opportunity to use associative computing for
the content-based retrieval of images based on object
similarity. Its computational mechanism is based on the
principles of optical holography.

This paper presents how this new holographic com-
puting mechanism and its ability to perform associative
retrieval with changeable attention can be transformed
into an image database and retrieval system. This paper
isorganized asfollows. Section 2first briefly presentsthe
development of MHAC from optical holography. Section
3 then presentsthe architecture of the devel oped Content
Associative Image Database Search System (CAIDSS),
a prototype system that embodies MHAC. The func-
tionality of CAIDSS has been explained through it's
managing a medical image database called MEDIA.
Sections4 and 5 explaintheimportant stepsof thearchival
andretrieval process, including datapreprocessing, index
formulation, archive maintenance and the query formal-
ism. Finally, section 6 provides the computational com-
plexities of the proceduresinvolved in CAIDSS.

3 Various classical pattern matching algorithms exists to find exact match in a pattern string. However these classical
methods areimpractical for large volume images. Because the multidimensional and indefinite nature of feature space
makes it almost impossible to pre-order (sort) images that improves the search efficiency of these methods[18].
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2MULTIDIMENSIONAL HOLOGRAPHIC
ASSOCIATIVE MEMORY

2.1 Concept: Bimodal Associative Memory

L et astimuluspatternisdenoted by asymbolicvector
St ={st st ....s!. Each of theindividua elementsinthis
vector represents a piece of information (subscript refers
to the element index and superscript refers to pattern
index). The values of these elements correspond to a
measurement obtained by some physical sensor.

ASSERTION

ENCODED INFORMATION

RETRIEVED INFORMATION

QUERY INFORMATION
INFORMATION
PLANE

Fig-1 Information Flow Model of Bimodal Memory

A general memory hasthreeinformation channels(as
shown in the bottom plane of Fig-1). The first is the
encoder, where information is received during learning.
The second is the decoder, where query template infor-
mation is received from inquirer. The third is the output
channel, wherefor each query, the memory generatesthe
response.

A conventiona memory processes only the above
measurement components of the involved information
elements. In contrast, the novel formalism wewould like
to propose adoptsan additional meta-knowledgeplane (as
shown in the upper plane in Fig-1) to accommodate
dynamic attention.

The linguistic interpretation to the quantities of this
meta-plane varies depending on the channel. For the
encoding channel this meta-knowledge correspondsto a
form of assertion from the encoder. For the query pattern
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itcorrespondstoaform of attention onthepart of inquirer.
For the memory responseit correspondsto the confidence
on the retrieved information as assessed by the memory
itself.

Thus, in this new formalism each information ele-
ment is modeled as a bi-modal pair st = {ak, Bi}. Where
o representsthemeasur ement of theinformation elements
and (3 represents the meta-knowledge associated with it.

This memory is expected to maintain the following
specific relationships between the measurement and the
meta-knowl edge components of information elements:

Inflow Expectation: During retrieval, more
importance should be givento a piece of information that
has higher attention value than to a piece with lower
attention in the query, and vice verse.

Outflow Expectation: If a query element demon-
strates high degree of measurement resemblance to that
of apriory encoded stimulus pattern, then memory should
retrieve the associated response measurement with
higher degree of confidence, and vice verse.

The above expectations constitute the behavioral
definition of the memory formalism which incorporates
possibility of imperfection in al associated measure-
ments. An associative computational method based on
optical holography [4] can realize this special memory.

2.2 Optical Holography

Let us consider asimplified version of the hologram
synthesis process. As shown in Fig-2, imagine two
wavefrontsincident on amedium in plane P. Let, one of
these is a plane wave of light (at an angle to the optical
axis) indicated by S=K.e7%, and the other is the wave-
front R(X, y), that contains the complex variations to be
encoded on the hologram. If the two wavefronts are
coherent (suchconditionisgenerally met by usingasingle
LASER source, mirrors and beam splitters), then the
intensity incident on plane P is given by (bar indicates
complex conjugation):

10, Y) =IR(x, y) +KeT [
= R(x,Y) [ +K+ KR, y)eI™ + KR(x, y)e '™

Slatlg+lc+l, (1)

Consequently, the medium used in plane P will have
atransmittance t(x,y) that is proportional to 1(x,y).



