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Abstract 
In this paper we present a prefetch technique, which 
incorporates a scheme similar to data streaming to 
minimize the response-lag. Unlike previous all or 
none techniques, we propose partial prefetch where 
the size of the lead segment is computed optimally so 
that only a minimum but suff icient amount of data is 
prefetched and buffered. The remaining segment is 
fetched if and only when the media is traversed. Thus, 
it deli vers content without any increase in perceived 
response delay, and at the same time drasticall y 
minimizes unnecessary pre-load. The paper presents 
the scheme in the context of surfing in composite 
multimedia documents. It presents the technique and 
optimization scheme used for stream segmentation 
backed by analytical model and statistical simulation. 
We report remarkable increase in the responsiveness 
of web systems by a factor of 2-15 based on the 
specific situation. 

Keywords: prefetch, streaming, multimedia. 

1. Introduction 
The success and failure of many web systems depend 
on the surfer's perception of the systems 
responsiveness. Caching and prefetching are the two 
principal techniques, known for improving 
responsiveness for systems that involve correlated 
data communication. Both the techniques have been 
extensively used in hardware systems to offset 
memory access latency. Caching techniques have been 
studied with much interest for the Internet. Also 
recently much focus has been shifted to prefetching. 
Some insight can be gained by a comparison between 
the two domains.  

Despite the similarity, the caching in the Internet 
domain seems to be a harder problem. Hardware 
cache operates in a more predictable environment, 
where the parameters such as page size, and access 
times in the memory hierarchy  are limited to few 
classes only. In comparison, the variabilit y faced in 
the Internet is quite high. Apparently, the principle of 
localit y is less conspicuous in the case of web. A 

number of recent studies, with various innovative 
caching schemes report caching eff icacy in the range 
of 30-60% [4,7,10]. In comparison, a well -designed 
hardware cache can achieve a hit rate as high as 90% 
[1,18]. While several protocol issues are known to be 
involved in such performance degradation (such as 
validation requirement, and presence of Cookies and 
CGI scripts) but we also suspect one of the deeper 
reasons is the limited localit y of reference. In the web, 
there is no short-term iterative construct such as 
'while' of 'for' loops in the causal chain above. 
Consequently, it is not a complete surprise that the hit 
ratio is poorer here than in processor caches. 

While, caching helps the case of repetiti ve references, 
prefetching reduces response lag for newer resources. 
It might be the case that prefetching may play much 
more important role in web than in hardware. A 
number of current studies, including ours, reported 
about another two times speedup with prefetching. 
Prefetching has also some additional complexity in the 
Web. Decision points mostly bifurcate the control 
flow tree in hardware due to the if-then construct. In 
contrast, the degree of branching in web is very high 
since there is no limit on the number of links in a 
page. In hardware quite often all the parallel branches 
are prefetched- and in some cases conditions can be 
pre-evaluated to determine the prefetch path. Neither 
is practical for web systems. We have also observed 
that prefetching often faces limitation due to excessive 
document transfer, which are never used later. 

In this paper, we focus on this criti cal sub-problem-- 
ranking prefetchable date bytes. We discuss a 
technique, which provides optimum ranking of the 
prefetch nodes based on analytic considerations. In 
addition, we also show a technique where only a sub-
part is fetched from the selected nodes. It cleverly uses 
the concept of fragment streaming to minimize the 
pre-load, without compromising the responsiveness 
gained by the prefetching in the first place. Each node 
is optimally divided into two parts-- the lead and the 
stream segments. During its operation, the system 
loads two parallel streams. In one, it fetches the 
stream segment of the current document, while in the 
other it prefetches the lead segment of candidate 
nodes.  
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Also we present the prefetch technique for an 
environment, which considers composite multimedia 
documents. An example is given is Fig-2 which shows 
a snapshot of a typical multimedia material from ABC 
News website, serving combination of news 
summaries, images, voice integrated video clip as well 
as GIF animated banner advertisements from single 
link. Web pages with multiple embedded entities of 
various modaliti es such as applets, banners, audio, 
video clips, are becoming very common in power sites 
where responsiveness is criti call y valued. These are 
now typicall y composed of various media elements 
with varying playback requirements. In this paper, we 
also demonstrate how the size and mix of the lead 
segment can be computed optimally for such 
composite multimedia documents so that only a 
minimum but the right composition of individual 
media elements from these pages are prefetched and 
buffered. This problem has not been addressed before 
to such level. 

