
Published in the proceedings of the 3rd USENIX Symposium on Internet Technologies USITS’01
San Francisco March 2001, pp13-24

13

Partial Prefetch for Faster Surfing in Composite Hypermedia

Javed I. Khan and Qingping Tao

Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science

Kent State University
javed@kent.edu

Abstract
In this paper we present a prefetch technique, which
incorporates a scheme similar to data streaming to
minimize the response-lag. Unlike previous all or
none techniques, we propose partial prefetch where
the size of the lead segment is computed optimally so
that only a minimum but suff icient amount of data is
prefetched and buffered. The remaining segment is
fetched if and only when the media is traversed. Thus,
it deli vers content without any increase in perceived
response delay, and at the same time drasticall y
minimizes unnecessary pre-load. The paper presents
the scheme in the context of surfing in composite
multimedia documents. It presents the technique and
optimization scheme used for stream segmentation
backed by analytical model and statistical simulation.
We report remarkable increase in the responsiveness
of web systems by a factor of 2-15 based on the
specific situation.

Keywords: prefetch, streaming, multimedia.

1. Introduction
The success and failure of many web systems depend
on the surfer's perception of the systems
responsiveness. Caching and prefetching are the two
principal techniques, known for improving
responsiveness for systems that involve correlated
data communication. Both the techniques have been
extensively used in hardware systems to offset
memory access latency. Caching techniques have been
studied with much interest for the Internet. Also
recently much focus has been shifted to prefetching.
Some insight can be gained by a comparison between
the two domains.

Despite the similarity, the caching in the Internet
domain seems to be a harder problem. Hardware
cache operates in a more predictable environment,
where the parameters such as page size, and access
times in the memory hierarchy are limited to few
classes only. In comparison, the variabilit y faced in
the Internet is quite high. Apparently, the principle of
localit y is less conspicuous in the case of web. A

number of recent studies, with various innovative
caching schemes report caching eff icacy in the range
of 30-60% [4,7,10]. In comparison, a well -designed
hardware cache can achieve a hit rate as high as 90%
[1,18]. While several protocol issues are known to be
involved in such performance degradation (such as
validation requirement, and presence of Cookies and
CGI scripts) but we also suspect one of the deeper
reasons is the limited localit y of reference. In the web,
there is no short-term iterative construct such as
'while' of 'for' loops in the causal chain above.
Consequently, it is not a complete surprise that the hit
ratio is poorer here than in processor caches.

While, caching helps the case of repetiti ve references,
prefetching reduces response lag for newer resources.
It might be the case that prefetching may play much
more important role in web than in hardware. A
number of current studies, including ours, reported
about another two times speedup with prefetching.
Prefetching has also some additional complexity in the
Web. Decision points mostly bifurcate the control
flow tree in hardware due to the if-then construct. In
contrast, the degree of branching in web is very high
since there is no limit on the number of links in a
page. In hardware quite often all the parallel branches
are prefetched- and in some cases conditions can be
pre-evaluated to determine the prefetch path. Neither
is practical for web systems. We have also observed
that prefetching often faces limitation due to excessive
document transfer, which are never used later.

In this paper, we focus on this criti cal sub-problem--
ranking prefetchable date bytes. We discuss a
technique, which provides optimum ranking of the
prefetch nodes based on analytic considerations. In
addition, we also show a technique where only a sub-
part is fetched from the selected nodes. It cleverly uses
the concept of fragment streaming to minimize the
pre-load, without compromising the responsiveness
gained by the prefetching in the first place. Each node
is optimally divided into two parts-- the lead and the
stream segments. During its operation, the system
loads two parallel streams. In one, it fetches the
stream segment of the current document, while in the
other it prefetches the lead segment of candidate
nodes.

Published in the proceedings of the 3rd USENIX Symposium on Internet Technologies USITS’01
San Francisco March 2001, pp13-24

14

Also we present the prefetch technique for an
environment, which considers composite multimedia
documents. An example is given is Fig-2 which shows
a snapshot of a typical multimedia material from ABC
News website, serving combination of news
summaries, images, voice integrated video clip as well
as GIF animated banner advertisements from single
link. Web pages with multiple embedded entities of
various modaliti es such as applets, banners, audio,
video clips, are becoming very common in power sites
where responsiveness is criti call y valued. These are
now typicall y composed of various media elements
with varying playback requirements. In this paper, we
also demonstrate how the size and mix of the lead
segment can be computed optimally for such
composite multimedia documents so that only a
minimum but the right composition of individual
media elements from these pages are prefetched and
buffered. This problem has not been addressed before
to such level.

2. Related Works
The Internet caching has been studied for quite some
time [1,7,18]. It also has several implementations such
as Harvest, Squid and CacheFlow [3,26]. The research
in prefetching has gained momentum more recently
[8,9,14]. In one of the pioneering studies, Kroeger et.
al. demonstrated that with ample knowledge of future

reference a combined caching and prefetching can
reduce access latency as much as 60% [18,27]. The
year after, Jacobson and Cao [14] proposed a
prefetching method based on partial context matching
for low bandwidth clients and proxies. Palpanas and
Mendelzon [20] demonstrated that a k-order
Markovian prediction engine similar to those used in
image compression can improve response time by a
factor of up to 2. Both these methods used variants of
partial matching of context (past sequence of accessed
references) for prediction of future web reference.
These works suggested prefetching in-order of highest
li kely hood of access.