Interestingly, the encoded wavefront R(x,y) can now
be retrieved from the hologram t(x,y), if we reilluminate
it by the stimuluswavefront that wasused inthe hologram
recording process. For suchillumination, thelight leaving
the hologram in Fig-2 is given by:

O(x,y) =t(x,y).Ke?™ =K.l (x, y)e ™
=K(K*+|R(x,y) [)e?™
+KR(x, y)e7?* + K*R(X, y)
=(A+B)+C+D 2

Dueto the diffraction on the holographic plate three
beams |eave the holographic plate at three directions. A
viewer placedinthedirection of D seesonly thewavefront
R(x,y). This is exactly the one that was supposed to
emerge from the real object. This wavefront creates two
dlightly different images in the two eyes of the viewer,
just in the way the actual R(x,y) directly reflected from
theobject would have created. Asaresult whentheviewer
looks towards the holographic film he/she sees the
hologram of the actual object initsoriginal placewith all
its 3-D feel. The same holograph can be used to obtain
the wavefront S from R(X,y) in amost same manner.
These ideas were originally suggested by Gabor in Late
40’ s[4]. Theactual 3D hologram had to wait 10 yearstill
the perfection of LASER.

Associations between Objects. Hologram can also
store association between a pair of objects. If instead of
the plain wave, now the light reflected from a second
object placed in the scene becomes the stimulus wave
S(x, y), then the interference pattern created on P stores
the association between these pair of objects. If the plane
Pisreilluminated by the light reflected from one of the
object then the light leaving the plane becomes the one
reflected from the other. Hologram has two additional
characteristics which make it even more interesting.

Multiple Associations: The first among theseis the
ability to store multiple associations on the same holo-
graphic film. An interference pattern incident from a
second pair of objects can now be super imposed on the
earlier interference pattern on plane P. If any of thesefour
objects is used to reilluminate the holograph, then the
recollected wavefront 1ooks like the one associated with
thisobject. A largenumber of associationsbetween object
pairs thus can be stored on the same photographic film.
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Robustness: The other interesting property of
hologram is its ability to reconstruct the image from
partial information. During recording, each point onplane
P receivesareflected beam from all the points of both the
objects. At the sametimetheilluminating beam reflected
from each point of both the objects reaches all the points
on P. Duringretrieval, each point of Pilluminated by each
reflected beam from S(x,y) independently reconstructs
the original wavefront R(X,y).

[ MIRROR

OBJECT \
LASER SRC \/\/\/\/\/\_» Ei /W\/’/’

FILM

ENCODING...
g(g[g[g[{(g[ MIRROR

HOLO! GRAM\ .

DECODING...

b, @
\ A+B
C

Fig-2 Recording and Decoding in Holography

The effect of such independence istwofold. Firgt, if
only a part of the hologram film is used, even then the
actual R(x,y) is reconstructed (except for adight loss of
the viewing angle). The hologram also has robustnessin
a different sense. Instead of dividing the film, if only a
part of the stimulus beam S(x,y) is used to illuminate the
film (and the rest is blocked), even then the origina
wavefront R(X,y) appears (except for some loss in
brightness).

The Phenomena of Holography: The properties
associated with the hologram are extremely intriguing to
our senses. Here we will try to list them. In essence a
hologram can (i) record and accurately regenerate 3D
complex waveforms, (ii) learn associations between two
waveforms, (iii) enfold enormous number of multiple
associations, (iv) regeneratewaveformsfrom apart of the
hologramfilm, andfinally (v) regeneratewaveformseven
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when excited by partia stimulus wavefront. The impli-
cations of these fascinating characteristics for us can be
stated in the following way.