2. Related Works 
The Internet caching has been studied for quite some 
time [1,7,18]. It also has several implementations such 
as Harvest, Squid and CacheFlow [3,26]. The research 
in prefetching has gained momentum more recently 
[8,9,14]. In one of the pioneering studies, Kroeger et. 
al. demonstrated that with ample knowledge of future 

reference a combined caching and prefetching can 
reduce access latency as much as 60% [18,27]. The 
year after, Jacobson and Cao [14] proposed a 
prefetching method based on partial context matching 
for low bandwidth clients and proxies. Palpanas and 
Mendelzon [20] demonstrated that a k-order 
Markovian prediction engine similar to those used in 
image compression can improve response time by a 
factor of up to 2. Both these methods used variants of 
partial matching of context (past sequence of accessed 
references) for prediction of future web reference. 
These works suggested prefetching in-order of highest 
li kely hood of access.  

Pitkow and Pirolli [21] investigated various methods 
that have evolved to predict surfer's path from log 
traces such as session time, frequency of cli cks, 
Levenshtein Distance analyses and compared the 
accuracy of various construction methods. This 
Markov model based study noted that although 
information is gained by studying longer paths, but 

conditional probabilit y estimate, given the surf path, is 
more stable over time for shorter paths and can be 
estimated reliably with less data. Also of interest is the 
work by Cohen and Kaplan [4] who cited problems 
from bandwidth waste in prefetch, and as opposed to 
document prefetch suggested pre-staging only the 
communication session- such as pre-resolving DNS, 
pre-establi shing of TCP connection and pre-warming 
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Fig-1: The hyperspace model used in the cache prefetching. The Focus-zones (N5,e1) and (N5,e2) show the 
roaming sphere for  two pruning thresholds both anchored at node N5. The priority algorithm ranks the nodes 5-
12 or 5-17 based on the selected threshold. The prefetch mechanism loads the nodes accordingly, while the 
reader is reading N5. By the time reader completes reading N8 is ready for rendering. When reader moves to N8, 
the roaming sphere is updated. The dotted box shows the actual media size, while the solid box represents the 
lead segments those are actually pre-loaded. 
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Banners Video Real Control 

Media Type Files KB Comp. Audio Video
JPG images 5 18 Codec: 16Kbps RealVideo
GIF graphics 21 51 Voice G2
GIF animations 12 minimum (Kbps) 86.8 ~9 ~77

HTML 2 51 maximum(Kbps) 123.4 ~20 ~102

Video Stream 1 Encoded/Clip BW 104.6 16 88.6

Audio stream 1 Average (Kbps): 121.7 18.7 92.8

total 30 132 Duration(min:sec) 3:12 3:12 3:12

Table-1 Table-2

Fig-2 Example Composite Media from ABC News 

Table 1 and 2 Static and Dynamic Properties of the Media 

(a) Video Traffic (player0.source0.stream0)  
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(d) Static Traffic (HTML, GIF, JPG aggregate) 
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Fig- 3  shows the Rendering Rate Profiles respectively for the (a) Video (b) voice (c) Banner* (d) Graphics and 
Text and (d) composite media for the ABC News Nightline © Presentation.  
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 by sending dummy HTTP HEAD request. RealPlayer 
(release 7) already pre-stages streaming connections 
linked from a page by pre-extracting and readying 
individual codec information associated with each. 

In the context of the above works, we are investigating 
the issue of ranking-- particularly in view of the 
inevitabilit y of prediction error. In a recent work we 
have shown ranking for low capacity links [16,17]. In 
this paper we extend the study in further depth—In 
addition to showing which nodes to fetch, we also 
analyze how much of each node to fetch, and for a 
composite document what should be the composition 
of the fetch segments. Instead of prefetching nodes 
simply in order of maximum probable transition paths, 
as used in most of the previous studies, we propose a 
ranking order which optimizes the response time with 
respect to all probable transition paths.  

In this paper we further propose that instead of full 
documents we should only preload an estimated lead 
segment. The remaining can be loaded as a 
background streaming only when they have been 
requested. We show how to obtain the optimum lead 
segment that does not compromise the loading time- 
but reduces the amount of data loaded for documents 
that are never fetched.  

The proposed method is based on linked transition 
probabilit y and does not make any assumption about 
their means of estimation. It can be used with most of 
the methods proposed. Also to demonstrate its 
potential feasibilit y, in this paper we have sketched 
potential implementation technique only for the non-
trivial steps. The actual deployment of prefetch 
system, including ours will require a much more 
detailed design work at the very protocol level. 
However, discussions about these issues cannot be 
accommodated in this paper. Rather, below we cite 
some additional interesting research, which we think 
will provide valuable insight about these aspects 
closely related to our work.  