Pitkow and Pirolli [21] investigated various methods
that have evolved to predict surfer's path from log
traces such as session time, frequency of cli cks,
Levenshtein Distance analyses and compared the
accuracy of various construction methods. This
Markov model based study noted that although
information is gained by studying longer paths, but

conditional probabilit y estimate, given the surf path, is
more stable over time for shorter paths and can be
estimated reliably with less data. Also of interest is the
work by Cohen and Kaplan [4] who cited problems
from bandwidth waste in prefetch, and as opposed to
document prefetch suggested pre-staging only the
communication session- such as pre-resolving DNS,
pre-establi shing of TCP connection and pre-warming

N5

N9

N6

N12

N11
N7

N13

N19

N20

N14

N27

N26

N21

N22

N15
N17

N18

N25

N24

N23

N1 N2

N4

N3

N8
N10

N16

Focus-zone=(N5,e2)

Focus-zone=(N5,e1)

Focus-zone=(N8,e2)

Fig-1: The hyperspace model used in the cache prefetching. The Focus-zones (N5,e1) and (N5,e2) show the
roaming sphere for two pruning thresholds both anchored at node N5. The priority algorithm ranks the nodes 5-
12 or 5-17 based on the selected threshold. The prefetch mechanism loads the nodes accordingly, while the
reader is reading N5. By the time reader completes reading N8 is ready for rendering. When reader moves to N8,
the roaming sphere is updated. The dotted box shows the actual media size, while the solid box represents the
lead segments those are actually pre-loaded.

Published in the proceedings of the 3rd USENIX Symposium on Internet Technologies USITS’01
San Francisco March 2001, pp13-24

15

Banners Video Real Control

Media Type Files KB Comp. Audio Video
JPG images 5 18 Codec: 16Kbps RealVideo
GIF graphics 21 51 Voice G2
GIF animations 12 minimum (Kbps) 86.8 ~9 ~77

HTML 2 51 maximum(Kbps) 123.4 ~20 ~102

Video Stream 1 Encoded/Clip BW 104.6 16 88.6

Audio stream 1 Average (Kbps): 121.7 18.7 92.8

total 30 132 Duration(min:sec) 3:12 3:12 3:12

Table-1 Table-2

Fig-2 Example Composite Media from ABC News

Table 1 and 2 Static and Dynamic Properties of the Media

(a) Video Traffic (player0.source0.stream0)

0
2
0

4
0

6
0

8
0

10
0

12
0

T

Kb
ps

(b) Voice Traffic (player0.source0.stream0)

0
5
1
0

1
5

2
0

2
5

3
0

T

Kb
ps

(c) Banner Traffic (dite_ban0007)

0
2
4
6
8
1
0

1
2

T

Kb
ps

(d) Static Traffic (HTML, GIF, JPG aggregate)

0
2
0

4
0

6
0

8
0

10
0

12
0

14
0

T

Kb
ps

Fig- 3 shows the Rendering Rate Profiles respectively for the (a) Video (b) voice (c) Banner* (d) Graphics and
Text and (d) composite media for the ABC News Nightline © Presentation.

Published in the proceedings of the 3rd USENIX Symposium on Internet Technologies USITS’01
San Francisco March 2001, pp13-24

16

 by sending dummy HTTP HEAD request. RealPlayer
(release 7) already pre-stages streaming connections
linked from a page by pre-extracting and readying
individual codec information associated with each.

In the context of the above works, we are investigating
the issue of ranking-- particularly in view of the
inevitabilit y of prediction error. In a recent work we
have shown ranking for low capacity links [16,17]. In
this paper we extend the study in further depth—In
addition to showing which nodes to fetch, we also
analyze how much of each node to fetch, and for a
composite document what should be the composition
of the fetch segments. Instead of prefetching nodes
simply in order of maximum probable transition paths,
as used in most of the previous studies, we propose a
ranking order which optimizes the response time with
respect to all probable transition paths.

In this paper we further propose that instead of full
documents we should only preload an estimated lead
segment. The remaining can be loaded as a
background streaming only when they have been
requested. We show how to obtain the optimum lead
segment that does not compromise the loading time-
but reduces the amount of data loaded for documents
that are never fetched.

The proposed method is based on linked transition
probabilit y and does not make any assumption about
their means of estimation. It can be used with most of
the methods proposed. Also to demonstrate its
potential feasibilit y, in this paper we have sketched
potential implementation technique only for the non-
trivial steps. The actual deployment of prefetch
system, including ours will require a much more
detailed design work at the very protocol level.
However, discussions about these issues cannot be
accommodated in this paper. Rather, below we cite
some additional interesting research, which we think
will provide valuable insight about these aspects
closely related to our work.

In related work, Duchamp [8] has discussed methods
for clients and servers to exchange information for
gathering and exchanging document usage statistics.
Gruber, Rexford and Basso [12] have studied in detail
the RTSP protocol extensions to support partial
caching of lead segments of large multimedia
documents. The concept of streaming for continuous
media has been applied for quite a few years
[15,22,23,24,25]. Grosso and Veill ard have recently
proposed XML extensions for document
fragmentation [13]. Such fragment level
communication can potentiall y be applied for
streaming resources of other classes, as envisioned
here. Crovella and Bradford [5] studied yet another
advantage of prefetching- the reduction of burstiness

of network traff ic. Bangla et. al. proposed prefetching
of only modified cached content to reduce cache
communication in their proposal of 'optimistic-delta'
[2]. Jung, Lee and Chon [15] reported error resili ence
of TCP prefetch-based long multimedia sessions on a
long haul noisy channel as opposed to li ve UDP
streaming.

In the following sections, we first present the model
and the analytical considerations supporting the
prefetch scheme. Section 4 then outlines key
implementation issues. Finall y, section 5 presents the
performance of the scheme under various workload
supported by rigorous statistical simulation.

3. Analysis

3.1 Hyperspace Model
First, we describe the model of the hyperspace. Fig-1
shows the model. Each node in the hyper-graph
represents a web entity -- in the general case a
composite multimedia document. Nodes are connected
as per the embedded hyperlinks. The reader moves
through a sequence of nodes in this hyperspace called
anchor sequence. When a client (reader) program is
active, the idea is to track the anchor nodes, monitor
its neighboring regions, and prefetch selected parts
from a subset of these nodes in client's prefetch cache
with high li kely-hood of traversal based on some
optimization objective.