It the first property which makes hologram a 3D
waveform recording medium (for which it is most
famous). The addition of second property makes it a
memory. Further addition of the third property makes it
an associative memory. Similarly, the fourth property
makes it a distributed associative memory. Finaly, the
last property makes it a distributed associative memory
with the ability to focus. Next, the essential computation
of holography which can yield al five of these properties
digitaly isidentified.

Essence of the Computation: As evident by now,
the key to the reconstruction process lies in the 3rd and
4th terms of (1). A real hologram operates with two
congtraints; the first one is (i) that the optical setup
performs addition of two wavefronts and the other oneis
(ii) that the recording medium can store only positive
valued functions. But a computer can easily evaluate
products and store complex-valued spatial functions.
Therefore, the 3rd term is directly captured and the 4th
termisevaluated if needed sinceit isconjugate of the 3rd.
The above simplification not only reduces the amount of
datathat hasto bestored inthe mediumbut also eliminates
the interference from unwanted terms. The most impor-
tant fact isthat 1, retains al the critical properties of a
holography.

2.3 Realization: Computational Representation

In MHAC scheme, a generalized form of the above
computationa model isadopted to associate one response
label pattern (RLP) with every image to be stored. Inthis
scheme, RLP is substituted for R, and the image is
substituted for S. Later during recollection, the image or
any of it's partsis used to reconstruct the full RLP.

Inholography an element of the patternisrepresented
asa2D complex value. Weadopt ageneralized formalism
and represent the elements in the form of multidimen-
sional complex numbers (MCN) as apoint on the surface
of a hypersphere. In this formalism the MCN phase
representsthe measurement and magnitude representsthe
meta-knowl edge component of each pieceof information.
Thus:
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Here, each aX ismapped onto an angul ar span defined

by the phase elements 68X in therange of 1= 6 > tthrough
asuitabletransformation, where each s(A,, 6%, 6%, ...65_)
isad-dimensional vector. Each of the 6} is the spherical
projection (or phase component) of the vector along the
dimension fj. A becomes the magnitude of this vector.
Thus, a stimulus with n elements and a response with m
elements are represented respectively as.

Here, in the response pattern the phasor ¢ represents

the measurement of the expected associated response
pattern elements from the memory system, and y repre-
sents the expected system confidence on .

2.4 Encoding

Theassociation between eachindividual stimulusand
its corresponding response is analogous to I, and is
computed as following:

[X¥ =[S (R e

The associations derived from a set of stimuli and a
set of corresponding responses are superimposed on a
super matrix X which isreferred as Holograph.

[m=§wﬂ=§?fmﬂ .(5)

2.5 Retrieval

During recall, an excitory stimulus pattern [S7] is

obtained from the query pattern:

Bstie 8 Hy'iee d H'stiee

1.0; 1.0; 1.0;

SI: o5 1ig o% e o5 in
[ @\ie ! Ase I (Rl

The decoding operation is similarly performed as
following:



R =[S 01X] .(®

where, c=

~M =

A

The basic associative memory characteristics of this
model explaining how equations(4), (5), and (6) together
can correctly retrieve origina stored response despite
superimposition of theassociationsin (5) isgivenin[11].

As expected, this new computational model has
advantages similar to the conventional AAMs. Infact, as
shown in equation (6), a search into thousands of stored
images through this technique requires a single complex
matrix multiplication. The most important capability of
post learning dynamic focus of MHAC is given by the
external adjustability of each individual magnitude of the
guery stimulus elements.

3 DESIGN OF IMAGE RETRIEVAL SYSTEM

3.1 System Overview

Thissection now demonstratesthe detailed stepsthat
have been developed to transform the technique of
MHACanditsability to performassociativeretrieval with
changeabl e attention into a complete search mechanism
for content based querying into image database. A pro-
totypesystem called Content Associ ativel mage Database
Search System (CAIDSS) has also been implemented.
CAIDSSinvolvesthree principal components; (i) storage
and access subsystem (SAS), (ii) associative encoding
subsystem (AES), and (iii) associative query subsystem
(AQS). Fig-3 presents the schematic.