In related work, Duchamp [8] has discussed methods 
for clients and servers to exchange information for 
gathering and exchanging document usage statistics. 
Gruber, Rexford and Basso [12] have studied in detail 
the RTSP protocol extensions to support partial 
caching of lead segments of large multimedia 
documents. The concept of streaming for continuous 
media has been applied for quite a few years 
[15,22,23,24,25]. Grosso and Veill ard have recently 
proposed XML extensions for document 
fragmentation [13]. Such fragment level 
communication can potentiall y be applied for 
streaming resources of other classes, as envisioned 
here. Crovella and Bradford [5] studied yet another 
advantage of prefetching- the reduction of burstiness 

of network traff ic. Bangla et. al. proposed prefetching 
of only modified cached content to reduce cache 
communication in their proposal of 'optimistic-delta' 
[2]. Jung, Lee and Chon [15] reported error resili ence 
of TCP prefetch-based long multimedia sessions on a 
long haul noisy channel as opposed to li ve UDP 
streaming.  

In the following sections, we first present the model 
and the analytical considerations supporting the 
prefetch scheme. Section 4 then outlines key 
implementation issues. Finall y, section 5 presents the 
performance of the scheme under various workload 
supported by rigorous statistical simulation. 

3.  Analysis 

3.1 Hyperspace Model 
First, we describe the model of the hyperspace. Fig-1 
shows the model. Each node in the hyper-graph 
represents a web entity -- in the general case a 
composite multimedia document. Nodes are connected 
as per the embedded hyperlinks. The reader moves 
through a sequence of nodes in this hyperspace called 
anchor sequence. When a client (reader) program is 
active, the idea is to track the anchor nodes, monitor 
its neighboring regions, and prefetch selected parts 
from a subset of these nodes in client's prefetch cache 
with high li kely-hood of traversal based on some 
optimization objective. 

H(VH,EH) denotes the entire hyperspace. h(Vh,Eh) 
denotes the visible sub-graph of H about which the 
system has information. For tractabilit y, it is further 
pruned before each optimization phase. We call this 
final sub-graph roaming- sphere and will denote it by 
G(VG,EG). Although the node and link information of 
h(Vh,Eh) or G(VG,EG) is assumed available, but their 
content, however may not be resident in the prefetch 
cache at the beginning. Only G(VG,EG) is used to 
determine the pre-loading schedule. A subset of its’ 
nodes is eventually preloaded in the prefetch cache. 
C(VC, EC) represents this final part of hyperspace, 
which is finall y resident in the prefetch cache. Each 
node in h(Vh,Eh) has node 'statistics' (such as size or 
load time). Also, each link in it has a transition 
probabilit y p(i,j) associated with it. Links are bi-
directional and transition probabiliti es are asymmetric. 

3.2 Streamed Transport Model 
Our transport model divides the transport into two 
probable phases. Each node thus has two transport 
parts-- the lead segment and the stream segment. The 
available bandwidth is correspondingly separated into 
two sub-channels; feed channel for loading the 
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streaming segment of the current anchor, the lead 
channel to proactively load the lead segments of 
resources from the focus zone. Fig-4 shows the event 
sequence and an hypothetical buffer fullness for the 
transport model. The jaggedness of buffer fullness is 
due to the non-uniform nature of data consumption by 
the surfer. We assume that Dtotal is the size of an 
elementary resource, Dlead is the bytes in lead segment 
and Dfeed is the bytes to be streamed. We use β to 
denote the ratio of total bandwidth to that allocated to 
the lead sub-channel. In Fig-1, the dotted box 
represents the media, while the solid head indicates 
the lead segments.  

3.3 Composite Document Model 
In this paper, we provide the entire technique in the 
context of composite document. A composite 
document has multiple embedded components with 
various rendering modaliti es. For example, Fig-2 
shows a typical composite document with several 
embedded static as well as continuous media 
components (Tables -1 and 2 respectively provide a 
summary of the static and continuous media 
embedded here). To model such composite media we 
use a set of functions called rendering rate profiles-- 
one for each element. These profiles characterize the 
elements as a data rate function along the presentation 
time-line of the composite document. Note a profile is 
intrinsic to the document and is not dependent on the 
communication.  

Given a composite document node N with embedded 
media elements ni, we denote individual element's 
profile as the function fi(t), where superscript i is the 
element index. We use f(t) to denote the general 
variable rate profile. We also introduce the following 
three common profiles -- (a) constant rate (CBR) 

media, (b) impulse media, and (3) impulse series 
media.  