H(VH,EH) denotes the entire hyperspace. h(Vh,Eh)
denotes the visible sub-graph of H about which the
system has information. For tractabilit y, it is further
pruned before each optimization phase. We call this
final sub-graph roaming- sphere and will denote it by
G(VG,EG). Although the node and link information of
h(Vh,Eh) or G(VG,EG) is assumed available, but their
content, however may not be resident in the prefetch
cache at the beginning. Only G(VG,EG) is used to
determine the pre-loading schedule. A subset of its’
nodes is eventually preloaded in the prefetch cache.
C(VC, EC) represents this final part of hyperspace,
which is finall y resident in the prefetch cache. Each
node in h(Vh,Eh) has node 'statistics' (such as size or
load time). Also, each link in it has a transition
probabilit y p(i,j) associated with it. Links are bi-
directional and transition probabiliti es are asymmetric.

3.2 Streamed Transport Model
Our transport model divides the transport into two
probable phases. Each node thus has two transport
parts-- the lead segment and the stream segment. The
available bandwidth is correspondingly separated into
two sub-channels; feed channel for loading the

Published in the proceedings of the 3rd USENIX Symposium on Internet Technologies USITS’01
San Francisco March 2001, pp13-24

17

streaming segment of the current anchor, the lead
channel to proactively load the lead segments of
resources from the focus zone. Fig-4 shows the event
sequence and an hypothetical buffer fullness for the
transport model. The jaggedness of buffer fullness is
due to the non-uniform nature of data consumption by
the surfer. We assume that Dtotal is the size of an
elementary resource, Dlead is the bytes in lead segment
and Dfeed is the bytes to be streamed. We use β to
denote the ratio of total bandwidth to that allocated to
the lead sub-channel. In Fig-1, the dotted box
represents the media, while the solid head indicates
the lead segments.

3.3 Composite Document Model
In this paper, we provide the entire technique in the
context of composite document. A composite
document has multiple embedded components with
various rendering modaliti es. For example, Fig-2
shows a typical composite document with several
embedded static as well as continuous media
components (Tables -1 and 2 respectively provide a
summary of the static and continuous media
embedded here). To model such composite media we
use a set of functions called rendering rate profiles--
one for each element. These profiles characterize the
elements as a data rate function along the presentation
time-line of the composite document. Note a profile is
intrinsic to the document and is not dependent on the
communication.

Given a composite document node N with embedded
media elements ni, we denote individual element's
profile as the function fi(t), where superscript i is the
element index. We use f(t) to denote the general
variable rate profile. We also introduce the following
three common profiles -- (a) constant rate (CBR)

media, (b) impulse media, and (3) impulse series
media.

Most CBR or audio and video plays generall y are
constant rate media. Parent HTML page, JAVA
applets, or embedded foreground/background images
generall y contribute to the lead segment and is
considered impulse media. A dynamic text or banner
image requires cycles of bursts for presentation.
Similar is the case with any large document (PDF, ps
etc.) which are viewed page by page. Additional
examples of this class of documents are stock ticks
and charts, pushed banners, GIF animations as well as
flash and slide shows. We use equation set-1 to model
the profiles of these entities. Fig-5 sketches these
functions.

∑
=

−=

=

=

0
0)()(

)(

)(

n

ii
SS

i
II

c
i

c

ntthtf

Htf

Rtf

δ

...(1)

The document’s composite rate profile is the sum of
individual functions characterized by the coeff icients
R, H and h.

Given the above analytical model the problem that we
will address in the remaining part of this paper is the
ranking analysis at three levels. Given G(VG,EG)-- a
hyper linked space of composite documents, and the
associated node statistics (transition frequency p(i,j),
and node profiles f(t)) we show how to obtain the
optimum prefetch sequence that will generate
minimum expected response lag. Further, we will also
determine the lead vs. feed segment sizes of the
composite documents that will mi nimize the lag but
with minimum waste of overall bandwidth. And
finall y, for the chosen composite documents, we also
show how much of which components of the
composite documents have to be brought in and when,
for both its lead and streamed segments -- i.e. the
segment transport schedule for the optimum
performance.

3.4 Prefetch Node Ranking
The first question we address is what is the best
prefetching sequence of the nodes that will mi nimize
the expected cumulative read-time lag for a given
network bandwidth? Below we present the results in
the form of a series of proofs that ultimately will l ead
to the ranking algorithm. Proofs of these theorems are
given in [16].

First we define the optimization criterion. In a hyper-
graph G, Lets U=(a1,a2,a3….al), where ui∈G, is the
anchor sequence-- the sequence of nodes followed by
a user. Let’s Γ is the loading sequence in which the

���������	��

��
���� �

� ��� � � �

Fig-2 Streaming event model used for analysis. The
top diagram shows event sequence and various time
quantities and the bottom diagram shows the buffer
occupancy under typical operation.

���������� "! #%$
&���$�! # ���������� "! #%$

��#�'

(*) +%,�-/.10
2�3�4�) 5

(*) +%,�-/.10
3�5�(

6 7 8 9 : 8 7

; < = > ? @ A B B C

D�E�F�F�G�HJI�KML%N�G�L%N

O�H�G�P�K	Q�R
G�L�R

S�T1S*U�VXWYT	Z [

Published in the proceedings of the 3rd USENIX Symposium on Internet Technologies USITS’01
San Francisco March 2001, pp13-24

18

nodes are loaded in the cache (Clearly, U ⊆ Γ⊆
{ nodes in G}). Let pi is the estimated probabilit y that a
user traverses a node ni in roaming sphere G, and TL,i
is the time the node ai is fetched and TP,i is the time
spent by the user in that node. Thus, we define an
overall penalty function-- the expected cumulative
read-time lag:

{ }∑ −− +−=Γ
U

i
iPiLiLi TTTpUT 0)],([max)|(1,1,,

 ...(2)

The objective is to find the loading sequence Γ that
will mi nimize the expected penalty E{ T(Γ|U)} . It is
important to note that this function optimizes with
respect to all probable transitions of U, weighted by
their transition probabilit y. Given the above
optimization criterion, it can be shown that:

Theorem-1 (Branch Decision): Let A=nc is the
current anchor point with direct transition paths to a
set of candidate nodes n1, n2, n3,-- nn, such that Ti is the
estimated loading times of node ni, and Pr[an+1=ni
|an=A] is the conditional li nk transition probabilit y,
then the average delay is minimum if the links are
prefetched in-order of the highest priority Qi, where:

i

nin
i T

Aana
Q

]|Pr[1 ==
= +

...(3a)

This theorem states that at a simple branch point
(roaming sphere of depth=1) immediately linked
nodes should be prefetched in order of the conditional
transition probabilit y but in inverse order of their
estimated load time.