The storage and access subsystem (SAS) is con-
cerned with space efficient compact storage of theimages
and access speed. It isfunctionally independent from the
rest of the search system, andwill not bediscussed further.

The associative encoding subsystem (AES) is con-
cerned with the generation and maintenance of the
hol ographic archive abstract of theimages. It involvesthe
following major steps, (i) image pre-processing and
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stimulus pattern generation, (ii) Generation and assign-
ment of response label patterns (RLP), (iii) Holograph
training, and (iv) Holograph characterization.

The associative query subsystem (AQS), alows a
direct content based search into the image archive. The
principal responsibilities of this subsystem are; (i) query
interface, (ii) search optimization, and (iii) associative
recall. It also communicates with the SAS if physical
access to the image is demanded. The functionalities of
AES and AQS areillustrated in the next two sections.

4 ENCODING PROCESS
4.1 Stimulus Generation

The principal design issues at this stage are: (i)
domain knowledge based semantic content refinement,
and (ii) system architectural constraint based data-
mapping.

Semantic refinement: The objective of this step is
to remove the undesirable and to enrich the desirable
components of information. For medical images, the
regions can generaly be segmented into regions of (@)
bonetissue, (b) soft tissue, (c) fat tissue, (f) air. Typically,
gueries are based on the first two or three of these
segments. At thepreprocessing stageof MEDIA, theinput
images are trimmed off from the air segment identified
with a Gaussian classifier. MEDIA sets assertion
valuer=0.05 for pixels corresponding to the air segments
(mainly dark backgrounds with no reflectance of x-ray),
whichistypically largefor CT-SCAN or MRI imagesbut
bears no cognitive importance.

Data mapping: The MCN representation specifi-
cally requires; (i) dynamic range of the input data distri-
butionto bemappedintothe0-21trange, and (ii) sufficient
symmetrical distribution. In the raw format, an imageis
represented by a two dimensiona array of pixels with
discrete intensity valuesin the range of 0-255. Typically
image demonstrates normal distribution of intensity. The
spiral mapping transform specified in equation (7) has
been used to obtain symmetric distribution in the range
of -Ttto +1T
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2*
8, =m(l,) = Ii'kspread'%_n

-(7)

lmax = limin

Ksread 1S the spreading coefficient. To maintain the
uniqueness of mapping in 2" level intensitiesit should be
an odd number (2 is the only prime factor). Other
functions can a so be used besides (7) aslong asthey are
not dependant on image frame characteristics. In object
oriented content-based retrieval, one of the basic possi-
bility isthat the query image frame may differ consider-
ably from the encoded one outside the region of focus.
Therefore, functions such as sigmoidal mapping [16], or
histogram equalization [13], which are often used in
neural networks for data mapping, should not be used
here.

4.2 Response L abel Associations

Response Label Patterns (RLP) are internal index
used by the Associative Query System (AQS) to identify
images. The principal design issues are (i) the length of
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RLPs. (ii) and the assignment of RLPs.

RL P length: The length of the RLP (m) is decided
by number of image frames (P) and the quantization
interval in the dynamic range of 6. Given a quantization
interval q, the length is given by equation (8). The
guantization interval g depends on the expected loading
of the holograph.

m= IogE@E(P) ...(8)

RL P assignment: A simple sequential assignment
(such as assigning intervals 1,2,3,.. to images 1,2,3) of

RLPs tends to asymmetrically overcrowd the dynamic
range of 6 for a holograph that contains fewer patterns
than the designed limit computed by (8). To avoid such
overcrowding, aReverseModulusWeight code(RMWC)
has been devised to assign RLPs to the images. Fig-4
shows three stages of avalid assignment sequence. Such
RWM C alwaysensures maximum separability among the
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assigned RL Ps, and thus reduces error. The technique of
obtaining such symmetric assignment isto maximize the
distance between each consecutive codepair. Thisisdone
by atering the maximaly weighted digit. If u is a
sequence number then it is mapped to a polar phase v by
the transform (9):

u=a,d’+a.d'+a,d°

g (aQ.d°+a1_d1+ao.d2)*? =v ....(9)

SEQ-2 SEQ-3 SEQ5

Fig-4 RMWC Code

4.3 Training Algorithm

The training is performed in three stages and corre-
sponds to equations (4) and (5) and is given in Fig-5. A
differential training approach is adopted [16], where
before encoding, in the first stage, the stimulus S is

decoded for performance improvement.