Most CBR or audio and video plays generall y are 
constant rate media. Parent HTML page, JAVA 
applets, or embedded foreground/background images 
generall y contribute to the lead segment and is 
considered impulse media. A dynamic text or banner 
image requires cycles of bursts for presentation. 
Similar is the case with any large document (PDF, ps 
etc.) which are viewed page by page. Additional 
examples of this class of documents are stock ticks 
and charts,  pushed banners, GIF animations as well as 
flash and slide shows. We use equation set-1 to model 
the profiles of these entities. Fig-5 sketches these 
functions. 
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The document’s composite rate profile is the sum of 
individual functions characterized by the coeff icients 
R, H and h.  

Given the above analytical model the problem that we 
will address in the remaining part of this paper is the 
ranking analysis at three levels. Given G(VG,EG)--  a 
hyper linked space of composite documents,  and the 
associated node statistics (transition frequency p(i,j), 
and node profiles f(t)) we show how to obtain the 
optimum prefetch sequence that will generate 
minimum expected response lag. Further, we will also 
determine the lead vs. feed segment sizes of the 
composite documents that will mi nimize the lag but 
with minimum waste of overall bandwidth. And 
finall y, for the chosen composite documents, we also 
show how much of which components of the 
composite documents have to be brought in and when, 
for both its lead and streamed segments -- i.e. the 
segment transport schedule for the optimum 
performance.   

3.4  Prefetch Node Ranking 
The first question we address is what is the best 
prefetching sequence of the nodes that will mi nimize 
the expected cumulative read-time lag for a given 
network bandwidth? Below we present the results in 
the form of a series of proofs that ultimately will l ead 
to the ranking algorithm. Proofs of these theorems are 
given in [16]. 

First we define the optimization criterion. In a hyper-
graph G, Lets U=(a1,a2,a3….al), where ui∈G, is the 
anchor sequence-- the sequence of nodes followed by 
a user. Let’s Γ is the loading sequence in which the 
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Fig-2 Streaming event model used for analysis. The 
top diagram shows event sequence and various time 
quantities and the bottom diagram shows the buffer 
occupancy under typical operation.
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nodes are loaded in the cache (Clearly, U ⊆ Γ⊆ 
{ nodes in G} ). Let pi is the estimated probabilit y that a 
user traverses a node ni  in roaming sphere G, and TL,i 
is the time the node ai is fetched and TP,i is the time 
spent by the user in that node. Thus, we define an 
overall penalty function-- the expected cumulative 
read-time lag: 

{ }∑ −− +−=Γ
U

i
iPiLiLi TTTpUT 0)],([max)|( 1,1,,

      ...(2) 

The objective is to find the loading sequence Γ that 
will mi nimize the expected penalty E{ T(Γ|U)} . It is 
important to note that this function optimizes with 
respect to all probable transitions of U, weighted by 
their transition probabilit y. Given the above 
optimization criterion, it can be shown that: 

Theorem-1 (Branch Decision): Let A=nc is the 
current anchor point with direct transition paths to a 
set of candidate nodes n1, n2, n3,-- nn, such that Ti is the 
estimated loading times of node ni, and Pr[an+1=ni 
|an=A]  is the conditional li nk transition probabilit y, 
then the average delay is minimum if the links are 
prefetched in-order of the highest priority Qi, where: 

i

nin
i T

Aana
Q

]|Pr[ 1 ==
= +  

...(3a) 

This theorem states that at a simple branch point 
(roaming sphere of depth=1) immediately linked 
nodes should be prefetched in order of the conditional 
transition probabilit y but in inverse order of their 
estimated load time.  

The following theorem provides the relative priority 
between two nodes in a tree at different depths, which 
are not necessaril y along the same path. 

Theorem-2 (Tree Decision): If the sequence {n1, n2, 
n3,...nd} are the nodes in the path in a tree from the 
current anchor A=n0 to a candidate node nd, at depth 
d and Td is it' s estimated loading time, then the 
priority Qd is given by the product of the conditional 
transition probabiliti es along the path such that: 
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...(3b) 

A corollary of this second theorem provides the 
relative priority of the nodes along a sequence. The 
result is quite intuiti ve.  

Corollary-2.1 (Sequence Decision): If two nodes are 
in a sequence, then the preceding node has to be 
loaded first.  

