

DISSERTATION PREPARATION APPROVAL FORM

Title of Dissertation: A FRAMEWORK FOR COMPLEX COMPOSITION OF

NETCENTRIC SYSTEMS__

I. To be completed by the student:

I certify that this dissertation meets the preparation guidelines as presented in the

Style Guide and Instructions for Typing Theses and Dissertations

____________________________________ _________________________

 (Signature of Student) (Date)

II. To be completed by Chair or Dissertation Committee:

__________ This dissertation is suitable for submission to the College

__________ This dissertation should be checked for conformity with the College

guidelines

____________________________________ _________________________

 (Signature of Dissertation Chair) (Date)

III. To be completed by the Director of the School or Chair of the Department:

I certify, to the best of my knowledge, that the required procedures has been

followed and the preparation criteria have been met for this dissertation.

____________________________________ _________________________

 (Signature of Director/Chair) (Date)

YANG, SEUNG S., Ph.D., December, 2004 Computer Science

A FRAMEWORK FOR COMPLEX COMPOSITION OF NETCENTRIC SYSTEMS,

1999-2004 (pp.)

Director of Dissertation: Javed I. Khan

The first generation of active networking research has demonstrated very simple

programmable systems, where simple code modules can be executed in network routers

and endpoints. However, complex netcentric systems require much more sophisticated

design and composition formalism of active network codes. This dissertation presents a

netcentric active service composition formalism which particularly focuses on code

usability by polymorphism and inheritance. It demonstrates a novel active programming

construct called made-to-order channels, which allows a collection of active code

modules composed within such a construct to be recursively used within higher order

instance of similar construct- thus enabling code reusability for active systems through a

socket like interface. The construct allows active services to be incrementally layered to

create versatile yet custom communication transports. The power of the formalism has

been demonstrated via implementing a set of novel network transport services such for

concurrent communication channel, and self-organizing-video-transcoding channel, et

cetera. This dissertation has developed the formalism, demonstrated an active network

platform for deployment and construction of such complex channels, and has evaluated

the performance of the channel systems. The result has implication into other emerging

paradigms of programmable netcentric systems such as web services, grid and autonomic

computing.

A FRAMEWORK FOR COMPLEX COMPOSITION OF NETCENTRIC SYSTEMS,

1999-2004

A dissertation submitted

to Kent State University in partial

fulfillment of the requirements for the

degree of Doctor of Philosophy

by

Seung S. Yang

December 2004

ii

Dissertation written by

Seung S. Yang

B.E., Soongsil University, 1993

M.E., Soongsil University, 1995

Ph.D., Kent State University, 2004

Approved by

___________________________________, Chair, Doctoral Dissertation Committee

___________________________________, Members, Doctoral Dissertation Committee

Accepted by

___________________________________, Chair, Department of Computer Science

___________________________________, Dean, College of Arts and Sciences

iii

TABLE OF CONTENTS

Acknowledgements ………………………………………………………………………ix

1 Introduction.. 1

2 Netcentric Systems... 4

2.1 Related Works... 4

2.1.1 ANTS .. 4

2.1.2 CANEs .. 7

2.1.3 PLAN and SNAP .. 9

2.1.4 Netscript .. 10

2.1.5 Distributed and Grid Computing .. 12

2.2 Proposed System Approach .. 13

3 Design Issues in Complex Netcentric Systems.. 16

3.1 System Design Considerations ... 16

3.2 Information Division and Sharing .. 18

3.2.1 Information Division... 19

3.2.2 Information Binding.. 21

4 MTO Channel Formalism.. 23

4.1 Definition of a MTO channel.. 23

4.2 MTO Channel Component Types... 30

4.2.1 Type by purpose.. 30

4.2.2 Type by location ... 31

4.3 Recursive MTO Channel Construction... 32

4.4 Complexity of a MTO Channel .. 51

4.4.1 MTO Channel Form Complexity.. 52

4.4.2 MTO Channel Assembly Time Complexity... 55

4.5 Optimization of MTO Channel Construction ... 57

4.6 Event Message Path Optimization Issue... 60

4.7 Analogy with TCP connection.. 62

5 Active MTO Channel System Architecture... 65

5.1 Overview of Active MTO Channel System.. 65

5.1.1 Active MTO Channel System Model ... 65

5.1.2 Active MTO Channel System Node OS Service Layer Architecture....... 66

5.1.3 Application Subscriber Layer ... 67

5.1.4 Compose-able Service Layer .. 69

5.1.5 Enhanced Network OS Layer ... 70

5.2 Application Programming Interfaces .. 71

5.3 Single MTO Channel Construction .. 75

5.4 Multi-level MTO Channel Construction... 77

5.5 Meta Information Language ... 80

5.5.1 Brief description of MIL... 80

5.5.2 MIL Grammar... 80

iv

5.5.3 MIL parsing and output generation... 82

5.5.4 Parsing tree structure... 82

6 System Visualization ... 86

6.1 Related Researches on Visualization .. 86

6.2 Visualization Architecture Requirements ... 87

6.3 Other Features of Visualization .. 88

6.4 Visualization of Architecture.. 90

6.5 Dynamic Message Binding and Interpretation ... 91

6.6 Visualization of Concurrent MTO Channel.. 94

7 An Additional Examples of Service Transport MTO Channel...................................... 99

7.1 SONET MTO Channel ... 99

7.1.1 SONET MTO Channel Architecture .. 101

7.1.2 Visualization of SONET MTO Channel System.................................... 103

7.2 Jitter Controlled SONET MTO Channel .. 106

7.2.1 Related Works for Delay and Jitter Controls.. 108

7.2.2 Multi-path Jitter Model ... 110

7.2.3 Algorithm.. 113

7.2.4 Scheduling... 114

7.2.5 Delay Estimation... 114

7.2.6 Buffering ... 117

7.2.7 Scheduling Algorithm... 118

7.2.8 Complexity of the Path Selection ... 119

8 Performance Analysis .. 120

8.1 Test bed... 120

8.1.1 ABONE... 120

8.1.2 ABONE Software Architecture .. 121

8.1.3 ABONE Security & Authentication Model .. 122

8.1.4 Concurrent MTO Channel Experimental Environment.......................... 122

8.1.5 SONET MTO Channel Experimental Environment 124

8.2 Experiment Results ... 125

8.2.1 MTO Channel Deployment Overhead .. 125

8.2.2 Signaling Overhead... 132

8.2.3 Concurrent Channel’s Transmission Speed .. 134

8.2.4 SONET MTO Channel’s Cold Start Adaptation for Video Sizes........... 135

8.2.5 SONET MTO Channel’s Adaptation for Compute Power 137

8.2.6 SONET MTO Channel’s Adaptation for Output Data Rate Change...... 138

8.2.7 Jitter Controlled SONET MTO Channel’s Jitter & Delay Reduction 139

9 Conclusion ... 142

10 References.. 145

v

TABLE OF FIGURES

Figure 1 The Capsule Composition Hierarchy and Demand Loading of Code Groups 5

Figure 2 ANTs PMTUProtocol Code ... 6

Figure 3 Add IP Injected Program.. 8

Figure 4 A PLAN Program: Ping.. 10

Figure 5 A Netscript Program... 11

Figure 6 The Tripartite Information Dependency among the Application Program, MTO

Channel, and the Network OS .. 21

Figure 7 MTO Channel Examples .. 29

Figure 8 Example Network Diagram: Network Diagram in between A and E Nodes 32

Figure 9 A MTO Channel Construction Tree ... 53

Figure 10 A MTO Channel Assembly Time Complexity... 55

Figure 11 An Optimized MTO Channel Construction Tree ... 58

Figure 12 A Final Planned MTO Channel Construction Map.. 59

Figure 13 Logical and Physical Event Notification Flow... 61

Figure 14 An Active MTO Channel System Model ... 65

Figure 15 The Three Tiers of System Architecture in Active MTO Channel System

Formalism ... 67

Figure 16 Network Services Layers for Dynamic Service System Construction............. 71

Figure 17 Application Programming Interfaces for a MTO Channel Construction 73

Figure 18 A Single MTO Channel Construction Sequences .. 76

Figure 19 A Multi-level MTO Channel Construction Sequences 78

Figure 20 The MIL Grammar for API Description .. 81

Figure 21 A Placement Map MIL Grammar... 81

Figure 22 A MIL Parsing and Output Generation Architecture 82

Figure 23 A MIL Parsing Tree Structure.. 83

Figure 24 A MIL Description for a GSocket Function Call ... 84

Figure 25 A PMAP for Altered Routing Channel .. 85

Figure 26 The Visualization System Architecture.. 90

Figure 27 A Status Message Structure and a Status Message .. 92

Figure 28 The Monitoring Point Status Transition Diagram.. 94

Figure 29 The MTO Channel Component Service Status Diagram 96

Figure 30 A Color Coded MTO Channel Control Center Control & Status Window...... 97

Figure 31 A MTO Channel System Hierarchical Process View....................................... 98

Figure 32 The SONET MTO Channel Architecture... 101

Figure 33 A SONET MTO Channel’s Application Deployment Map 103

Figure 34 The SONET Service Status Transition... 104

Figure 35 A Component Status Transition Diagram View of SONET System.............. 105

Figure 36 A System Wide Controls and Status Representation Window....................... 105

Figure 37 A System Configuration Window .. 106

Figure 38 The Multi-path Jitter Model ... 110

Figure 39 Sub-Path Selection Algorithms .. 118

vi

Figure 40 The MTO Channel Construction Test Bed... 123

Figure 41 The Number of Used MTO Channel Component in GC(a,e) 126

Figure 42 A CC MTO Channel Assembly Time .. 127

Figure 43 A Loading Overhead for CC MTO Channel Construction 128

Figure 44 An Activation Overhead for CC MTO Channel Construction....................... 128