The prototype holographic archive called MEDIA
encodes64 CT scan and MRI imageseach of size256x256
pixels. Fig-11 shows some samples. Fig-6 shows the
convergence characteristics of average recall SNR (left
y-axis) and mean normalized confidence (MNC) (right
y-axis) asthetraining (x-axis) progressed. Ascan be seen,
the encoding process attained the peak performance

within only 20 iterations.

Define complex patterns RR, IMG, R, Ry;
Define holograph H, Ay

a. Initialize the Holograph Randomly;

b. Set t=0; iter=1{

E for all images;
e Sett=0; iter=iter+1;
f. If (E> EPSILON) Repeat from step b; }
0. Save the holograph;

c. While (t < ALL-IMAGES) {
i. Read the t" RLP, RR=ReadPattern(t);
ii. Read the t" image, | M G=Readl mage(t);
iii. Convert the Image IMG to stimulus pattern S;
iv. Decode for R by applying Sto H, R=S.H;
v. Compute the difference, Ry#= RR - R;
vi. Generate the difference association
A= conjugate(transpose(S)).Rir;
vii. Super impose the association on the holograph
H= alpha*H+A
viii. Set t=t+1; Repeat fromstep c; }
d. Compute average recall error

Fig-5 Training Procedure of CAIDSS

Holographic Image Archive



SNR and MNC CHARACTERISTICS
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200

105

104

150

)

2

o

=z

%]

L

§

&

Ll

> /'/

< Pl
50 Wad

0 5 10

15
ITERATION (1)

20 25 30

_e-SNR ___MNC

TRAIN:M41-L02

Fig-6 Training Characteristics of MEDIA

4.4 Holograph Characterization

Two tests (called ZOOM test and SCAN test) have
been developed to monitor the status of holographs.
ZOOM test probes the distinguishability among the
encodedimagesby applyingfocuswindowsof decreasing
dimensions at the center of the template. SCAN test
probes the distinguishability at various spatia locations
with afixed size focus window.

The six pulse-trains in Fig-7 show the accuracy of
each pattern recall for six widow sizes
(70x70,80x80,90x90,100x100, and 110x100) during
ZOOM test (wrong detectiontriggersajumpinthepulse).
Asshown, itretrieves each of theseimagescorrectly when
thewindow is100x100 pixel swide(pulsetrain C3). When
the window drops to 70x70 there have been five wrong
detections (image 9, 38, 41, 43, 45) out of 64 images.
Fig-8 summarizes the average accuracy. The line-plot
(right y-axis) shows the attention strength, the bar-plot
(left y-axis) shows the average accuracy, and thelabel on
the bar shows the actual number of accurate detections
for each of these zoom windows.
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Theresult of SCAN test is similarly shown in Fig-9
and Fig-10. SCAN test probes the distinguishability at
five spatia locations with 75x75 focus window (at the
image frame center and the centers of itsfour quadrants).
As can be seen, the distinguishability among the images
varies(between 3-10 errors, for lessthan 10% focus) with
the region of spatial attention, which is quite natural.