Unfortunately, the relative priority cannot be 
determined for a general graph for the optimization 

criterion defined by equation (2). However, under a 
slightly modified definition which ignores the credit 
due to cumulative read times along the paths (Tp,i-1=0 
for all i i n equation-2) it can be shown:   

Theorem-3 (Graph Decision): For general graph 
G(VG,EG) the node priority can be determined by 
computing order-n Markov state probabilit y  pi . For a 
node ni, with the estimated loading time Ti the priority 
function can be computed as: 

i

i
i T

p
Q =  

...(3c) 

The above results indeed provide a close form solution 
to the node-ranking problem. Let's consider C is the 
current set of nodes in the candidate node queue. The 
sequence corollary ranks the nodes those are in a path. 
In a tree-structured roaming-graph, they effectively 
prunes the set C only among the immediate next nodes 
of the anchor thus, if we are at node 0, the candidate 
set can be initiali zed at }{0 onofchildrenC = , The 

Branch Decision theorem then ranks the nodes within 
this set. Let the winner be nwinner. Then, when this is 
prefetched, it exposes its children nodes-- a new set of 
nodes, which now also becomes candidates for 
prefetch. Thus, the candidate set is updated to 

}{}{1 winnerwinnerii nofchildrennCC +−= − . The 

Tree Decision theorem then provides the priroty of 
these new nodes compared to those which are already 
in the queue and thus completes the ranking. Finall y, 
theorem-3 can be used in a graph for nodes which are 
child to multiple parents in C. 

3.5  Critical Composite Lead Mass  
The next question we address is how much of which 
node should we prefetch? This will also determine the 
pre-load time to be used in (2). Let us assume that the 
margin time=0. We use the constraint that the reading 
or rendering time should be at least equal to the 
streaming time for all components. First, we solve the 
simple case with only continuous media:  

Continuous Media Case: Consequently, given a 
consumption rate R i render for the media type=i the 
amount of data that has to be prefetched is: 
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.(4) 

Only the Dlead amount of data should be pre-loaded for 
mininum delay. It provides a lower bound and we call 
it criti cal lead mass. Corresponding pre-load time for 
the media is given by: 
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preload
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General case: The criti cal lead mass for a composite 
media can be determined by piece-wise integration of 
the combined rate function performed over a set of 
intervals defined as negative zero crossing (NZC) 
points where: 

∑ =− 0)( feedi Btf  , and ∑ ≤ 0)( itf
dt

d . ...(6a) 

Fig-6 explains the segments where t1, t2 and t3 are 
three such points dividing the presentation time T into 
four segments. The size of the required minimum lead 
segment is then given by the maximum of the 
piecewise integrals evaluated in 0-ti: 
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For zero delay presentation, the system must preload 
equal or more. Note, if a segment sum negative in jth 
interval, than it can reduce the piecewise lead segment 
of (j+1)th interval, however, the reverse is not true. 
The quantity ε is a small positi ve interval for ensuring 
inclusion of impulses in preceding intervals. 
Consequently, we look for maximum positi ve growth 
in the rate difference function (difference between the 
composite rate profile function and the feed channel 
bandwidth), however, this can be evaluated only by 
integrating at NZC points. For example, in the last 
segment of Fig-5(a) Since, the negative area A is 
larger than the positi ve area B , the integral from 0 to 
t2, instead of from 0 to t3 is the determining interval 
for its criti cal lead mass. Note equation-6 is a general 
solution including VBR rate profiles. 

The profile set given by equation-1, however, allows 
faster computation. Accordingly, a composite 
document with continuous media rate

cR , an impulse 

media size 
IH , and a impulse series media rate Sh  per 

time unit t, for a presentation span of T sec, will 
require a critical lead mass  of size: 

[ ]0),(max)()( feedcfreedclead BRt
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...(7) 

3.6 Lead Segment Composition 
Finally, we show the schedule of data segments and 
allocation of individual streams within Dlead and Dfeed. 
In multiple parallel streams, excessive preload of one 
media can potentiall y result in sub-criti cal pre-load for 
the other.  

Given the NZC points of the combined rate profile 
function, we segment the individual media entities 

into byte segments Bi(tj:tj+1), where i is the media 
index, and  tj:tj+1  is the NGC intervals. We then define 
a composite group as Gn(j)={ Bi(tj:tj+1)| for all i } .  A 
group contains bytes for all entities that belongs to the 
same jth NGC segment of the composite document 
node Nn. the following two rules then applies: 

Rule 1: To ensure criti cal pre-load all bytes in Gn(j) 
should be loaded before the bytes in Gn(j+1).  