The following theorem provides the relative priority
between two nodes in a tree at different depths, which
are not necessaril y along the same path.

Theorem-2 (Tree Decision): If the sequence {n1, n2,
n3,...nd} are the nodes in the path in a tree from the
current anchor A=n0 to a candidate node nd, at depth
d and Td is it' s estimated loading time, then the
priority Qd is given by the product of the conditional
transition probabiliti es along the path such that:

d

d

ci
iiii

d T

nana

Q
∏

=
++ ==

=
]|Pr[11

...(3b)

A corollary of this second theorem provides the
relative priority of the nodes along a sequence. The
result is quite intuiti ve.

Corollary-2.1 (Sequence Decision): If two nodes are
in a sequence, then the preceding node has to be
loaded first.

Unfortunately, the relative priority cannot be
determined for a general graph for the optimization

criterion defined by equation (2). However, under a
slightly modified definition which ignores the credit
due to cumulative read times along the paths (Tp,i-1=0
for all i i n equation-2) it can be shown:

Theorem-3 (Graph Decision): For general graph
G(VG,EG) the node priority can be determined by
computing order-n Markov state probabilit y pi . For a
node ni, with the estimated loading time Ti the priority
function can be computed as:

i

i
i T

p
Q =

...(3c)

The above results indeed provide a close form solution
to the node-ranking problem. Let's consider C is the
current set of nodes in the candidate node queue. The
sequence corollary ranks the nodes those are in a path.
In a tree-structured roaming-graph, they effectively
prunes the set C only among the immediate next nodes
of the anchor thus, if we are at node 0, the candidate
set can be initiali zed at }{0 onofchildrenC = , The

Branch Decision theorem then ranks the nodes within
this set. Let the winner be nwinner. Then, when this is
prefetched, it exposes its children nodes-- a new set of
nodes, which now also becomes candidates for
prefetch. Thus, the candidate set is updated to

}{}{1 winnerwinnerii nofchildrennCC +−= − . The

Tree Decision theorem then provides the priroty of
these new nodes compared to those which are already
in the queue and thus completes the ranking. Finall y,
theorem-3 can be used in a graph for nodes which are
child to multiple parents in C.

3.5 Critical Composite Lead Mass
The next question we address is how much of which
node should we prefetch? This will also determine the
pre-load time to be used in (2). Let us assume that the
margin time=0. We use the constraint that the reading
or rendering time should be at least equal to the
streaming time for all components. First, we solve the
simple case with only continuous media:

Continuous Media Case: Consequently, given a
consumption rate R i render for the media type=i the
amount of data that has to be prefetched is:






 ⋅−=





−≥

render
i

channel
i

total
i

render
i

feed
i

total
i

lead
i

R

B
D

R

B
DD

β
11

.(4)

Only the Dlead amount of data should be pre-loaded for
mininum delay. It provides a lower bound and we call
it criti cal lead mass. Corresponding pre-load time for
the media is given by:

Published in the proceedings of the 3rd USENIX Symposium on Internet Technologies USITS’01
San Francisco March 2001, pp13-24

19

preload

i

lead
i

lead B

D
T

∑
=

...(5)

General case: The criti cal lead mass for a composite
media can be determined by piece-wise integration of
the combined rate function performed over a set of
intervals defined as negative zero crossing (NZC)
points where:

∑ =− 0)(feedi Btf , and ∑ ≤ 0)(itf
dt

d(6a)

Fig-6 explains the segments where t1, t2 and t3 are
three such points dividing the presentation time T into
four segments. The size of the required minimum lead
segment is then given by the maximum of the
piecewise integrals evaluated in 0-ti:











⋅−≥ ∫∑

+

= jfeed

t

i

i
N

j
lead tBdttfD

j ε

ε

)(max
1

...(6b)

For zero delay presentation, the system must preload
equal or more. Note, if a segment sum negative in jth
interval, than it can reduce the piecewise lead segment
of (j+1)th interval, however, the reverse is not true.
The quantity ε is a small positi ve interval for ensuring
inclusion of impulses in preceding intervals.
Consequently, we look for maximum positi ve growth
in the rate difference function (difference between the
composite rate profile function and the feed channel
bandwidth), however, this can be evaluated only by
integrating at NZC points. For example, in the last
segment of Fig-5(a) Since, the negative area A is
larger than the positi ve area B , the integral from 0 to
t2, instead of from 0 to t3 is the determining interval
for its criti cal lead mass. Note equation-6 is a general
solution including VBR rate profiles.

The profile set given by equation-1, however, allows
faster computation. Accordingly, a composite
document with continuous media rate

cR , an impulse

media size
IH , and a impulse series media rate Sh per

time unit t, for a presentation span of T sec, will
require a critical lead mass of size:

[]0),(max)()(feedcfreedclead BRt
t

T
htTBRHD −⋅+



+−⋅−+=

...(7)

3.6 Lead Segment Composition
Finally, we show the schedule of data segments and
allocation of individual streams within Dlead and Dfeed.
In multiple parallel streams, excessive preload of one
media can potentiall y result in sub-criti cal pre-load for
the other.