Figure 45 SONET MTO Channel Test Network Configurations 129

Figure 46 A SONET MTO Channel Component Deployment Time 130

Figure 47 An Activation Overhead for SONET MTO Channel Construction 131

Figure 48 A Signaling Overhead for MTO Channel Construction................................. 132

Figure 49 Control Signals vs. Data Transfer Time on Different Networks.................... 133

Figure 50 A Concurrent Channel’s Data Transmission Time .. 134

Figure 51 A Performance Comparisons among Different Frame Size and Computation

... 135

Figure 52 A FPS Adaptation Reaction Time .. 137

Figure 53 A Rate Adaptation Reaction Time ... 138

Figure 54 A 320x240 Video Stream Jitter Measurement ... 140

Figure 55 A 704x480 Video Stream Jitter Measurement ... 140

TABLE OF TABLES

Table 1 Netcentric Systems’ Features... 13

Table 2 Application Information Metric for GC(A,E).. 36

Table 3 Channel Invocation Information Metric of GC(A,E) .. 37

Table 4 Channel Invocation Information Metric of GC(A,E) .. 38

Table 5 Application Information Metric for ARC(A,F,E).. 38

Table 6 Channel Invocation Information Metric of ARC(A,F,E) after adding Network

Information ... 39

Table 7 Channel Invocation Information Metric of ARC(A,F,E) before Invoking GC(F,E)

... 40

Table 8 Application Information Metric for GC(F,E) .. 41

Table 9 Channel Invocation Information Metric of GC(F,E) after Adding Network

Information ... 42

Table 10 Channel Invocation Information Metric of GC(F,E) before Invoking

ARC(F,H,E) .. 42

Table 11 Application Information Metric for ARC(F,H,E).. 43

Table 12 Channel Invocation Information Metric of ARC(F,H,E) after Adding Network

Information ... 43

Table 13 Channel Invocation Information Metric for ARC(F,H,E) before Invoking

GC(F,H) .. 44

Table 14 Application Information Metric for GC(F,H).. 45

Table 15 Channel Invocation Information Metric of GC(F,H) before Invoking CC(F,H)45

Table 16 Application Information Metric for CC(F,H) .. 45

vii

Table 17 Channel Invocation Information Metric of CC(F,H) before Invoking

ARC(F,G,H) and ARC(F,J,H) .. 46

Table 18 Application Information Metric for ARC(F,G,H) ... 46

Table 19 Application Information Metric for ARC(F,J,H)... 47

Table 20 Channel Information Metric of ARC(F,G,H) .. 48

Table 21 Channel Information Metric of ARC(F,J,H) ... 48

Table 22 Channel Information Metric of CC(F,H)... 49

Table 23 Channel Information Metric for GC(A,E) ... 50

Table 24 Information Metric of TCP from A to E.. 64

Table 25 Active Channel Management Enforcer (ACME: Network OS) APIs 73

Table 26 Service Component APIs... 74

Table 27 General Active channel Constructor Extension (GRACE) APIs....................... 74

Table 28 Service and Network Information APIs... 75

Table 29 The Tested MTO Channel’s Types and Sizes ... 123

Table 30 The SONET MTO Channel’s Types and Sizes ... 125

viii

Dedication

To my wife, Hyunjung, my children Jungmo and Chelsea,

my parents, Junseag Yang and Youngsoon Min.

Their efforts and sacrifices made this dissertation possible.

ix

Acknowledgements

Completing doctorate degree is much harder than I expected at the beginning. If I

were alone, I could not finish it. Most of all, I wish to express my heartfelt thanks for care

and thought my advisor and mentor, Dr. Javed I. Khan. Without his guide, I could not

complete this work. He allows me to do what I do with enjoyment and confidence. He is

not only my advisor but my compass for my life. Dr. Kenneth Batcher and Dr. Hassan

Peyravi are my models as a researcher and teacher. I have great help from them more

than they can imagine. I am proud that such prominent scholars as my dissertation

committee member.

My appreciation also goes to all my friends who encouraged and helped me to

complete my degree. In particular Changyong Jung who was always with me when I am

happy or embarrassed and need helps.

Last but not least, I want express my great appreciation to my sister, Haekyung. She

helped me to come to the United States and let me start my degree in Kent State

University.

x

1

CHAPTER 1

Introduction

The current data communication network has enough transmission speed to handle

not only simple data but also complex data such as multi-media content. The network

also has enhanced transmission reliability to support reliability-critical applications such

as network attached storage (NAS) and storage area network (SAN). Many netcentric

systems, for example, Content Delivery Network (CDN), Content Service Network

(CSN), distributed computing, and Grid computing exploit the enhanced network speed

and reliability to build a service in a network. [22][23]

The netcentric systems construct a service by connecting their distributed software

components to a network. To perform their service, the netcentric systems require

customized communication features such as application specific routing-path control,

application categorized delay and jitter control, real-time communication speed and error

detection, fault-resilient transmission, and data forwarding rate control. [34][35][36] The

development of a netcentric system on top of a simple data forwarding service partially

fulfills the netcentric system’s requirements. [12][13][14] Therefore, a netcentric system

developer builds the application specific communication features into his software

components. However, it only can react on communication messages at the

communication end point in a netcentric system’s component, although many application

specific transmission features need custom actions along the communication path in

2

network. Even when a developer implements custom communication features, he has

limited tools such as the socket library for building the features.

An active network supports a netcentric system developer by expanding the

network’s classical roles from simple data forwarding to an application specific

programmability in a network. [13] In the active network paradigm, the routers or

switches of the network perform customized communication features such as gathering

and merging data from a set of senders (Concast), content aware gateway service (CAG),

and dynamic video transcoding. [12][37] An active network, on the other hand, supports

very little reusability on the construction of its own network embedded components.

Until now, an active network has not provided code reusability at the level that CORBA

or Globus Toolkit provides but only that the degree of template or static class basis which

depends on the programming language used. [22][24] Because the required components

are decided at implementation time and not at deployment time, when a custom

communication connection is set up, a specific network component should be loaded in a

targeted active node. It cannot use similar components which support required functions.

Therefore maintaining required software components as well as deploying them is

another heavy task in active network architecture.

This dissertation presents a developed framework for building a complex netcentric

system that supports the following features to facilitate development of a netcentric

system:

3

• Platform and language independent reusability on network embedded components

• Simplification of building a complex communication channel by recursive

channel composition

• Enhanced utilization of network embedded components by service function based

deployment time component binding

• Resource adaptive custom communication channel construction over distributed

computation nodes

The framework also has features such as dynamic pathway planning, autonomous

custom service construction, interfacing with service subscriber application and network,

embedded system monitoring and visualization support, and dynamic interpretation of

service description and service component discovery.

This dissertation is organized in the following way. In section 2, related works on the

netcentric system and the needs for a new approach are presented. In section 3, design

issues in the netcentric system framework are explored. Service construction formalism

and optimization issues are presented in section 4. The netcentric made-to-order (MTO)

channel system architecture is shown in section 5. In section 6 and 7, a single MTO

channel and a multi-level MTO channel construction methods and sequences are covered.

Application perspective considerations are discussed in section 8. In section 9,

implemented systems and their experimental results are shown. Finally features and

results of the developed framework are discussed in section 10.

4

CHAPTER 2

Netcentric Systems

Many aspects of the programmable network have been investigated since it drew

attention. The active network paradigm is one direction that opens a way to process

packets in network. [15] Many works have been done and continued to support easy and

robust programmability in an active network. [39]

In this section, netcentric systems will be explored, and design considerations of our

active made-to-order (MTO) channel system will be presented.

2.1 Related Works

2.1.1 ANTS

ANTS by Wetherall, et al. provides a Java-based network protocol-building and

deploying framework. [14] They built an architecture that supports automatic and

dynamic deployment of new protocols. The architecture deploys a new protocol as it is

needed, and the protocol does not have interaction with previous deployed network

protocols. The ANTS protocol architecture uses capsules, code groups, and protocols.

Figure 1 (a) shows a capsule composition hierarchy. A capsule is a generalized

replacement for a packet. A capsule shows which forwarding routines are used to process

5

the capsule. A code group that is forwarded as a unit by the code distribution system is a

collection of related capsule types. A protocol that is handled as a unit in an active node

is a collection of related code groups.

Protocol

Code Group

Capsule

Unit of

programming
protection

Unit of code

transfer

Unit of

message
forwarding

capsule

request

response

capsule

code
group

code
group

1

2

3

4

(a) (b)

Protocol

Code Group

Capsule

Unit of

programming
protection

Unit of code

transfer

Unit of

message
forwarding

Protocol

Code Group

Capsule

Unit of

programming
protection

Unit of code

transfer

Unit of

message
forwarding

capsule

request

response

capsule

code
group

code
group

1

2

3

4

capsule

request

response

capsule

code
group

code
group

1

2

3

4

(a) (b)

Figure 1 The Capsule Composition Hierarchy and Demand Loading of Code Groups

When forwarding routines for a capsule are not available in an active node, the active

node loads the code group from its previous node and processes the capsule as shown in

Figure 1 (b).

6

package apps;

import ants.*;

public class PMTUProtocol extends Protocol {

public PMTUProtocol() throws Exception {
startProtocolDefn();

startGroupDefn();

addCapsule(“apps.PMTUCapsule”);
endGroupDefn();

endProtocolDefn();
}

}

Figure 2 ANTs PMTUProtocol Code

The ANTS system developed using the Java programming language. [37] The ANTS

toolkit includes four base classes: Node, Protocol, Application, and Capsule. Each active

node is represented by an instance of the Node class. The Channel class is used to

instantiate each network interface. An application is developed by using the Application

class. A new service is developed by subclassing the Capsule and Protocol classes. An

ANTS developer makes his own custom protocols by using the base classes. An

application developer who uses developed services writes his application programs by

subclassing the provided Application class and uses the service by instantiating the

developed protocol class. Figure 2 shows a sample ANTS protocol source code. The

PMTUProtocol uses the Protocol class as its base class and defines its capsule group.