When a holograph is saturated, the tracking tests
provides necessary indication for switching to aternate
holographs. In conventional database maintenance,
occasionally optimization processes are triggered when
estimated upper bound of access time exceeds certain
threshold. In contrast, for associative archives the main
concernistheaccuracy of retrieval (accesstimeisamost
independent), thus, lower bound of accuracy acts as the
trigger. Also during matching, test results help in veri-
fying the correctness of the results or in preempting a
guery when it is launched into a frame region with low
distinguishability.
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5 DECODING PROCESS

Users query is conveyed to the AQS through a
combination of pictorial examples, focus shields and
logical connectives. Inthefirst level, the user specifiesa
set of elementary objects through defining focus shields
onvariousquery imageframes. Theuser canthenperform

Holographic Image Archive

guery involving objects or defining composite objects by
logically combining these elementary objects. The fol-
lowing sub-sections consecutively discuss (i) the proce-
durefor defining theelementary objects, (ii) specification
of complex objects, and finally, (iii) the search process.

5.1 Elementary Objects
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A sample scene generally contains many regions of
interest. CAIDSS helpstheinquirer to decide how he/she
wantsto define these objects and, which objectsto use as
the basis of similarity.

Prior to launching a query, the user is expected to
specify the elementary basis of his’her search through a
set of image and mask pair. Mask representsthe attention
shield that defines the object inside this example image.
In the current implementation, mask is specified by
defining arectilinear window filtering on the spatial and
color dimensions. The mask for grey scale images
requires 6 parameters (xmax, xmin, ymax, ymin, imax,
imin) and color images require 10 parameters to define
range boundaries. Table-1 shows the specifications of
someobjectsfrom Fig-12(a). Theattention strength or the
size of the individual objectsis given by columnf andis
given in equation (10):

2N

f=l—

- ....(10)

5.2 Composite Objects

Once the elementary objects are specified, more
compound objects can be defined using logical connec-
tives. The following is an example.

(Q1.0BJ1) O(~ .(Q2.0BJ2)) - (Q3.0BJ3)

Inthisformalism OBJ1, OBJ2 are component objects
and OBJ3 is the composite objects. Q1, Q2, Q3, ... are
fuzzy quantifiers, with values assigned between [0,1]. In
reality they can be assigned linguistic multi-valued
quantifiers such as HIGH, LOW, etc. with a membership
function set to trandate them into analogue values. The
logical union, intersection and complementation opera-
tions are defined according to fuzzy set functions given
in equation (11).

fa 0e(¥) = max(fy(x), fz(X))
fae(X) =min(f,y(x), f5(X))

£.(0) =1-f,(x) ..(11)
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5.3 Compound Sear ch

Just like the objects, the search can also be logically
compounded. Search compounding generally involves
multiple decoding. Individual decoding results are log-
ically assimilatedin AQS. Compound search allowsusers
to perform searches when the query image differs from
the expected image in some proceduraly definable
abstract sense (such as the sought object may be
approximately half the size than the sample).

(HIGH.OBJ8.INREGION(region)) — (OBJ9)

For example, the above query resultsin a search for
OBJ8 in a specific region on the image and refers to
specific spatial trandation invariancy in 2D. The proce-
dura specification of the term "INREGION()" can be
given (or selected from library) by theinquirer.

It should be noted that repeated multiple search isnot
as dreadful as it isin conventional database. In a con-
ventional database, compound search may mean
searching enormous number of images repeatedly.
Whereas in CAIDSS each search means decoding into
one holograph.

5.4 The Search Process

The process of obtaining query stimulus patterns is
identical to the encoding process, except that now the
magnitudes of the composite elements are obtained from
the mask. The raw RLPs are then retrieved by direct
associative recall using equation (6). If the specified
object isnot present in the database, therecalled raw RLP
shows distinctively low magnitude of the MCNs.
Otherwise, it resembles the actual RLPs of the matching
image. A linear search is performed in NSU among the
RL Pstofind the closest match. The search producesalist
of matching RLPs in order of their numerical proximity
using the distance measure given below:

D(R,RY,A9) = @A?dia(r?, ri“)H ..(12)
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MASK# Object xmax xmin ymax ymin f
1 Basi-occipital 192 -064 167 -117 .033
2 Foramen Magnum 170 -076 118 -035 .041
3 Foramen Ovale and Spinosul 230 -169 229 -154 .024
5 Jugular Foramen and Carotid Canal 074 -021 146 -093 .048
Table-1 Masksfor Objects of Focus
MASK# Object Match# Image xsft ysft SNR (db) MNC
1 Basi-occipital 11 A35 -60 -90 36.21 0.956
12 A33 -10 100 33.42 0.895
Foramen Magnum 21 A33 -10 100 32.27 1.123
Foramen Ovale and Spinosul 31 A35 -60 -90 33.33 1.092
Jugular Foramen and Carotid Canal 51 A34 -130 -20 31.92 1.095
5.2 A33 -10 100 37.46 1.183

Table-2 Results of Retrieval

5.5 Query in MEDIA Archive

Fig-12(a) shows atypical sample image which can
be used as a pictorial example for query. Let us consider
thefour obj ectsshown by thefocuswindowsinit (itwould
not be any different if another inquirer wants to define
his’her objects in a different way). Table-1 shows the
mask specifications of these index objects. The last
column shows the focus strengths (f) of these masks. As
evident the typical features or objects with perceptual
indices quite often fall below 10-4% of the total image.

Given, the sample image and the mask definitions,
the AQS searches at various spatial locations of the
MEDIA holograph. During decoding, The matches
numbered1.1,1.2,2.1, 3.1, 5.1, and 5.2 of stored images
A33,A35, and A34 (shownin Fig-12(b)) arerespectively
retrieved by the system from the MEDIA as match. As
evident, although none of these stored pictures have
statistical similarity withthe query image, but each match
closely on the basis of respective cognitive objects.

The search process of CAIDSS uses a 10x10 grid
resolutionfor spatial searchintoMEDIA. Theassociative
retrieval generates response at these locations. Search at
each grid point generates aresponse with aspecific MNC
value. Asexplained before, high MNC indicates possible
match. The 5th and 6th columns of Table-2 show thegrid
locations (through the shift values) for which aretrieval
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MNC gresater than 0.5 have been measured. The 7th and
8th columns respectively show the corresponding MNC
and the accuracy of retrieved RLPs.

6 SEARCH COMPLEXITIES

Time Complexity: For CAIDSS, the RCA search
complexity for any p-image database of n pixelseach, and
RLP length d, isO(d [h) = O(n Oogp).

Derivation: Let us consider that the length of RLP is
m. The search processinvolves(a) computation of pattern,
(b) holographic decoding, and (c¢) RLP matching. The
complexitiesof thecorresponding stagesareasfollowing.
The cost of pattern computation = O(n). The cost of
holographic decoding = O(nm). Thisisan inner product
matrix operation involving complex matrix multiplica
tion. RLP matching = O(mp). It is alinear search with
relatively very small pattern length. Thus, the cost is
negligible. Generally, m = O(logp). Thusthe complexity
of the overall search processis.

O(n) +O(n Oogp) + O(p ogp) = O(n [ogp)
...(13)

SpaceComplexity: For CAIDSS, theRCAsearchinto
a p-image database of n pixels each, and RLP length d,
requires M =m[d{n+p) space for holographic
encoding.
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Derivation: Let us consider that the length of RLPis
m and that each complex element requires d bytes for
representation. The space, required by the holograph is
m.n.d. Someadditional spaceisalsorequired by theRL Ps.
Whichis p.m.d. Thusthe total space requirement is.

M =mU0d (n +p) ....(14)

In practice p =n, and 4-12 bytes are sufficient for
images with 256x256x256 full colors.

7 CONCLUSIONS
7.1 Scalability

Extensive simulations and analysis aready con-
ducted have confirmed the scalability of MHAC beyond
the MEDIA prototype. As an example, it has been
demonstrated  that, given reasonable symmetry
1000-2000 images with 4K pixels each can be associa-
tively enfolded on a MHAC memory of 12K bytes and
can be recalled with lessthan 4% error. It should also be
observed that much of the involved computations are
potentially realizable on optical architecture, which
makesthisapproach evenmoresuitedtolarge scaleimage
databases.