Given the NZC points of the combined rate profile
function, we segment the individual media entities

into byte segments Bi(tj:tj+1), where i is the media
index, and tj:tj+1 is the NGC intervals. We then define
a composite group as Gn(j)={ Bi(tj:tj+1)| for all i } . A
group contains bytes for all entities that belongs to the
same jth NGC segment of the composite document
node Nn. the following two rules then applies:

Rule 1: To ensure criti cal pre-load all bytes in Gn(j)
should be loaded before the bytes in Gn(j+1).

Rule 2: However, for lead prefetch, there is no
requirement of ordering the bytes within a composite
group Gn(j), or between the groups from two nodes
Gn(j), and Gm(j), when n≠ m.

Consequently, within the same segment interval, the
streams are ordered according to domain specific
considerations such documents li ke stock ticks, can be
left for fresh load, while any stored video can be
loaded at lead segment.

4. System Model

4.1 System Description
Below we briefly describe the Proxy and Server
mechanics for link statistics estimation, partial
document fetch and bandwidth partitioning.

Link Statistics Collection: Statistics about links can
be collected via client proxy that embeds link source
in the HTTP 1.1 Request-Header Referrer field [11]
each time when it issues a HTTP GET request. A
server plug-in can track it and resolve the intra-server
link references from the referrer id. A group of coop
servers then can further resolve the remaining
dangling links in batch mode by threshold driven
periodic data exchange. The li st of embedded link,
profile parameters and access statistics for hot
documents are can then be stored in a database called
hot-prefetch database by the origin’s stat server.

Statistics Propagation: There are quite a few strategy
possible. A simple choice is to use a separate
GET_statistics request method using HTTP reserve
pool. Given an URL in this method the server plug-in
can respond with the statistics stored in the Hot-
prefetch database.

Partial prefetch: The conditional range GET
mechanism of HTTP 1.1 (If-Range header, Range and
Content-range, Response Code 206 Partial Content)
can be used for specifying requests for media
segments.

Bandwidth Partition Approximation: Bandwidth
partitioning is not available in the current QoS-less
Internet. Thus, instead a technique of byte
proportioning per time segment basis can be used--

Published in the proceedings of the 3rd USENIX Symposium on Internet Technologies USITS’01
San Francisco March 2001, pp13-24

20

effectively creating the same result. Since all
presentations are NZC segmented, first the Range
GET requests have to be queued for each element
from the current stream node based on its NZC time
segments. Within each NZC segment, then the waiting
Range GET requests have to be proportionately
interleaved for the lead byte-segments earmarked for
pre-load. The exact delivery time of the prefetch
segments - as long as it is within the correct NZC

segment, should not matter. Since, these do not
require immediate presentation. However the feed
requests are to be placed at the top of queue within
each NGC segment. Thus, in effect stream data will
enjoy a little prefetch.

4.2 Prefetch Mechanism
Now, we briefly describe the design of the prefetch
scheme based on the above results. First, in the server
side, the prefetch mechanism gathers the composite
node statistics- the profile parameters and the access
statistics compiled from previous references, in the hot
prefetch database.

On the proxy side, when it detects a new user-agent, it
initializes a new prefetch session for tracking its
roaming sphere. The prefetch algorithm then
computes G(VG,EG) by recursive polling of the links
and using a small cut-off threshold ε.

The prefetch mechanism then first computes the
critical lead mass for each node on it. Based on this
estimate it then determines the priority of the nodes
according to the equation set-3(a)-(c).

It also orders the lead byte segments of the candidate
nodes according to their group order using rule-1.
Finally, the segments within the group are ordered
according to rule-2 domain considerations. In our
simulation, we rank the continuous media segments
with higher priority and those of impulse series with
the lowest to ensure late transmission of dynamic
media. The selected and ordered prefetch segments
are then queued in the fetch queue. The segments that
are not in the lead mass however, may also be
ordered according to the rules 1 and 2 but are placed
on a separate dormant queue.

The current fetch queue is then merged with the feed
queue that contains the segment schedule of the
streaming segment of the current anchor node. The
loading mechanism then generates the Range GET
request accordingly.

The loading order remains valid until the current
anchor node is read. Upon completion of reading
node N, a new node is traversed, and the fetch and
feed queues are reorganized. The subsequent
evaluation is incremental. A new anchor point
changes only the conditional probabilities.

The optimum ranking analysis presented here does
not make any assumption about the prediction
methods for estimating the link transition probability
distributions and it should be applicable with any of
the proposed methods [14,20,21]. These methods
have varying degree of stability and prediction errors,
and computational cost. However, for our simulation
our design choice was the simplest one - the access

frequency analysis based transition probability
estimation. However, as can be seen later, we
emphasized on testing the efficacy of the ranking
procedure for varying prediction errors.

5. Simulation Results
To characterize the performance of the proposed
scheme, we used statistically generated data set rather
than server trace. We needed the composition and
profile. Also we wanted to stress test the method
under varying controlled conditions. Although, trace
driven data provides detailed information about a

Fig-5 shows the profile for four typical traffic types
given in equation set (5).

Impulse rate function f(t)=H.δ(t)

H

Impulse series rate function f(t)=δ(t-nto) h

2t 4t 6t

CBR rate function f(t)=R

R

VBR Rate Function

t3

F(t) composite rendering profile

Bfeed

NZC points

T

� �

to=0

Fig-6 shows how the composite rendering profile can be
rate for determining critical lead mass. There are three
NZC points. In this example, the determining point is the
middle one since mass A is larger than mass B.

t1 t2

Published in the proceedings of the 3rd USENIX Symposium on Internet Technologies USITS’01
San Francisco March 2001, pp13-24

21

particular run, but the controllability of parameters is
inadequate. Also the mix and distribution of web-page
composition also seems to be changing significantly in
short years. Consequently, for this particular work we
found it more appropriate to generate broad range of
hyperspace data with distinct and varying statistical
properties and observe how the proposed method will
perform in each of these conditions.