7

2.1.2 CANEs

Sanders, et al. suggest a slot processing model, CANEs, on top of Bowman Node OS.

[16] A CANEs execution environment (CANEs EE) supports reasonable forwarding

performance to active applications and modular service construction. It has two goals: to

support the development of active applications which require reasonable forwarding

performance and to provide a framework for the modular service construction. The

CANEs EE has two parts, a fixed part that represents a uniform processing applied to

every packet and a variable part that represents a customized functionality for the packets.

The variable part, called an injected program, may be node-resident or is loaded from a

remote site. The fixed part, called an underline program, declares shared variables,

allocated spaces, and exported variables. The injected program imports the shared

variables of its underlying programs to create bindings between the shared variables and

the references. A modification to the variables is copied into local variables for use after

the processing ends.

8

canes_referenced_global_per_flow (canes_packet_t *, cur_pkt);
void add_ip(void)

{
canes_packet_t * pk;
struct o_if * interface;
...
pk = c_Ip(cur_pkt);
…

channel_data_ptr = (channel_data_ptr_t)&pk->buffer[route_info_offset];

...
generic_addr aa;

boolean i = oif_find_addr_by_channel(pk->from, addrtype_ip, &aa);
memcpy(&channel_data_ptr->hops[num_hops].ip_addr, &aa.addr.ip, aa.l);

...
/* update the info in the headers */
pk->size += sizeof(channel_info_t);

} /* End add_ip */

void _entry(void)
{

cur_pkt = canes_import_global_per_flow("Cur-Pkt");
}

Figure 3 Add IP Injected Program

The CANEs introduces a notion of the slot where an injected program resides and

runs on it. [38] A CANEs EE uses shared variables to communicate among its active

programs. Shared variables are exported and imported among active programs and used

as communication points. The CANEs’ example systems are developed in the C

programming language, even though it is not limited to a specific programming language.

Underlying programs export shared variables, and injected programs import the shared

variables to make connections. A developer develops his own underlying and injected

programs. A developed program registers its shared variables globally to expose them

and to be used by other programs. Developed programs come with CANEs user interface

(CUI) messages. The CUI messages contain the path to the underlying and injected

9

CANEs code. CUI files for an injected program should be sent to an active node in order

to run a program. The application that uses a CANEs packet uses CANEs APIs to send

and receive a packet. In the packet, channel identification is included to dispatch the

packet to a proper service. A sample injected program is shown in Figure 3.

2.1.3 PLAN and SNAP

PLAN and SNAP which were suggested by Hicks and Moore, et al., entail a

language-based programmable network approach. [19][20] The programs are lightweight

and restricted in functionality. A PLAN packet contains a field called chunk. The Chunk

consists of a code written in PLAN language: an entry point which indicates the first

function to execute and bindings which describe arguments for an entry function. When

each active node receives a PLAN packet, a PLAN interpreter interprets the packet and

runs the codes in the chunk field. SNAP is currently a developing system which uses a

special purpose language and virtual machine interpreters.

A PLAN has two phases of software development: one for PLAN services and the

other for PLAN packets. A PLAN service is a PLAN program which is called by codes in

a PLAN packet. A PLAN service is installed manually or dynamically in an active node.

The Java or the OCaml programming language is used for developing a PLAN service.

10

fun ping (source:host, destination:host, outgoing:bool) : unit =

if outgoing and (thisHost () = destination) then

(OnRemote (ping (destination, source, false),
source, getRB (), defaultRoute)

)
else

if not outgoing and (thisHost () = destination) then

print ("Success")

else OnRemote (ping (source, destination, outgoing),
destination, getRB (), defaultRoute)

Figure 4 A PLAN Program: Ping

A PLAN program is written in the PLAN programming language developed for the

PLAN packet. It consists of two components: a code and an invocation. The code consists

of a series of definitions. The definitions bind names to abstractions, which take the form

of functions, values, and exceptions. The invocation consists of the function calls to be

evaluated at the next evaluation point. A PLAN developer uses the PLAN programming

language for PLAN packets. Figure 4 shows a ping program written in the PLAN

language.

2.1.4 Netscript

Silva, et al. introduce Netscript, which is for developing active service protocols by

using a high-level programming language and environment. [21] It provides means to

build a service from primitive operators by layering active elements above active or non-

active components to use their services. It supports dynamic changes in its dataflow; a

11

box, which represents Netscript computation, can be added, removed, connected or

disconnected at runtime.

box template RTMP
{

box import “http://cs.columbia.edu/ns/boxlib/RTMPControl.nbt” RTMPControl

box import “http://cs.columbia.edu/ns/boxlib/IP_RTMPMuxDemux.nbt” IP_RTMPMuxDemux
box import “http://ietf.org/ns/boxlib/IP.nbt” IP;

connect
{

IP.rcvUp-> IP_RTMPMuxDemux.rcvDown,
IP_RTMPMuxDemux.sndDown -> IP.sndUp,

IP_RTMPMuxDemux.rcvUp ->RTMPControl.rcvDown,
RTMPControl.sndDown -> IP_RTMPMuxDemux.sndUp,

}
}

Figure 5 A Netscript Program

A Netscript service consists of boxes and connections among the boxes. The boxes

are computational parts, and connections describe the connections among the boxes. A

Netscript service developer describes boxes and their connections in Netscript language.

A box imports other boxes. It also includes a connection section which describes the

connections among the imported boxes. Figure 5 shows a sample Netscript program. In

the sample program, a box is implemented in a Java bean which includes SndUp,

SndDown, RcvUp, and RcvDown interfaces to communicate with other boxes. The box

can use templates to extend an existing protocol.

12

2.1.5 Distributed and Grid Computing

The active network’s success seems to still be limited to lower network functionality

with limited state programmability. It has limited support for the reusability on pre-

developed component such as language based or static network component reusability.

Distributed and Grid computing, on the other hand, explored high level programming

reusability and enabled better software component recycling. Their service construction

methods are enhanced dramatically. A software developer uses well designed

infrastructures such as CORBA, and Globus Toolkit to build his services on Distributed

and Grid computing. [22][24] Open Grid Services Architecture enables the integration of

services and resources among distributed and heterogeneous organizations. The Globus

Toolkit addresses issues of security, information discovery, resource management, and

portability. [23] With the infrastructures, a service designer can concentrates more on his

work.

However, when the service designer connects his service components through

network, he still builds his network connection on a legacy network; he takes advantage

on elegant software object reusability but has lack of application oriented communication

control supports from a network. He develops required features at the communication end

points in his components. Because of the consolidation of custom communication

controls into a software object, the developed communication features are reused only

thorough a static method such as a library. The location and reusability limitation causes

13

developer’s enormous efforts to hold network connection controls even in Distributed

and Grid computing.

2.2 Proposed System Approach

The current ongoing netcentric systems have entailed an enormous amount of work

to set up a programmable network architecture. Their architectures support a dynamic

load-ability of software components on an active node and a modularity of plug-in

softwares.

Table 1 Netcentric Systems’ Features

 ANTS CANEs PLAN NetScript

Code Location Outside Outside Inside Outside/Inside

Composition Language Java LIANE PLAN NetScript

Service Construction

Language
Java C Java/OCaml Java

Code Loading

Location

Previous

node
Code Server In Packet In Packet

Code Installation Time

Before

Capsule

Processing

Before a

Service Start
With Packet With Packet

Required Code

Resolving Time

Service

Development

Time

Service

Development

Time

Service

Development

Time

Service

Development

Time

Resource adaptation
Single node

only

Single node

only

Single node

only

Single node

only

Event propagates No No No No

Table 1 shows netcentric systems’ features. The netcentric systems have

programmability on network connection, a dynamic code loading mechanism,

14

interference free a new protocol support from existing protocols. However, their

architectures only have language-based reusability, or limited network component

reusability by binding required code at development time while distributed and Grid

computing support very high level reusability on their software modules but not in their

communication objects. Even when the netcentric systems deploy their network

embedded components on active nodes, they are deficient in systematical consideration

of available resources in overall active nodes in a network.

Information division and binding are required when a system is dynamically

configuring a service with deliberation of network resources. The presented netcentric

systems have lack of information division and binding features. They fixed service

components for processing packet at a programming time when they have limited

knowledge of actual resources and user’s requirements at their running time. This causes

a less adaptive deployment planning of a service system and reduces dynamicity of

system configuration.

Here an Active Made-to-Order Channel System (AMCS) that supports a dynamic

MTO channel construction and management framework with MTO channel reusability is

presented. A MTO channel is a transmission object in between two or more

communication entities. Examples of a MTO channel and its usages are explored. The

AMCS’ recursive channel construction method leverages reusability of MTO channels

when the system build a complex MTO channel. The AMCS has the following

capabilities:

15

• Dynamic MTO channel components loading/unloading

• Reusability on MTO channels

• Dynamic binding of MTO channel and sub-MTO channel during run time

• Adaptation to run time system

• Embedded system status monitoring support

The AMCS system loads MTO channel components when a service is initiated. The

binding of a MTO channel name to an actual MTO channel is performed at a service

construction time not a service development time. This increases independence and

flexibility of the service construction. The separation also enhances maintenance on

service components that is not supported by static components binding protocols. The

AMCS system augments the reusability of a developed MTO channel by using it as a

sub-component of another MTO channel service. The AMCS system can constructs a

service over distributed nodes. It is different from most other systems which construct a

service on a node not over distributed nodes. Using the service construction, the proposed

system builds a service which can not be performed with resources on single node.

In the following sections, netcentric system design considerations, the MTO channel

system architecture, the MTO channel construction formalisms, and the MTO channel

construction optimizations will be presented.

16

CHAPTER 3

Design Issues in Complex Netcentric Systems

A dynamic composition of complex netcentric systems is not a simple task. To

consolidate the framework system, from the software engineering issues to information

division and sharing were visited.