7.2 Bound of Representation

A profound, neverthel essinteresting issue pertaining
to this new approach is that what pictorial concepts can
be searched automatically? One of the critical require-
ments for our approach isthat user’ sindex concept must
be expressible in terms of finite set of pixels before any
search. Indeed, It is quite impossible to come up with a
genera pixel-format representation of concepts such as
"tree”,"hill","ocean", etc. Webelievethat thisisprobably
a fundamental limitation of all fully automatic content
based search mechanisms. In conventional automatic
approaches (pseudo-content-based techniques), this
limitation is equally vivid. The initial model extraction

requires a filter program to obtain the model. In the
absence of such pixel-format representations, there also
cannot be such afilter program.

7.3 MHAC and Conventional Approaches

The key difference that distinguishes CAIDSS from
the conventional model based approachesliesin the way
that they attach "meaning" to the content.

Consider the sample CT-scene of Fig-12(a) that
depi ctssome objectsof interest in ahorizontal anatomical
cross-section of human skull [1]. Here, hardly any region
of interest has any fixed definable concrete boundary.
(thereisnothing sacredinthenumbersshownin Table-1).
A different interpreter may begin with a different set of
objects (such as"theregion around soft palate"), or some
other finer objects(for example, theforamen magnumcan
be spatially decomposed into the medulla oblangata, the
vertebral arteries and cerebellar tonsils). The relation-
ships among these objects are also similarly subjective
(such as the relationship cerebellar tonsils "lies within"
foramen magnum). Despite such subjectivities in the
definitionsof theseindex concepts, anintermediatemodel
based approach has to guess these interpretations (and
choices) from the very beginning during model building,
which is quite unrealistic’. In contrast, CAIDSS avoids
any adhoc attachment of such "meaning” during encod-
ing.

It should be distinguished that holographic repre-
sentation (strictly speaking, another intermediate repre-
sentation) does not store any meaning but emulates
(instead of really searching al the images, which indeed
isvery expensive) adynamically weighted search during
retrieval.

4 The implication of this distinction in handling "meaning" can be best understood, in the concern expressed by one
of the pioneersin this field; S. K. Chang in an evaluation report titled "Where Do We Go From Here?' wrote [2]:
"Spatial entities (object) and relationships (image features) inimage do not carry any semantic meaning by themselves..
Associating semantic meanings by naming will cause some problems with image information. First, the same image
could be interpreted in different ways. Second, the same image could be used in different ways during different time
periods. ... directly associating semantic meanings to image entities and relationships will severely limit the usage of

image information".
Holographic Image Archive
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However, CAIDSS does not downplay the impor-
tance of meaning. A meaning structureis convenient, no
matter how subjectiveit is, to the inquirer, as the search
objective becomes complex and sophisticated. CAIDSS
approach removes the need for intermediate model, but it
empowers user to search the image archive directly with
his own perception of meaning into the image.

7.4 The Challenges of Content Based Search

Collective experience over two decades evinces that
most likely there is no panacea to solve the complex
problem of image information management using image
contents. On the whole, content based searchis not only
a database issue, but it is also closely related to the
understanding our own mechanism of representation and
perception. Conventional model based approaches tend
to be more useful for applications where the image
concepts are well defined and extensive domain-specific
modeling is possible. Images of graphical natures, such
as texts, maps, circuit drawing, etc. tend to fall in such
category. In contrast, the approach demonstrated in this
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work has its advantage when the objects are difficult to
describe or model, the content does not show any
unambiguously distinguishable structure, the volume of
images is enormous, and exampleswith visual similarity
at the object level are available. Medical diagnostics
imagery, stellar images, fingerprint, satellite or planetary
landscape imagestend to fall in this category. It has been
long anticipated that associative memories can provide a
whole new effective means for content-based image
management. Thework presentedin thispaper showsthat
such an approach isfinally realizable.
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