The objective of our first experiment is to observe
how the introduction of partial prefetching --
particularly the relative bandwidth allocation between
the fetch and feed channel effects. We were also
curious to see how the relative rendering speed of
various media types (such as text reading speed, play
rate for audio or video) will impact the performance.

Consequently, in this first experiment we generated a
random set of nodes (composite documents) each with
a parent HTML impulse document (containing links to
others) and a set of embedded CBR media. We limited
the maximum links per node to 10. The underlying
algorithm further pruned links with below ε low
transition frequency and effectively considered only
about 1-4 links for prefetch. HTML documents are
given fixed sizes (Hi

S) . We generated the sizes for the
CBR media and link transition probability using
normal distribution. For a given link bandwidth we
then varied the rendering rate (hi

I) for the media as a
control variable. Also, since our focus was to track the
performance improvement only due to prefetching, we
disbarred caching in the simulation. Thus, with each
move to a new anchor, all nodes became prefetchable
again. Fig-7 plots the observed reduction of the
response delay for this experiment. It plots the
responsiveness (lag-time with active prefetching
normalized by that without prefetching). It shows the
factor (y-axis) by which the lag time improves with
respect to the percentage of bandwidth (x-axis)
assigned to the fetch channel-- called lead bandwidth
factor (LBF) We also plotted the ratio of network

bandwidth to the rendering rate-- called normalized
rendering rate (nRR). The curves show the
performance when the normalized rendering rate
varies from .2 (slow reading media) to 8 (fast playing
media). As can be noted first, that with the inclusion
of just prefetching (with 100% bandwidth assigned to
the fetch channel or LBF=1.0), the read-time lag can
be potentially decreased by a factor of 1-2 (shown by
the left-most points) for media rendering rates 4-.8.
However, as more bandwidth is set aside for
streaming the improvement factor jumps. For
example, it goes all the way up-to to 2-15+ times
when 50% bandwidth issued for streaming. Not only
that for media with slower rendering characteristics
(such as text), the improvement is even sharper.

As indicated, the success of any prediction dependent
algorithm depends on prediction accuracy. The next
experiment we performed was to test how the
proposed scheme fares against various levels of
prediction discrepancies.

To model the problem, we let the user walk through a
chain of anchor points, not necessarily always
following the most probable transition path (the link
with highest estimated transition probability or
priority). However, we made the system to strictly
following the ranking given by the equations 3(a)-(c)
and 6(a)-(b). At the end of the run, for plotting, at each
anchor point Ai, we grouped the nodes of the roaming-
spheres into three groups. One with just one node-- the
node which was actually traversed {ai+1}(becoming
the next anchor), the other with the nodes those
received higher priority than the anchor-- node set
Ni,H, and the third set with the nodes with lower
priority than the anchor node--- set Ni,L. Fig-8 explains
the grouping in for several successive anchor phases.
We then aggregated the cumulative lead size of each
set and observed the delay for various distributions of
the bytes in these three sets. We denote the sizes
respectively by |Ni,H|=H, |Ni,H|=L and |ai|=A.

Fig-8 The ordered set of nodes at each state.

A1
 A2

 Ar
 A

0

}
HN ,0

LN ,0

}

Ph1(n)

}

}

}

}

Ph2(n) Phr(n)

HN ,1

LN ,1

HrN ,

LrN ,

Fig 7(a)

DIST [0:1:1] DTOTAL=400 MB

1

10

100

00.20.40.60.81
LEA D B A N D W ID TH FA C TO R (LB F)

0.2 0.4 0.6 0.8 1
1.2 1.4 1.6 2 4

Published in the proceedings of the 3rd USENIX Symposium on Internet Technologies USITS’01
San Francisco March 2001, pp13-24

22

(However, these are not necessarily the actual bytes
prefetched, see next experiment for this). We modeled
the error by a prediction distribution ratio H:A:L
denoting the relative sizes of these three sets. We then
conducted the previous experiment for various values
of H, A and L. Fig-8 shows this grouping for each
anchor stage.

First we present the performance for prefetch only
model with entire bandwidth allocated to fetch
(LBF=1.0). The 3D plot of Fig-9(a) shows the
observed responsiveness (z-axis) both against the
variation of normalized rendering rate (x-axis) and
the prediction distribution ratio (y-axis), where the
bytes prefetched before anchor (H) reaches all the way
100 times than the anchor bytes from zero, for the
scheme with only prefetch (H had more impact than
L). We observed, the system remains effective with
high responsiveness (by a factor of +10) only when
the rendering is slow (nRR less than 0.3) and the
prediction error is small (H≈2).

We then repeated the experiment with partial-prefetch
enabled. Fig-9(b) plots the same experiment with

LBF=0.5. As can be seen the performance increases
dramatically now. Not only the responsiveness
improves (factor more than 15), it remained quite high
for even relatively faster rendering resources (nRR
around 0.7). It also remained immune to quite high
level of prediction error (H>>2).

This dramatic result is not unexpected. The reason can
be tracked by observing the background line loads.
How much of the scheduled bytes (=H+A+L) are
actually fetched depends on when the user moves to
next anchor (∆i+1). If at this moment Ni,H, were loading
then it would skip the remain and begin loading ∆i+1.
On the other hand, if it were in Ni,L, it would ignore its
remaining part and render ∆i+1. We define load factor
as the ratio of the actual bytes prefetched to the bytes
actually read (size anchor sequence). Fig-10(a) and (b)
respectively trace this load factor (z-axis) for these
same two cases (with and without partial prefetch). As
can be noted that streaming enabled prefetching
dramatically reduced the background line load--
almost near one in large part of the graph.