Rule 2: However, for lead prefetch, there is no 
requirement of ordering the bytes within a composite 
group Gn(j), or between the groups from two nodes 
Gn(j), and Gm(j), when n≠ m. 

Consequently, within the same segment interval, the 
streams are ordered according to domain specific 
considerations such documents li ke stock ticks, can be 
left for fresh load, while any stored video can be 
loaded at lead segment.  

4. System Model 

4.1 System Description  
Below we briefly describe the Proxy and Server 
mechanics for link statistics estimation, partial 
document fetch and bandwidth partitioning.  

Link Statistics Collection: Statistics about links can 
be collected via client proxy that embeds link source 
in the HTTP 1.1 Request-Header Referrer field [11] 
each time when it issues a HTTP GET request. A 
server plug-in can track it and resolve the intra-server 
link references from the referrer id. A group of coop 
servers then can further resolve the remaining 
dangling links in batch mode by threshold driven 
periodic data exchange. The li st of embedded link, 
profile parameters and access statistics for hot 
documents are can then be stored in a database called 
hot-prefetch database by the origin’s stat server. 

Statistics Propagation: There are quite a few strategy 
possible. A simple choice is to use a separate 
GET_statistics request method using HTTP reserve 
pool. Given an URL in this method the server plug-in 
can respond with the statistics stored in the Hot-
prefetch database. 

Partial prefetch: The conditional range GET 
mechanism of HTTP 1.1 (If-Range header, Range and 
Content-range, Response Code 206 Partial Content) 
can be used for specifying requests for media 
segments.  

Bandwidth Partition Approximation: Bandwidth 
partitioning is not available in the current QoS-less 
Internet. Thus, instead a technique of byte 
proportioning per time segment basis can be used-- 
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effectively creating the same result. Since all 
presentations are NZC segmented, first the Range 
GET requests have to be queued for each element 
from the current stream node based on its NZC time 
segments. Within each NZC segment, then the waiting 
Range GET requests have to be proportionately 
interleaved for the lead byte-segments earmarked for 
pre-load. The exact delivery time of the prefetch 
segments - as long as it is within the correct NZC 

segment, should not matter. Since, these do not 
require immediate presentation. However the feed 
requests are to be placed at the top of queue within 
each NGC segment. Thus, in effect stream data will 
enjoy a little prefetch. 

4.2 Prefetch Mechanism 
Now, we briefly describe the design of the prefetch 
scheme based on the above results. First, in the server 
side, the prefetch mechanism gathers the composite 
node statistics- the profile parameters and the access 
statistics compiled from previous references, in the hot 
prefetch database. 

On the proxy side, when it detects a new user-agent, it 
initializes a new prefetch session for tracking its 
roaming sphere. The prefetch algorithm then 
computes G(VG,EG) by recursive polling of the links 
and using a small cut-off threshold ε.  

The prefetch mechanism then first computes the 
critical lead mass for each node on it. Based on this 
estimate it then determines the priority of the nodes 
according to the equation set-3(a)-(c). 

It also orders the lead byte segments of the candidate 
nodes according to their group order using rule-1. 
Finally, the segments within the group are ordered 
according to rule-2 domain considerations. In our 
simulation, we rank the continuous media segments 
with higher priority and those of impulse series with 
the lowest to ensure late transmission of dynamic 
media. The selected and ordered prefetch segments 
are then queued in the fetch queue. The segments that 
are not in the lead mass however, may also be 
ordered according to the rules 1 and 2 but are placed 
on a separate dormant queue.  

The current fetch queue is then merged with the feed 
queue that contains the segment schedule of the 
streaming segment of the current anchor node. The 
loading mechanism then generates the Range GET 
request accordingly.  

The loading order remains valid until the current 
anchor node is read. Upon completion of reading 
node N, a new node is traversed, and the fetch and 
feed queues are reorganized. The subsequent 
evaluation is incremental. A new anchor point 
changes only the conditional probabilities.  

The optimum ranking analysis presented here does 
not make any assumption about the prediction 
methods for estimating the link transition probability 
distributions and it should be applicable with any of 
the proposed methods [14,20,21]. These methods 
have varying degree of stability and prediction errors, 
and computational cost. However, for our simulation 
our design choice was the simplest one - the access 

frequency analysis based transition probability 
estimation. However, as can be seen later, we 
emphasized on testing the efficacy of the ranking 
procedure for varying prediction errors.  