3.1 System Design Considerations

Because most previous approaches for building a complex networked system have

eventually focused on building a more complex construction process using an elementary

standard transport library for their connectivity, a software engineering approach for

building a transportation channel is entailed as an important design consideration.

Conceptually an active network provides a platform for building a complex

communication system. The active network, however, lacks a polymorphic framework

with inheritance property which includes both a process and an interaction construct. The

developed system constructs a complex transportation channel by reusing other channels

systematically. The channel construction should use uniform interfaces from a simple

channel construction to a complex channel composition.

During a channel set up planning phase, the designed netcentric system provides a

deployment time mapping mechanism that entails application knowledge into a channel

17

construction. It is a critical requirement to get an appropriate specification language for

mapping application needs into a MTO channel and network resource requirements. The

description of the application needs to be interpreted and used to find a specific service

MTO channel which supports the requirements. Also, the service description is bonded

with a MTO channel’s resource requirement description, and the system/network

resource requirement description will be produced.

The netcentric system supports accessing network states. In classical design, each

layer in the network software stack has been strongly isolated from its upper layer. This

model simplified the development of the first generation applications. The flip side of the

design choice is that now network states are very difficult to access. Therefore, the upper

layer cannot take advantage of reacting to the dynamic network status changes. The

designed netcentric system provides uniform interfaces to access dynamic network status

information to leverage its adaptation on system/network status changes.

For building an efficient network MTO channel layer for active application, system

level re-provisioning will be required so that embedded service components can be

mutually secured and trusted, and yet will allow open standard-based access to network

local states. To accommodate adaptation for network status, dynamic relocation is needed.

In service reconfiguration, additional constraints are placed by the requirements of

minimum interruption of the ongoing service sessions. The service relocation must

reduce the impact on overall processing and communication delay.

Another critical component that arises in dynamic service composition is the creation

of a powerful middle-layer abstraction. While the dynamic service itself can be a

18

complex system, the subscription and the use of the composed service should be easy and

intuitive. This required provisioning is on a middle-layer abstraction, where third-party

developers can develop the components required for dynamic service, while the end-point

users and applications can take advantage of these services with an easy to use interface.

A MTO channel is a dynamically constructed transportation service system. A MTO

channel represents not only a connection object among service points, but also a service

system which processes information while it is in transit.

The designed MTO channel system runs on top of an active network system, even

though the system’s basic requirements are i) reliable control message transfer among

participated nodes, ii) load and run software components in a network node, iii) reliable

component delivery to a network node.

3.2 Information Division and Sharing

Multiple participants are involved in a MTO channel construction. Fractional

information is supplied by each participant. A channel is constructed by dynamically

binding the information during set up and run time. In this section, three participated

entities are identified and examined for a MTO channel construction.

19

3.2.1 Information Division

The developed system has three different information providers for the MTO channel

construction. The identified providers are a MTO channel developer who develops a

MTO channel and its components, a user or application that uses the constructed MTO

channel, and a network which supplies information for the running system/network

environment. The three information provider model helps in the task separation in the

development processing and is the key to any possibility of complex application

engineering. First, the fragmentation will be looked, than how the system glues them

together will be explained.

The MTO channel designer knows very well about the operation mode, the control

flow and the detail architecture of a MTO channel. He also knows the situational

constraints of the MTO channel components. However, the MTO channel designer does

not have the knowledge of the exact network and system map on which the MTO channel

will run. The MTO channel designer provides the MTO channel components that are

required to establish a service. He also provides canonical maps that have placement

information of the MTO channel components and connection information among them.

In addition, he also supplies logical resource requirements of the MTO channel.

The user/subscriber application is eager to remain completely ignorant about the

MTO channel architecture, components, and its connections; it is mostly interested in the

service that the MTO channel provides. The subscriber, on the other hand, is the first

20

member to know the location of the end-points and the most knowledgeable participant

among the three involved entities about the characteristics of traffic that will flow

through the MTO channel. The subscriber is expected to have a fair idea about the nature

of the service it will receive from the MTO channel, though it may not know the exact

metric that the MTO channel designer used to quantify it. It also reserves its right to

know how much it is actually getting. Consequently, it supplies service-end-points and

quality of service/traffic information. However, as a user of a channel it must know about

the semantics of the service. This includes the semantics of events available from a

channel as well as role of some of the well known parts of the channel. Typically various

component programs of a channel play distinct logical role in the realization of the

transport service of the channel. A channel user is expected to know these roles though

not the internal functions of the components.

The system and network environment information comes from a network through

node OSes. A node OS does not have any prior knowledge about a MTO channel

architecture, its components capacity, or required network capacity. It also does not know

in advance about the traffic characteristics or sizes. This is, nevertheless, the most

knowledgeable entity among the three about the underlying network infrastructure, i.e.,

the actual network topology, and the quantity and capacities of its various elements.

Therefore, it provides a base topology graph and the quality-of-network information.

21

3.2.2 Information Binding

The information dependency is shown in Figure 6.

GGBASEBASE

VVEPEP

MMROTROT

MMQOSQOS

DMAPDMAP

T()T()

CMAPCMAP

Application Application

SuppliedSupplied

Channel Designer SpecifiedChannel Designer Specified

ACMEACME

CollectedCollected

GGEPEP

MMQONQON

Channel Planning Logic()

P()P()

GGBASEBASE

VVEPEP

MMROTROT

MMQOSQOS

DMAPDMAP

T()T()

CMAPCMAP

Application Application

SuppliedSupplied

Channel Designer SpecifiedChannel Designer Specified

ACMEACME

CollectedCollected

GGEPEP

MMQONQON

Channel Planning Logic()

P()P()

Figure 6 The Tripartite Information Dependency among the Application Program, MTO

Channel, and the Network OS

The user application supplies an end-point vector (VEP) and a quality-of-traffic

metric (MROT). A network operating system supplies a run-time base topology graph

(GBASE) and a quality-of-network metric (MQON). A MTO channel designer supplies a

component map (CMAP), a transformation function T(), and channel planning function

P(). The transformation function T() is used for generating an channel’s own end-point

topology graph. The end-point topology graph (GEP) is computed based on a given end-

point vector (VEP) and a base topology graph (GBASE).

22

The dynamic component placement map (DMAP) is calculated using the end-point

topology graph (GEP), the component map (CMAP), the quality-of-traffic metric (MROT),

and the quality-of-network metric (MQON).

Finally, the quality-of-service metric (MQOS) is derived from the dynamic component

placement map (DMAP), the quality-of-network metric (MQON), and the quality-of-traffic

metric (MROT).

A legacy TCP connection also needs information from an application, a network, and

a software developer to set up its connection. A TCP connection has two pairs of IP

addresses and port numbers as VEP: one for source and the other for destination. The

quality-of-traffic metric (MROT) in the TCP is simply a connectivity from the source to

the destination. This meaning is embedded when an application requests a TCP

connection. A network supports base topology graphs, GBASE and MQON, even though

those are primitive information, i.e., a partial network graph for a path of a given packet

for GBASE and an availability of a path from the source to the destination for MQON. All

the required software and functions are pre-installed in each node that participates in the

communication. The component map (CMAP) are not needed for a TCP connection, and

the deployment map (DMAP) is not generated for the same reason; all the software is

pre-installed. A TCP connection generates GEP for each packet. The GEP is determined at

a given time for a packet and is not persistent during the connection’s lifetime. The

quality-of-service metric (MQOS) are the same as the quality-of-network metric (MQON):

providing reach-ability.

23

CHAPTER 4

MTO Channel Formalism

4.1 Definition of a MTO channel

A MTO channel is a transport object in between communication entities. A MTO

channel is made up of computing points of presence (POP) and these POPs are connected

via links. A POP can be a simple connection point or a computing component between

sub-MTO channels. A special POP called a service end point (SEP) is a POP connected

to an application or another MTO channel. A link is a simple connection or another MTO

channel called a sub-MTO channel connecting two POPs.

Definition 1: MTO channel

A MTO channel C is a connected graph and defined as a quintuple C = (M, C’, P, E,

S). A MTO channel has five types of assets. M is a set of MTO channel software objects

(called components). C’ is a set of sub-MTO channels which are used by this MTO

channel C. P is a set of points of presence (POP) where the MTO channel computation is

needed to realize the MTO channel service. E is a set of event objects that relates to C. S

is a set of state variables representing the MTO channel’s state.

24

M is a set of MTO channel component that can be located in POP and performs

computations on the data that flow in the MTO channel. C’ is a set of sub-MTO channels

which is connecting the MTO channel’s components. In the MTO channel, data is

delivered with or without modification of its contents based on the sub-MTO channel that

it uses or on the channel components. P is a set of points of presence (POP) where the

computations on the MTO channel happen. E is a set of events that is generated by the

MTO channel, and which carries extra information for MTO channel system management,

status reports, commands for software components, and so on. S is a set of state variables

representing a state of the MTO channel.

Definition 2: Component Set

A component set of MTO channel C, M, is a set of the all MTO channel’s

components, M = m1 ∪ m2 ∪ … ∪ mN. mN is the N-th component in channel C. A

component is a software program in the MTO channel that has its own computation

and/or transmission algorithms to fulfill the tasks of the MTO channel C.

A component set of MTO channel C, M, is a set of software components in the MTO

channel. The components perform their computation and/or transmission algorithms on

data to realize the tasks of the MTO channel C. A MTO channel should have at least one

component. A MTO channel deploys the channel components in the network and the data

that is transmitted is processed and delivered by the components. All components of a

MTO channel C may not be required at run time. The actual used MTO channel

25

components are determined dynamically at run time based on the platform of the MTO

channel runs and user’s requirements. Because of the dynamicity of channel construction,

whole MTO channel components should be available when the MTO channel is

requested.

The information provided by a channel developer comes with the channel

components. The information may be delivered separately but should be provided with

the channel component by the channel designer.

When an application requests a MTO channel, it provides roles of each POP in

application provided information. Each role should have at least one component. Multiple

components may be allocated for a single role.