The above results show how a streaming incorporated

��� �������
	��
�� ������� ���

0
.1

0
.3

0
.5

0
.7

0
.9

1
.1

5

60
0

20

40

60

80

100

L
O

A
D

 F
A

C
T

O
R

RENDERING RAT E
(nRR)

NH

LBF=0.5, Avg. Dtotal=400 MB, PD=[NH-1-1]

c

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

5

50
100

0

20

40

60

80

100

L
O

A
D

 F
A

C
T

O
R

RENDERING RATE
(nRR)

NH

LBF=1.0, Avg. Dtota l =400 MB, PD =[NH-1-1]

�� �������
���
�� ������� ���

0
.1

0
.3

0
.5

0
.7

0
.9

1
.1

5

60
0

20

40

60

80

100

L
O

A
D

 F
A

C
T

O
R

RENDERING RAT E
(nRR)

NH

LBF=0.5, Avg. Dtotal=400 MB, PD=[NH-1-1]

c

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

5

50
100

0

20

40

60

80

100

L
O

A
D

 F
A

C
T

O
R

RENDERING RATE
(nRR)

NH

LBF=1.0, Avg. Dtota l =400 MB, PD =[NH-1-1]

0
.1

0
.3

0
.5

0
.7

0
.9

1
.1

5

60
0

20

40

60

80

100

L
O

A
D

 F
A

C
T

O
R

RENDERING RAT E
(nRR)

NH

LBF=0.5, Avg. Dtotal=400 MB, PD=[NH-1-1]

c

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

5

50
100

0

20

40

60

80

100

L
O

A
D

 F
A

C
T

O
R

RENDERING RATE
(nRR)

NH

LBF=1.0, Avg. Dtota l =400 MB, PD =[NH-1-1]

��� �����
��� �! "�#�$ %�&

0
.1

0
.3

0
.5

0
.7

0
.9

1
.1

5

50

100

0

5

10

15

20

25

30

R
ES

PO
N

SI
V

EN
ES

S

.

RENDERING RATE (nRR)

NH

LBF=0.5, Avg. Dtotal =400 MB, PD =[NH-1-1]

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

5

60
0

5

10

15

20

25

30

R
ES

P
O

NS
IV

EN
ES

S

.

RENDERING RATE
(nRR)

NH

LBF=1.0, Avg. Dtota l =400 MB, PD =[NH-1-1]

 �! "�#�$
'�& �! "�#�$ %�&

0
.1

0
.3

0
.5

0
.7

0
.9

1
.1

5

50

100

0

5

10

15

20

25

30

R
ES

PO
N

SI
V

EN
ES

S

.

RENDERING RATE (nRR)

NH

LBF=0.5, Avg. Dtotal =400 MB, PD =[NH-1-1]

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

5

60
0

5

10

15

20

25

30

R
ES

P
O

NS
IV

EN
ES

S

.

RENDERING RATE
(nRR)

NH

LBF=1.0, Avg. Dtota l =400 MB, PD =[NH-1-1]

0
.1

0
.3

0
.5

0
.7

0
.9

1
.1

5

50

100

0

5

10

15

20

25

30

R
ES

PO
N

SI
V

EN
ES

S

.

RENDERING RATE (nRR)

NH

LBF=0.5, Avg. Dtotal =400 MB, PD =[NH-1-1]

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

5

60
0

5

10

15

20

25

30

R
ES

P
O

NS
IV

EN
ES

S

.

RENDERING RATE
(nRR)

NH

LBF=1.0, Avg. Dtota l =400 MB, PD =[NH-1-1]

Published in the proceedings of the 3rd USENIX Symposium on Internet Technologies USITS’01
San Francisco March 2001, pp13-24

23

active prefetching can significantly improve the
responsiveness of a cache system. To summarize, the
performance without partial prefetch, matched those
reported by other researchers. However, the partial
prefetch resulted in dramatic improvement. Careful
reduction of data-bytes per node, in effect allowed
information from more candidate nodes to be pre-
fetched, given the same bandwidth and local storage.

6. Conclusions & Current Work
The prefetch prediction model reduces access lag for
new references. It is quite appealing for the Web, and
has attracted significant research interest. However,
just prefetching seems to be limiti ng because of
excessive transfer of unused bytes. This has been
reported in few of the other research as well .

In this paper, we have suggested an innovative method
that integrates a concept similar to streaming, and
greatly reduces this waste, by prefetching only a
carefull y calculated amount. In this paper, we have
outlined the method for a web composed of composite
documents, which are becoming more ubiquitous in
performance sensiti ve sites. We also presented the
analytical considerations backing the design. Also, in
this paper, we have presented simulation results based
on statistical models that projects the scheme's
performance under varying conditions. We think, such
data optimization in prefetch is very criti cal because
poorly done prefetch can adversely impact overall
network performance.

The paper's principle focus is on the data scheduling.
However, there are many other issues, which need
further investigation. As indicated, the estimation of

link transition probabilit y, whether it is from
conventional access log [21], or from explicit message
exchange [8] as shown here, needs much more
analysis.

In the systems design section we have only outlined
implementation techniques for steps which appears
non-trivial at first look- including link transition
statistics collection or bandwidth partitioning on QoS
less Internet. However, the actual deployment of any
prefetch system, including ours will require more
work on protocols. It seems that any prefetch will
require prediction, which in turn will require exchange
of document statistics between servers and server and
clients. Also, the tracking abilit y of nearby hyper-
graph, as demonstrated here will be useful. Also,
interesting is protocol enhancements for partial
document transfer for HTML, XML, RTSP entities
[6]. Also, we did not present any prefetch algorithm,
rather focused just on the ranking.

Within the scope of this paper, we deliberately
switched off any caching. However, we are also
currently studying the impact when caching is added,
the results of which will be presented in a forthcoming
submission. The points of interest are how the cache
parameters --- cache size, media classification, and
discard poli cies, interplays here.

As a part of our ongoing research, we are currently
investigating an active net deployable prefetch proxy
module, which can be dynamicall y launched as an
active proxy inside network. The work is currently
being funded by DARPA Research Grant F30602-99-
1-0515 under its Active Network initiative.