5.  Simulation Results 
To characterize the performance of the proposed 
scheme, we used statistically generated data set rather 
than server trace. We needed the composition and 
profile. Also we wanted to stress test the method 
under varying controlled conditions. Although, trace 
driven data provides detailed information about a 

Fig-5  shows the profile for four typical traffic types 
given in equation set (5). 

Impulse rate function f(t)=H.δ(t) 

H 

Impulse series rate function f(t)=δ(t-nto) h 

2t 4t 6t 

CBR rate function f(t)=R 

R 

VBR Rate Function 

t3 

F(t) composite rendering profile 

Bfeed 

NZC points 

T 

� �

to=0 

Fig-6 shows how the composite rendering profile can be 
rate for determining critical lead mass. There are three 
NZC points. In this example, the determining point is the 
middle one since mass A is larger than mass B.   

t1 t2 
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particular run, but the controllability of parameters is 
inadequate. Also the mix and distribution of web-page 
composition also seems to be changing significantly in 
short years. Consequently, for this particular work we 
found it more appropriate to generate broad range of 
hyperspace data with distinct and varying statistical 
properties and observe how the proposed method will 
perform in each of these conditions.   

The objective of our first experiment is to observe 
how the introduction of partial prefetching -- 
particularly the relative bandwidth allocation between 
the fetch and feed channel effects. We were also 
curious to see how the relative rendering speed of 
various media types (such as text reading speed, play 
rate for audio or video) will impact the performance.  

Consequently, in this first experiment we generated a 
random set of nodes (composite documents) each with 
a parent HTML impulse document (containing links to 
others) and a set of embedded CBR media. We limited 
the maximum links per node to 10. The underlying 
algorithm further pruned links with below ε low 
transition frequency and effectively considered only 
about 1-4 links for prefetch. HTML documents are 
given fixed sizes (Hi

S) . We generated the sizes for the 
CBR media and link transition probability using 
normal distribution. For a given link bandwidth we 
then varied the rendering rate (hi

I) for the media as a 
control variable. Also, since our focus was to track the 
performance improvement only due to prefetching, we 
disbarred caching in the simulation. Thus, with each 
move to a new anchor, all nodes became prefetchable 
again. Fig-7 plots the observed reduction of the 
response delay for this experiment. It plots the 
responsiveness (lag-time with active prefetching 
normalized by that without prefetching). It shows the 
factor (y-axis) by which the lag time improves with 
respect to the percentage of bandwidth (x-axis) 
assigned to the fetch channel-- called lead bandwidth 
factor (LBF) We also plotted the ratio of network 

bandwidth to the rendering rate-- called normalized 
rendering rate (nRR). The curves show the 
performance when the normalized rendering rate 
varies from .2 (slow reading media) to 8 (fast playing 
media). As can be noted first, that with the inclusion 
of just prefetching (with 100% bandwidth assigned to 
the fetch channel or LBF=1.0), the read-time lag can 
be potentially decreased by a factor of 1-2 (shown by 
the left-most points) for media rendering rates 4-.8. 
However, as more bandwidth is set aside for 
streaming the improvement factor jumps.  For 
example, it goes all the way up-to to 2-15+ times 
when 50% bandwidth issued for streaming. Not only 
that for media with slower rendering characteristics 
(such as text), the improvement is even sharper. 

As indicated, the success of any prediction dependent 
algorithm depends on prediction accuracy. The next 
experiment we performed was to test how the 
proposed scheme fares against various levels of 
prediction discrepancies. 

To model the problem, we let the user walk through a 
chain of anchor points, not necessarily always 
following the most probable transition path (the link 
with highest estimated transition probability or 
priority). However, we made the system to strictly 
following the ranking given by the equations 3(a)-(c) 
and 6(a)-(b). At the end of the run, for plotting, at each 
anchor point Ai, we grouped the nodes of the roaming-
spheres into three groups. One with just one node-- the 
node which was actually traversed {ai+1}(becoming 
the next anchor), the other with the nodes those 
received higher priority than the anchor-- node set 
Ni,H, and the third set with the nodes with lower 
priority than the anchor node--- set Ni,L. Fig-8 explains 
the grouping in for several successive anchor phases. 
We then aggregated the cumulative lead size of each 
set and observed the delay for various distributions of 
the bytes in these three sets. We denote the sizes 
respectively by |Ni,H|=H, |Ni,H|=L and |ai|=A. 

Fig-8 The ordered set of nodes at each state. 
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(However, these are not necessarily the actual bytes 
prefetched, see next experiment for this). We modeled 
the error by a prediction distribution ratio H:A:L 
denoting the relative sizes of these three sets. We then 
conducted the previous experiment for various values 
of H, A and L.  Fig-8 shows this grouping for each 
anchor stage. 