Definition 3: Sub-MTO Channel Set

A sub-MTO channel set, C’, is a set of MTO channels used in a MTO channel C. C’

= {Cs1, Cs2, Cs3, …, CsN | where Csx ∈ MTO channel and N is number of sub-MTO

channels}

Each sub-MTO channel in a sub-MTO channel set C’ is an independent MTO

channel which can be used as a stand alone. The sub-MTO channel also can use its sub-

MTO channels to perform its tasks.

26

Definition 4: Point of Presence (POP) Set

A point of presence (POP) set of MTO channel C, P, is a set of union of all its POPs,

P = p1 ∪ p2 ∪ … ∪ pN. pN is a N-th POP in MTO channel C. A POP is location

information where the MTO channel C’s component(s) is resided and performs its

functions on it. Each POP also includes role information of the POP. A role represents

the logical task of the POP such as sender, receiver, and forwarder.

A set of POPs in a MTO channel C has point of presence information in the MTO

channel. The MTO channel C’s component(s) is located in a POP and realizes its

functions to perform the channel’s tasks. Each POP not only has location information but

also includes role information of the POP. A role identifies the logical task of the POP

such as sender, receiver, and forwarder. The upper-level channel or application gives role

information to its sub-channels for the sub-channel’s POPs where the upper-level channel

or application is connected to. The other POPs’ roles are given by the channel while it

plans its channel construction. The MTO channel component will be mapped in a POP

and performed computation. Because of the dynamicity of a MTO channel, using POPs

may change during the execution. There are two types of POPs, service end point (SEP)

and intermediate computing point (ICP). A SEP is a POP which also can connect to the

other MTO channel’s SEP. An ICP only connects POPs which belong to the MTO

channel’s components including the MTO channel’s sub-MTO channel.

27

An event is an information object which carries control, and management, as well as

status information among MTO channel components. An event set of a MTO channel is

represented in the following way.

Definition 5: Event Set

An event set of MTO channel C, E, is a set of events which includes all events

generated by the MTO channel except the events processed by the MTO channel.

E = Ec
g
 - Eh[C]. E is produce-able events of MTO channel C. Ec

g
 is generated events in

the MTO channel C. Eh(C) is processed events in the MTO channel C. An event is an

object that has control or status information of the channel and that is not part of

messages to be transferred as a content of the channel. An event has an event handler

which processes the event. If no event handler is found, NOS performs a default action

for the event that is indicated by the system configuration.

The producible events of a MTO channel C are generated events in the MTO channel C

except the events which are processed by the MTO channel C. An event name is created

by a channel designer with properly structured method, so that the MTO channel system

can uniformly identify and processes the event. An event is generated in a channel

component, and the event is processed by its event hander. If the event handler is found

in the same MTO channel, then the event is consumed by the event hander. If an event

hander is not found in the same MTO channel, the event is propagated to its upper-level

channel. The event that is propagated to the upper-level channel is producible events of

28

the MTO channel C. The producible events delivered their upper-level channel or

processed by a node OS when no event handler is found for those events.

Definition 6: State Set

A state set of MTO channel C, S, is a set of all its states, S = s1 ∪ s2 ∪ … ∪ sN. N is

the index of a state in MTO channel C. sN is the N-th state of the MTO channel C. A state

is an object that represents a condition or stage of the MTO channel C. The states and

the set of states are provided by the MTO channel C’s designer.

Each MTO channel has its own channel states. A state is an object that represents a

condition or stage of the MTO channel C that is defined by the channel designer. A set of

MTO channel’s states is also defined by the channel designer and provided with the

channel component. The representation of state should be properly structured to be

interpreted uniformly in the entire system. A state of a channel is independent from its

sub-MTO channel’s state. However, some common states such as sts_full_setup and

sts_terminate are included in all channels. The MTO channel designer also provides

interfaces to access the state of a MTO channel, so that an application or upper-level

channel can query the state of a channel for sophisticated control and management on its

traffic.

29

(a) (b)

(d)

intermediate

computing point

service

start/end point

link

channel

(c)

C1 C2

C3 C4

C1

C2

C

C

C1

C2

C

C5

C6

(a) (b)

(d)

intermediate

computing point

service

start/end point

link

channel

(c)

C1 C2

C3 C4

C1

C2

C

C

C1

C2

C

C5

C6

Figure 7 MTO Channel Examples

Some MTO channel examples are shown in Figure 7. Figure 7(a) is a simple MTO

channel. It has two service end points, and a point which resides in between the SEPs.

Figure 7 (b) is a MTO channel which combines two MTO channels sequentially. In other

words, the MTO channel C uses two sub-MTO channels, C1, C2, and connects them in

sequence. So the contents of the communication should pass through the MTO channels.

Figure 7 (c) is a MTO channel combined with two MTO channels in parallel. The data

sending from one of the SEPs of the MTO channel C may use one of the sub-MTO

channels or both depending on the MTO channel C’s property. Figure 7 (d) is a complex

MTO channel which uses sub-MTO channels and combines them sequentially and/or in

parallel.

30

In this paper the hierarchy of a MTO channel is represented by using sub-MTO

channels enclosed by parentheses. For example, the Figure 7 (e) can be represented

C(C5(C1,C2),C6(C3,C4)).

4.2 MTO Channel Component Types

4.2.1 Type by purpose

Components of a MTO channel can be classified by their purpose in the MTO

channel. There are three types of computing components: manager, scout and service.

A manager component is a representative component in a MTO channel. It is an

interface point to its upper layer or an application. A manager component sets up its other

components as required and terminates the MTO channel when needed. It coordinates

with its sub-MTO channels to provide a custom service. Also, it handles events and errors.

A scout component is a component which may be deployed before a MTO channel is

fully set up. A scout component is used for gathering information in a network node for

giving information which is required for a MTO channel, i.e. a computational capability

in a node, or available network bandwidth.

A service component handles the actual data transfer. It serves actual data

transmission and supports features of the MTO channel. It also reports exceptions to the

MTO channel manager and produces events, but actual handling of an exception or an

event is decided by the MTO channel manager. An IP forwarder is an example of simple

services. A MTO channel usually has at least two service components – sending and

31

receiving endpoints. Each of the service components typically plays a distinct logical role

in the realization of the transport service of the channel. A channel user is expected to

know these roles though not the internal functions of the components. An IP forwarder is

an example of simple services. A MTO channel usually has at least two service

components (or roles) – sending and receiving endpoints.

4.2.2 Type by location

Components of a MTO channel are also classified by their location. There are two

types of locations: service end point (SEP) and intermediate computing point (ICP).

A service end point (SEP) component is located at the end of a service; it has

communication facility with the MTO channel user/application. A SEP component needs

to monitor its connection to the nearest MTO channel component for connection event

handling.

An intermediate computing point (ICP) component is located at the intermediate

nodes between SEPs. It forwards contents of the MTO channel communication and

actively applies custom processes to the contents.

Usually a MTO channel manager and application interface components are located in

SEP. Many service components are generally located in the ICP with coordination of a

MTO channel manager.

32

4.3 Recursive MTO Channel Construction

A

H

E

I
F

G

J

B

K

L

C

M

D

25

3025

20
15

10
25

30

10
30

5 15

10 15

5

10

20

A

H

E

I
F

G

J

B

K

L

C

M

D

25

3025

20
15

10
25

30

10
30

5 15

10 15

5

10

20

Figure 8 Example Network Diagram: Network Diagram in between A and E Nodes

An example network diagram is shown in Figure 8. Numbers above a link represent

bandwidth of the link in Mbps. A user needs a MTO channel from A to E with 20 Mbps

bandwidth. A general active channel constructor extension layer parses the user’s

requirement and will map each requirement to a MTO channel service, i.e. 20Mbps – A

graph MTO channel service. Note in this example conventional TCP or UDP transport

will not be able to sustain the required capacity given that classical IP only uses a single

default path. However, it can be shown that by using graph wide concurrent

communication and custom transport the bandwidth can be easily satisfied. This example

is now used to illustrate the concept of recursive construction.

33

The demonstrated solution uses three MTO channel: Graph Channel (GC), Altered

Routing Channel (ARC), and Concurrent Channel (CC). The GC can use and coordinate

ARC and CC to set up a required bandwidth channel. The ARC uses TCP between

segments of given path to support the bandwidth. If a segment in the path cannot be

connected with a TCP connection to support the bandwidth, it uses GC to connect the

segment. The CC sets up a connection using multiple ARC channel to support the

required bandwidth. The definitions and descriptions of the three MTO channels are now

given:

Graph Channel: GC = ({gc_mgr, gc_chk}, {“Altered Routing Channel”,

“Concurrent Channel”}, {“source”, “destination”}, {evt_connected, evt_disconnected,

evt_resource_changed, evt_sub_channel_error}, {sts_initial, sts_sub_setup,

sts_full_setup, sts_suspend, sts_terminate}).

The gc_mgr is the graph MTO channel’s manager component. The channel has

gc_chk scout component and uses an altered routing MTO channel or a concurrent MTO

channel as its sub-channel. It has two POPs: source and destination. The channel has four

events: evt_connected, evt_disconnected, evt_resource_changed, and

evt_sub_channel_error as well as five channel statuses.

Altered Routing Channel: ARC = ({arc_mgr, arc_chk, arc_src, arc_ctr, arc_dst},

{“Generic Channel”}, {“source”, “intermediate”, “destination”}, {evt_connected,

evt_disconnected, evt_segment_failure, evt_resource_changed, evt_sub_channel_error},

{sts_initial, sts_sub_setup, sts_full_setup, sts_suspend, sts_terminate, sts_num_hops}).

34

An instance of “Altered Routing Channel,” ARC, MTO channel sets up a connection

with a given path that may not the first preferred path from the source to the destination.

The ARC MTO channel has five components: arc_mgr as a manager component, arc_src,

arc_ctr, and arc_dst as service components, and arc_chk as a scout component. The ARC

MTO channel may use a generic MTO channel, GC, as its sub-channel.