7. References:
[1] Marc Abrams, Charles R. Standridge, G.

Abdulla, A. Edward, Fox and S. Willi ams,
Removal poli cies in network caches for
World-Wide Web documents, ACM
SIGCOMM , Stanford, CA, 1996, pp 293-305.

[2] G. Banga, F. Douglis, and M. Rabinovich.
Optimistic Deltas for WWW Latency
Reduction. Proc. USENIX Technical Conf.,
CA, January 1997, pp. 289-303

[3] High-Performance Web Caching White
Paper, 1998 CacheFlow Inc. [Retrieved on
June 8th, 2000 from URL
http://www.cacheflow.com/technology/
whitepapers/web.cfm]

[4] E. Cohen and H. Kaplan. Prefetching the
Means for Document Transfer: A New
Approach for Reducing Web Latency. Procs.
of the IEEE INFOCOM 2000, Tel-Aviv,
Israel, March 2000.

of the IEEE INFOCOM 2000, Tel-Aviv,
Israel, March 2000.

[5] M. Crovella, P. Barford, The Network Effects
of prefetching, Proc. Of IEEE INFOCOM
1998, San Francisco, USA, 1998.

[6] A. Dan and D. Sitaram, Multimedia caching
strategies for heterogeneous application and
server environments, Multimedia Tools and
Applications, vol. 4, pp.279-312, May 1997.

[7] F. Douglis, A. Feldman, B. Krisnamurty and
J. Mogul, Rate of Change and Other
Matrices: A Live Study of the World Wide
Web, Proc. Of USENIX Symposium on
Internet Technology and Systems, Barkeley,
December 1997, pp-147-158.

[8] D. Duchamp. Prefetching Hyperlinks.
Proceedings of the USENIX Symposium on
Internet Technologies and Systems, Colorado,
USA, October 1999.
[Http://www.usenix.org/events/usits99].

Published in the proceedings of the 3rd USENIX Symposium on Internet Technologies USITS’01
San Francisco March 2001, pp13-24

24

Internet Technologies and Systems, Colorado,
USA, October 1999.
[Http://www.usenix.org/events/usits99].

[9] Li Fan, Pei Cao, and Quinn Jacobson. Web
Prefetching Between Low-Bandwidth Clients
and Proxies: Potential and Performance.
Procs. of the ACM SIGMETRICS'99,
Atlanta, Georgia, May 1999.

[10] A. Feldmann, R. Caceres, F. Douglis, G.
Glass and M. Rabinovich, Performance of
Web Proxy Caching in Heterogeneous
Bandwidth Environments, Proceedings of
INFOCOM 99, 1999.

[11] R. Fielding, J. Gettys, J. Mogul, H. Frystyk &
T. Berners-Lee, Hypertext Transfer Protocol
HTTP/1.1, RFC 2068, January 1997.

[12] S. Gruber, J. Rexford, and A. Basso, Design
considerations for an RTSP-based prefix
caching proxy service for multimedia
streams, Tech. Rep. 990907-01, AT&T Labs -
Research, September 1999.

[13] Grosso, Paul, Daniel Veill ard, XML
Fragment Interchange, W3C Working Draft
1999 June 30, [Retrieved from:
http://www.w3.org/1999/06/WD-xml-
fragment-19990630.html]

[14] Q. Jacobson, Pei Cao, Potential and Limits of
Web Prefetching Between Low-Bandwidth
Clients and Proxies, 3rd International WWW
Caching Workshop, Manchester, England,
June 15-17 1998.

 [15] J. Jung, D. Lee, and K. Chon, Proactive Web
Caching with Cumulative Prefetching for
Large Multimedia Data. Procs. of the 9th
International World Wide Web Conference,
Amsterdam, Netherlands, May 2000.

[16] Javed I. Khan, Ordering Prefetch in Trees,
Sequences and Graphs, Technical Report
1999-12-03, Kent State University, [available
at URL http://medianet.kent. edu/
technicalreports.html, also mirrored at http://
bristi.facnet.mcs.kent.edu/~javed/medianet]

[17] Javed I. Khan, Active Streaming in Transport
Delay Minimization, Workshop on Scalable
Web Services, Int. Conf. on Parallel
Processing, Toronto, August 2000, pp95-102.

[18] T. Kroeger, D. D. E. Long & J. Mogul,
Exploring the Bounds of Web Latency
Reduction from Caching and Prefetching,
Proc. Of USENIX Symposium on Internet
Technology and Systems, Monterey,
December 1997, pp-319-328.

[19] NLANR, Proxy cache log traces, December
1999, ftp://ircache.nlanr.net/Traces/.

[20] T. Palpanas and A. Mendelzon,, Web
Prefetching Using Partial Match Prediction,
WWW Caching Workshop, San Diego, CA,
March 1999

[21] P. Pirolli and J. E. Pitkow, Distributions of
surfers' paths through the World Wide Web:
Empirical characterizations, Jounral of World
Wide Web, 1999, v.1-2, pp29-45

[22] J. Rexford, S. Sen, and A. Basso, A
smoothing proxy service for variable-bit-rate
streaming video, in Proc. Global Internet
Symposium, December 1999.

[23] H. Schulzrinne, S. Casner, R. Frederick, and
V. Jacobson, RTP: A transport protocol for
real-time applications,' RFC 1889, January
1996.

[24] H. Schulzrinne, A. Rao, & R. Lanphier, Real
Time Streaming Protocol (RTSP), RFC: 2326
, April 1998 [Retrieved on June 8th, 2000
from URL ftp://ftp.isi.edu/in-
notes/rfc2326.txt]

[25] S. Sen, J. Rexford, and D. Towsley. Proxy
prefix caching for multimedia streams. In
Proceedings of the IEEE INFOCOM'99
Conference, 1999.

[26] Squid Web Proxy Cache ,http://www.squid-
cache.org, 1999.

[27] Z. Wang and J. Crowcroft, Prefetching in the
World Wide Web. in procs. of IEEE Global
Internet, London, UK, 1996.