First we present the performance for prefetch only 
model with entire bandwidth allocated to fetch 
(LBF=1.0). The 3D plot of Fig-9(a) shows the 
observed responsiveness (z-axis) both against the 
variation of normalized rendering rate (x-axis) and 
the prediction distribution ratio (y-axis), where the 
bytes prefetched before anchor (H) reaches all the way 
100 times than the anchor bytes from zero, for the 
scheme with only prefetch (H had more impact than 
L). We observed, the system remains effective with 
high responsiveness (by a factor of +10) only when 
the rendering is slow (nRR less than 0.3) and the 
prediction error is small (H≈2).  

We then repeated the experiment with partial-prefetch 
enabled. Fig-9(b) plots the same experiment with 

LBF=0.5. As can be seen the performance increases 
dramatically now. Not only the responsiveness 
improves (factor more than 15), it remained quite high 
for even relatively faster rendering resources (nRR 
around 0.7). It also remained immune to quite high 
level of prediction error (H>>2). 

This dramatic result is not unexpected. The reason can 
be tracked by observing the background line loads. 
How much of the scheduled bytes (=H+A+L) are 
actually fetched depends on when the user moves to 
next anchor (∆i+1). If at this moment Ni,H, were loading 
then it would skip the remain and begin loading ∆i+1. 
On the other hand, if it were in Ni,L, it would ignore its 
remaining part and render ∆i+1. We define load factor 
as the ratio of the actual bytes prefetched to the bytes 
actually read (size anchor sequence). Fig-10(a) and (b) 
respectively trace this load factor (z-axis) for these 
same two cases (with and without partial prefetch). As 
can be noted that streaming enabled prefetching 
dramatically reduced the background line load-- 
almost near one in large part of the graph. 

The above results show how a streaming incorporated 
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active prefetching can significantly improve the 
responsiveness of a cache system. To summarize, the 
performance without partial prefetch, matched those 
reported by other researchers. However, the partial 
prefetch resulted in dramatic improvement. Careful 
reduction of data-bytes per node, in effect allowed 
information from more candidate nodes to be pre-
fetched, given the same bandwidth and local storage. 

6. Conclusions & Current Work 
The prefetch prediction model reduces access lag for 
new references. It is quite appealing for the Web, and 
has attracted significant research interest. However, 
just prefetching seems to be limiti ng because of 
excessive transfer of unused bytes. This has been 
reported in few of the other research as well .  

In this paper, we have suggested an innovative method 
that integrates a concept similar to streaming, and 
greatly reduces this waste, by prefetching only a 
carefull y calculated amount. In this paper, we have 
outlined the method for a web composed of composite 
documents, which are becoming more ubiquitous in 
performance sensiti ve sites. We also presented the 
analytical considerations backing the design. Also, in 
this paper, we have presented simulation results based 
on statistical models that projects the scheme's 
performance under varying conditions. We think, such 
data optimization in prefetch is very criti cal because 
poorly done prefetch can adversely impact overall 
network performance. 

The paper's principle focus is on the data scheduling. 
However, there are many other issues, which need 
further investigation. As indicated, the estimation of 

link transition probabilit y, whether it is from 
conventional access log [21], or from explicit message 
exchange [8] as shown here, needs much more 
analysis. 

In the systems design section we have only outlined 
implementation techniques for steps which appears 
non-trivial at first look- including link transition 
statistics collection or bandwidth partitioning on QoS 
less Internet. However, the actual deployment of any 
prefetch system, including ours will require more 
work on protocols. It seems that any prefetch will 
require prediction, which in turn will require exchange 
of document statistics between servers and server and 
clients. Also, the tracking abilit y of nearby hyper-
graph, as demonstrated here will be useful. Also, 
interesting is protocol enhancements for partial 
document transfer for HTML, XML, RTSP entities 
[6]. Also, we did not present any prefetch algorithm, 
rather focused just on the ranking.  

Within the scope of this paper, we deliberately 
switched off any caching. However, we are also 
currently studying the impact when caching is added, 
the results of which will be presented in a forthcoming 
submission. The points of interest are how the cache 
parameters --- cache size, media classification, and 
discard poli cies, interplays here. 

As a part of our ongoing research, we are currently 
investigating an active net deployable prefetch proxy 
module, which can be dynamicall y launched as an 
active proxy inside network. The work is currently 
being funded by DARPA Research Grant F30602-99-
1-0515 under its Active Network initiative. 
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