Concurrent Channel: CC = ({cc_mgr, cc_chk, cc_src, cc_dst}, {“Altered Routing

Channel”}, {“source”, “destination”}, {evt_connected, evt_disconnected,

evt_path_failure, evt_resource_changed, evt_sub_channel_error}, {sts_initial,

sts_sub_setup, sts_full_setup, sts_suspend, sts_terminate, sts_num_paths}).

A concurrent channel, CC, sets up parallel connection(s) that does not have

overlapped paths from its source to its destination. It has a manager component (cc_mgr),

a scout component (cc_chk), a service component in its source location (cc_src), and a

service component in its destination location (cc_dst). The cc_src and the cc_dst have

multiplexing and demultiplexing functions on them to distribute and concatenate

communication messages in the channel. It uses altered routing channels to set up

required parallel paths from the source to the destination.

Now a step by step explanation is given how a recursive process can use

combination of the proposed three MTO channels to create a complex transport under the

constraints of information division explained in section.

The preliminary step to use a channel is that a channel designer provides a channel

definition, such as GC = ({gc_mgr, gc_chk}, {“Altered Routing Channel”, “Concurrent

Channel”}, {“source”, “destination”}, {evt_connected, evt_disconnected,

35

evt_resource_changed, evt_sub_channel_error}, {sts_initial, sts_sub_setup,

sts_full_setup, sts_suspend, sts_terminate}) and channel components, such as gc_mgr,

gc_chk, and a component map such as “c-order:gc_mgr, i-order: (gc_chk) gc_mgr.” The

component map is supplement information that provides channel component connection

and invocation order information. The designer can supply the component map as

imbedded in the channel manager or supplied separately.

Step 1: When an application requires “a connection from node A to node E with

20Mbps bandwidth,” the application invokes GSocket function in the GRACE library to

set up a channel. The GRACE library interprets the semantic, “bandwidth channel,” to

graph MTO channel (GC) and the constructs an application information metric for

GC(A,E). The GRACE invokes the GC MTO channel and passes the application

information metric to the channel. Note that the application information metric is a

special data structure which contains the information elements identified in Table 2. As

stated the invoking entity is expected to specify the end point locations, and perhaps few

additional well known role placement points of the requested sub-channel.

The application information metric has VEP and MROT. VEP has role and location

information for the channel. The location information has physical address of the channel

point-of-presence such as IP(A) and IP(E) and logical address of the POP such as Label

A and Label E. The VEP also have a role of the POP. The role describes the task of the

POP such as S for sender, R for receiver, and F for forwarder. At least a channel

component is assigned to a role. For example a forwarding channel component is

assigned to a forwarder role. Multiple components, however, can be assigned to a role to

36

perform the role. MROT has description of quality of traffic information. In the MROT

metric the diagonal value represents throughput for in that location. The other values

represent bandwidth for the traffic. The MROT, however, is not limited for the bandwidth

only, but it can represent other qualities such as reliability. The MROT also can be

described as a separate metric, if it is complex represents in one metric, but in this

example it is presented in application information metric.

Table 2 Application Information Metric for GC(A,E)

IP IP(A) IP(E)

Role S R VEP

Label A E

A 20 20
MROT

E 20 20

In MROT, the value 20 in index (A,A) means it needs 20Mbps throughput in the node

A that is same in index (E,E), and the value 20 in index (A,E) presents that it needs

20Mbps bandwidth. The GRACE library creates the application information metric,

invokes GC(A,E), and passes the metric to GC(A,E).

Step 2: With the application information metric, the GC(A,E) creates channel

invocation information metric, requests a network information metric to NOS, and adds

the result to the metric as shown in Table 3. Note that channel invocation information

metric has an expanded data structure which now contains additional information

elements identified in Table 3. The VEP and the MROT contain the channel application

information metric data, and the GBASE and the MQON are added from NOS. The metric

37

contains both GBASE, network graph information, and MQON, quality of network

information, in one representation by representing the connection with its bandwidth and

node computation capacity in diagonal.

Table 3 Channel Invocation Information Metric of GC(A,E)

IP IP(A) IP(E)

Role S R VEP

Label A B C D E F G H I J K L M

A 20 20
MROT

E 20 20

A 5 10 25 30

B 10 5 15 5

C 15 5 10

D 10 5 20

E 20 5 30

F 25 5 5 10 15

G 10 5 25

H 25 5 25

I 30 25 5 5

J 15 5

K 30 5 10

L 5 10 5 30

GBASE

and

MQON

M 30 5

Step 3: Using the channel invocation information metric, the GC(A,E) checks that

any single path can connect from A to E and supports the given bandwidth. However, no

single path can support that bandwidth from node A to node E. The GC(A,E) divides the

path from A to E using altered routing MTO channel, ARC, and checks again. Eventually

the GC(A,E) checks the possibility of ARC(A,F,E). Now the GC(A,E) has the channel

invocation information metric with DMAP information as shown in Table 4. The DMAP

is a planned deployment map which identifies where the channel components or sub-

channels should be deployed.

38

Table 4 Channel Invocation Information Metric of GC(A,E)

IP IP(A) IP(E)

Role S R VEP

Label A B C D E F G H I J K L M

A 20 20 MROT
E 20 20

A 5 10 25 30

B 10 5 15 5

C 15 5 10

D 10 5 20

E 20 5 30

F 25 5 5 10 15

G 10 5 25

H 25 5 25

I 30 25 5 5

J 15 5

K 30 5 10

L 5 10 5 30

GBASE

and

MQON

M 30 5

DMAP Sub-channels ARC(A,F,E)

Step 4: The GC(A,E) also creates an application information metric for ARC(A,F,E)

and call the ARC(A,F,E) scout component (arc_chk) for checking the availability. When

the GC(A,E) creates the application information metric for ARC(A,F,E), the roles of the

ARC(A,F,E) is assigned by the GC(A,E).

Table 5 Application Information Metric for ARC(A,F,E)

IP IP(A) IP(E) IP(F)

Role S R F VEP

Label A E F

A 20 20

E 20 20 MROT

F 20 20 20

39

Step 5: With the application information metric from GC(A,E), the ARC(A,F,E)

augments its channel invocation information metric by adding network information from

the node OS. The ARC(A,F,E) requests network information from NOS separately from

its upper-level channel because a channel may require different network information that

was used in upper-level channel and the upper-level channel does not know what

information will be used in its sub-channel. In this example, each channel retrieves its

own network information metric from NOS for its channel construction.

Table 6 Channel Invocation Information Metric of ARC(A,F,E) after adding Network

Information

IP IP(A) IP(E) IP(F)

Role S R F VEP

Label A B C D E F G H I J K L M

A 20 20

E 20 20 MROT

F 20 20 20

A 5 10 25 30

B 10 5 15 5

C 15 5 10

D 10 5 20

E 20 5 30

F 25 5 5 10 15

G 10 5 25

H 25 5 25

I 30 25 5 5

J 15 5

K 30 5 10

L 5 10 5 30

GBASE

and

MQON

M 30 5

40

Step 6: The ARC(A,F,E) confirmed that the connection from A to E is okay by TCP

but could not decide the connection from F to E. Table 7 shows the channel information

metric after it has plan for its channel module and checking the connection from F to E

with GC(F,E). MQOS is a quality-of-service metric that represents what service quality

will be given from the channel. In this MQOS, the diagonal denotes throughput of the node,

and the other values represents how much bandwidth will be given in the connection.

Note that in the MQOS some bandwidth numbers in MQOS are 25Mbps instead of 20Mbps

because the channel can support up to 25Mbps in that segment.

Table 7 Channel Invocation Information Metric of ARC(A,F,E) before Invoking GC(F,E)

IP IP(A) IP(E) IP(F)

Role S R F VEP

Label A B C D E F G H I J K L M

A 20 20

E 20 20 MROT

F 20 20 20

A 5 10 25 30

B 10 5 15 5

C 15 5 10

D 10 5 20

E 20 5 30

F 25 5 5 10 15

G 10 5 25

H 25 5 25

I 30 25 5 5

J 15 5

K 30 5 10

L 5 10 5 30

GBASE

and

MQON

M 30 5

Components src dst ctr DMAP
Sub-channel GC(F,E)

Computing 1 1 1

A 25 25

E
MQOS

F 25 25

41

Step 7: The ARC(A,F,E) creates an application information metric for GC(F,E) and

passes the metric to it.

Table 8 Application Information Metric for GC(F,E)

IP IP(E) IP(F)

Role R S VEP

Label E F

E 20 20
MROT

F 20 20

Even though the ARC(A,F,E) can support more bandwidth than the channel required,

the bandwidth requirement for its sub-channel still remained same as its bandwidth

requirement from its upper-level channel.

Step 8: The GC(F,E) is invoked from ARC(A,F,E) with the application information

metric from ARC(A,F,E) and adds network information to its channel invocation

information metric shown in Table 9.

42

Table 9 Channel Invocation Information Metric of GC(F,E) after Adding Network

Information

IP IP(E) IP(F)

Role R S VEP

Label E F G H I J

E 20 20
MROT

F 20 20

E 5 30

F 5 10 15

G 10 5 25

H 5 25 20

I 30 25 25 5

GBASE and MQON

J 15 20 5

Step 9: The GC(F,E) checks any single path from F to E is available for the

requirement, but it is not available. The GC(F,E) divides the path and checks feasibility

using ARC(F,H,E).

Table 10 Channel Invocation Information Metric of GC(F,E) before Invoking

ARC(F,H,E)

IP IP(E) IP(F)

Role R S VEP

Label E F G H I J

E 20 20
MROT

F 20 20

E 5 30

F 5 10 15

G 10 5 25

H 5 25 20

I 30 25 25 5

GBASE and MQON

J 15 20 5

DMAP Sub-channel ARC(F,H,E)

43

Step 10: Because of the GC(F,E) does not have other channel component as a service

component, it has only sub-channel section in its DMAP. The GC(F,E) creates an

application information metric for ARC(F,H,E) and invokes the ARC(F,H,E).

Table 11 Application Information Metric for ARC(F,H,E)

IP IP(E) IP(F) IP(H)

Role R S F VEP

Label E F H

E 20 20

F 20 20 MROT

H 20 20 20

Step 11: The ARC(F,H,E) uses the application information metric, creates its

channel invocation information metric, and adds network information from NOS on the

metric.

Table 12 Channel Invocation Information Metric of ARC(F,H,E) after Adding Network

Information

IP IP(E) IP(F) IP(H)

Role R S F VEP

Label E F G H I J

E 20 20

F 20 20 MROT

H 20 20 20

E 5 30

F 5 10 15

G 10 5 25

H 5 25 20

I 30 25 25 5

GBASE and MQON

J 15 20 5

44

Step 12: The ARC(F,H,E) confirmed that the connection from H to E is possible but

could not decide the connection availability from F to H. So, the ARC(F,H,E) plans to

check the availability of the segment with GC(F,H). The ARC(F,H,E) plans on its

channel component deployments based on that it will use GC(F,H) for the segment from

F to H. Note that the MQOS has some 25Mbps instead of 20Mbps because the channel can

support maximum 25Mbps in the segment of H to E. The ARC(F,H,E) creates an

application information for GC(F,H).

Table 13 Channel Invocation Information Metric for ARC(F,H,E) before Invoking

GC(F,H)

IP IP(E) IP(F) IP(H)

Role R S F VEP

Label E F G H I J

E 20 20

F 20 20 MROT

H 20 20 20

E 5 30

F 5 10 15

G 10 5 25

H 5 25 20

I 30 25 25 5

GBASE and MQON

J 15 20 5

Components dst src ctr
DMAP

Sub-channels GC(F,H)

Computing 1 1 1

E 25 25

F 20 20
MQOS

H 25 20 20

45

Table 14 Application Information Metric for GC(F,H)

IP IP(F) IP(H)

Role S R VEP

Label F H

F 20 20
MROT

H 20 20

Step 13: The invoked GC(F,H) adds network information to its channel invocation

information metric and checks any single path from F to H is available for the

requirement. However, it is not available. The GC(F,H) checks any ARC is available for

the requirement, but it also not available. The GC(F,H) checks CC(F,H) is available for

the requirement. The GC(F,H) creates an application information metric for CC(F,H).

Table 15 Channel Invocation Information Metric of GC(F,H) before Invoking CC(F,H)

IP IP(F) IP(H)

Role S R VEP

Label F G H J

F 20 20
MROT

H 20 20

F 5 10 15

G 10 5 25

H 25 5 25
GBASE and MQON

J 15 25 5

DMAP Sub-channels CC(F,H)

Table 16 Application Information Metric for CC(F,H)

IP IP(F) IP(H)

Role S R VEP

Label F H

F 20 20
MROT

H 20 20

46

Step 14: The CC(F,H) adds network information to its channel invocation

information metric and checks ARC(F,G,H) and ARC(F,J,H) are possible for the

requirement. The CC(F,H) creates application information metrics for ARC(F,G,H) and

ARC(F,J,H).

Table 17 Channel Invocation Information Metric of CC(F,H) before Invoking

ARC(F,G,H) and ARC(F,J,H)

IP IP(F) IP(H)

Role S R VEP

Label F G H J

F 20 20
MROT

H 20 20

F 5 10 15

G 10 5 25

H 25 5 25
GBASE and MQON

J 15 25 5

Components src dst
DMAP

Sub-channel ARC(F,G,H), ARC(F,J,H)

Computing 1 1

F 20 20 MQOS

H 20 20

Table 18 Application Information Metric for ARC(F,G,H)

IP IP(F) IP(G) IP(H)

Role S F R VEP

Label F G H

F 10 10

G 10 10 10 MROT

H 10 10

47

Table 19 Application Information Metric for ARC(F,J,H)

IP IP(F) IP(H) IP(J)

Role S R F VEP

Label F H J

F 10 10

H 10 10 MROT

J 10 10 10

Step 15: The ARC(F,G,H) adds network information to its channel invocation

information metric and confirms that the connection for the path FGH supports the

requirement. Now the ARC(F,G,H) completes its deployment planning and its creates

channel information metric from the channel invocation information metric and returns

its deployment information metric to CC(F,H). The channel information metric has same

contents except that it has complete information on channel construction planning.

Therefore the channel information metric has VEP, MROT, GBASE and MQON, DMAP, MQOS,

and its sub-channels DMAP and MQOS. Table 20 shows the ARC(F,G,H)’s channel

information metric.

Step 16: The ARC(F,J,H) also confirms the availability and returns its deployment

information metric to CC(F,H) too. The ARC(F,G,H) and ARC(F,J,H) are the terminal

MTO channel. So, after they finalize its channel construction plan, it forwards its DMAP

and MQOS information to its upper-level channel.

48

Table 20 Channel Information Metric of ARC(F,G,H)

IP IP(F) IP(G) IP(H)

Role S F R VEP

Label F G H

F 10 10
MROT

G 10 10 10

H 10 10

F 5 10

G 10 5 25
GBASE and MQON

H 25 5

DMAP Components src ctr dst

Computing 1 1 1

F 10 10

G 10 10 10
MQOS

H 10 10

Table 21 Channel Information Metric of ARC(F,J,H)

IP IP(F) IP(H) IP(J)

Role S R F VEP

Label F H J

F 10 10

H 10 MROT

J 10 10

F 5 15

H 5 20 GBASE and MQON

J 15 20 5

Components src dst ctr
DMAP

Computing 1 1 1

F 15 15

H 15 15 MQOS

J 15 15 15

Note that MQOS is 15Mbps not 10Mbps because it can support up to 15Mbps.

49

Step 17: The CC(F,H) completes its deployment information after it receives

deployment information metric from ARC(F,G,H) and ARC(F,J,H). The CC(F,H) creates

its channel information metric by including the deployment information metric from its

sub-channel at the end of its channel invocation information metric. The CC(F,H) now

completes its channel construction plan, and it also forwarding its deployment

information metric to its upper-level channel, GC(F,H).

Table 22 Channel Information Metric of CC(F,H)

IP IP(F) IP(H)

Role S R VEP

Label F G H J

F 20 20
MROT

H 20 20

F 5 10 15

G 10 5 25

H 25 5 25
GBASE and MQON

J 15 25 5

Components src dst
DMAP

Sub-channel ARC(F,G,H), ARC(F,J,H)

Computing 1 1

F 20 20 MQOS

H 20 20

ARC(F,G,H) DMAP Components src ctr dst

Computing 1 1 1

F 10 10

G 10 10 10
MQOS

H 10 10

ARC(F,J,H) DMAP Components src dst ctr

Computing 1 1 1

F 15 15

H 15 15
MQOS

J 15 15 15

50

Step 18: The deployment information of each channel forwarded to its upper level

channel and finally the GC(A,E) has the channel information metric as shown in Table 23.

Table 23 Channel Information Metric for GC(A,E)

IP IP(A) IP(E)

Role S R VEP

Label A B C D E F G H I J K L M

A 20 20
MROT

E 20 20

A 5 10 25 30

B 10 5 15 5

C 15 5 10

D 10 5 20

E 20 5 30

F 25 5 5 10 15

G 10 5 25

H 25 5 25

I 30 25 5 5

J 15 5

K 30 5 10

L 5 10 5 30

GBASE and MQON

M 30 5

DMAP Sub-channels ARC(A,F,E)

Components src dst ctr ARC(A,F,E)

DMAP
Sub-channel GC(F,E)

Computing 1 1 1

A 25 25

E

MQOS

F 25 25

GC(F,E) DMAP Sub-channel ARC(F,H,E)

Components dst src ctr

Sub-channels GC(F,H)

Computing 1 1 1

E 25 20

F 20

ARC(F,H,E)

DMAP

H 25 20 20

GC(F,H) DMAP Sub-channels CC(F,H)

Components src dst
CC(F,H) DMAP

Sub-channel

ARC(F,G,H),

ARC(F,J,H)

Computing 1 1

F 20 20 MQOS

H 20 20

ARC(F,G,H)

DMAP Components src ctr dst

Computing 1 1 1

F 10 10

G 10 10 10

MQOS

H 10 10

ARC(F,J,H)

DMAP Components src dst ctr

Computing 1 1 1

F 15 15

H 15 15

MQOS

J 15 15 15

51

4.4 Complexity of a MTO Channel

During a MTO channel set up, specific MTO channels are discovered, and the

discovered MTO channels are constructed on network nodes. The discovery of the

required MTO channels is an unbounded problem and its complexity can reach from

linear to a NP-complete problem. For example, a channel construction from two nodes in

a network with all TCP connections is bounded in O(E) where E is number of edges in

the network. However, a channel builds a Hamiltonian path that makes a path between

two nodes of a network graph that visits each node exactly once is a NP-complete

problem. In practical case, a channel construction is performed in network that has

limited number of nodes and connections with small number of channel components and

sub-channels. Therefore, the channel construction happens in reasonable amount of time.

The MTO channel set up process, however, has not only a discovering (planning) process

but also a construction process in network. The construction process of the required MTO

channel is relatively new in network. The conventional network has all the software that

is required to set up a connection. The MTO channel construction complexity is

dominated by the number of MTO channel components required to deploy and execute.

There are two types of construction costs to build a MTO channel; one for the form cost

of the MTO channel, and the other cost for the assembly of the MTO channel. The form

complexity is a channel construction complexity that reflects how much overhead will be

endowed in network to form the channel. It includes overheads such as signaling

52

overhead to construct a channel in network and loading and activating channel

component overheads. In most case the form complexity is dominated by how many

channel components and sub-channels are needed to build a service. The assembly time

complexity is a time complexity to construct a MTO channel service. Because

independent channels can be constructed simultaneously, it is subjected to the depth of

channel construction not the number of required channel. Later, a channel optimization

algorithm is explored to reduce a channel formation complexity. The assembly time

complexity is used for estimate channel construction time to set up a timer for error

handling during the channel construction.

4.4.1 MTO Channel Form Complexity

Definition 7: MTO Channel Form Complexity

The form complexity of a MTO channel C, FormComplexity(C), is defined as

FormComplexity(C) = (Cs,Cc). The CS is a sub-MTO channel form complexity and Cc is a

MTO channel component form complexity. The sub-MTO channel form complexity, Cs is

defined as ∑×=
'

)(
c

i

is cxityFormCompleC α , and the Cc is defined as

∑×=
N

i

ic MxityFormCompleC)(β . The α is a constant factor for sub-MTO channel

construction, and the β is a constant factor for the MTO channel component construction.

C’ is the MTO sub-channels, N is the number of channel components, and Mi is the i-th

channel component in the MTO channel C.

53

The form complexity is determining how much overhead is in the channel

construction, it has two factors: sub-MTO channel form overhead and its own channel

components form overhead. In general case the constant α for sub-MTO channel form

complexity is greater than the constant β for the channel’s component form complexity

because sub-MTO channel form has to set up channel management information added to

set up components in the sub-MTO channel. Also, in most cases the form complexity of

each MTO channel’s component is very close because the building procedure is almost

the same except for the restrictions of components and the size of channel component to

deploy.

ARC(A,F,E)

GC(F,E)

ARC(F,H,E)

CC(F,H)

ARC(F,G,H) ARC(F,J,H)

GC(A,E)

GC(F,H)

Figure 9 A MTO Channel Construction Tree

As shown in the Figure 9, a MTO channel construction tree can be represented as a

hierarchical tree.

54

Assume that ARC has I number of component, CC has J number of component, and

GC has K number of component. Also, assume that the form complexity of each

component is one and the form complexity of TCP is assumed zero because the TCP

software is already in every nodes. The complexity of ARC(F,G,H), and ARC(F,J,H) is

O(I). The complexity of CC(F,H) is O(J+I). The complexity of GC(F,H) is O(K+J+I).

The complexity of ARC(F,H,E) is O(K+J+2I). The complexity of GC(F,E) is O(2K+J+2I)

complexity. ARC(A,F,E) has O(2K+J+3I) complexity. GC(A,E) has O(3K+J+3I)

complexity. Assume that N is a maximum number of I, J and K and D is the depth of the

channel construction tree then the form complexity of the channel can represent O(DN).

Therefore the channel form complexity is bounded by linear function complexity. In

practical situation, the form complexity is dominated by the factor of the depth of channel

construction tree because N is usually a fixed small number while the depth of a channel

construction tree varies in case by case.

55

4.4.2 MTO Channel Assembly Time Complexity

ARC(A,F,E)

GC(F,E)

ARC(F,H,E)

CC(F,H)

ARC(F,G,H) ARC(F,J,H)

GC(A,E)

GC(F,H)

se
q

u
en

ti
a

l

parallel

ARC(A,F,E)

GC(F,E)

ARC(F,H,E)

CC(F,H)

ARC(F,G,H) ARC(F,J,H)

GC(A,E)

GC(F,H)

se
q

u
en

ti
a

l

parallel

Figure 10 A MTO Channel Assembly Time Complexity

Definition 8: MTO Channel Assembly Time Complexity

The assembly time complexity of a MTO channel C, AssemblyComplexity(C), is

defined as AssemblyComplexity(C) = T(f(Pc)) + MAX(MAX(AssemblyComplexity(C’)),

MAX(AssemblyComplexity(Mc)))+ γ. T(f(Pc)) is a time of planning function of a MTO

channel C. γ is constant for load and activation time of the MTO channel C.

The assembly complexity is a time complexity for constructing a MTO channel

including its channel planning time and its sub-MTO channel construction time.

Independent MTO channels such as ARC(F,G,H) and ARC(F,J,H) in Figure 10 are

56

constructed concurrently. But a sub-MTO channel has a dependency in its upper-level

channel. So, sub-MTO channels are constructed sequentially. The planning time can be

done in polynomial time or in exponential time based on its planning function as

described in the beginning of section 4.4. A MTO channel returns a construction status

message to its upper-level MTO channel after it constructs its components. The upper-

level MTO channel needs to wait until its sub-MTO channels are constructed before

sending its own construction status message to its upper-level MTO channel. The

assembly time includes loading and activation times for components too. The assembly

time depends on the size of the component to load and the initiation time of the

component. However, if the component size is not abnormally different, in a real

environment, the loading and activating times does not vary too much.

Each MTO channel can be constructed independently and concurrently except its

own sub-MTO channels. A MTO channel assembly time takes the maximum time of its

components that includes sub-MTO channels. Assume that the MTO channel component

assembly complexity of ARC, CC, and GC are Ta, Tc, and Tg, and the channel planning

time of ARC, CC, and GC are T(f(Pa)), T(f(Pc)), and T(f(Pg)). The assembly complexity

of ARC(F,G,H) and ARC(F,J,H) is O(Ta + T(f(Pa))). The assembly complexity of

CC(F,H) is O(Ta + Tc + T(f(Pa)) + T(f(Pc))). The assembly complexity of GC(F,H) is

O(Ta + Tc + Tg + T(f(Pa)) + T(f(Pc)) + T(f(Pg))). The assembly complexity of ARC(F,H,E)

is O(2Ta + Tc + Tg + 2T(f(Pa)) + T(f(Pc)) + T(f(Pg))). The assembly complexity of

GC(F,E) is O(2Ta + Tc + 2Tg + 2T(f(Pa)) + T(f(Pc)) + 2T(f(Pg))). The assembly

complexity of ARC(A,F,E) is O(3Ta + Tc + 2Tg + 3T(f(Pa)) + T(f(Pc)) + 2T(f(Pg))). The

57

assembly complexity of GC(A,E) is O(3Ta + Tc + 3Tg + 3T(f(Pa)) + T(f(Pc)) + 3T(f(Pg))).

The O(Ta), O(Tc), and O(Tg) is in polynomial time. The loading and activation time for

each component is linear, and a MTO channel has linear number of components. So, The

channel component’s assembly time complexity is O(N) where N is the number of

channel components in the channel. So, the assembly complexity of GC(A,E) is O(N +

T(f(P))) where P is the most complex planning function among the three channels. If the

most complex planning function is a deterministic problem, then the assembly

complexity is O(N+P). However, if the most complex planning function is a NP-

complete problem, then the channel’s construction is performed in non-polynomial time.

In practical situation, the assembly time is dominated by the factor of the depth of

channel construction tree because N is usually a fixed small number and the planning

function is a computation oriented task using a network graph that has limited nodes and

links while loading and activation time is an IO oriented task which is a relatively very

slow task than computation oriented task.

4.5 Optimization of MTO Channel Construction

As seen in the previous MTO channel formation and assembly complexity

calculations, the complexities of MTO channel construction are largely affected by the

height of the MTO channel construction tree, i.e. the depth of recursive MTO channel

construction. In this section, a MTO channel construction optimization method is

58

presented to reduce the MTO channel complexity by eliminating the unnecessary MTO

channel components.

Definition 9: Optimization of MTO Channel Construction

Rule 1: If MTO channel A has all functions of sub-MTO channel B, remove MTO

channel B.

Rule 2: If MTO channel A doesn’t use any added function of sub-MTO channel B,

remove MTO channel B.

Rule 3: Perform optimization until no optimization is possible.

Because the GC MTO channel does not have any added functionality in data

transmission, and the ARC MTO channel has all the functions to combine two ARC

MTO channels sequentially, the MTO channel construction tree of Figure 9 can be

optimized further.

ARC(A,F,H,E)

CC(F,H)

ARC(F,G,H) ARC(F,J,H)

GC(A,E)

ARC(A,F,H,E)

CC(F,H)

ARC(F,G,H) ARC(F,J,H)

GC(A,E)

Figure 11 An Optimized MTO Channel Construction Tree

59

Sequence of optimization of Figure 9 is shown below:

• GC(F,E) and GC(F,H) are removed and reduce tree by Rule 2.

• ARC(F,H,E) are removed and reduce tree by Rule 1.

Figure 11 shows the optimized MTO channel construction tree. The optimized MTO

channel construction reduces construction tree depth from 7 to 4.

A

H

E

I

F

G

J

B

K

L

C

M

D

25
30

25

20
15

10

25

30

10 30

5
15

10 15

5

10

20

GCM

ARCM
ARC

CCM
ARC

ARCM
ARC ARC

ARC

ARC

ARCM

ARC ARC

ARC

ARC ARC

MUX/DEMUX

MUX/DEMUX

A

H

E

I

F

G

J

B

K

L

C

M

D

25
30

25

20
15

10

25

30

10 30

5
15

10 15

5

10

20

GCM

ARCM
ARC

CCM
ARC

ARCM
ARC ARC

ARC

ARC

ARCM

ARC ARC

ARC

ARC ARC

MUX/DEMUX

MUX/DEMUX

Figure 12 A Final Planned MTO Channel Construction Map

After optimizing the channel, the channel’s components are deployed as in Figure 12.

It uses an ARC from A to E via F and H, a CC from F to H which uses two ARC MTO

channels to connect from F to H concurrently.

60

4.6 Event Message Path Optimization Issue

An event is generated during a MTO channel’s lifetime. An event will be handled by

the MTO channel if it has the event handler. If the MTO channel does not have the event

handler, then it will propagate the event to the upper MTO channel (super MTO channel

which invokes the MTO channel) until the event handler is found or the node operating

system will handle the event based on the default configuration. Without event path

optimization, this event propagation follows the logical hierarchy of the MTO channel.

The physical deployment of MTO channel components will depend on the

component resource requirements, the run time environment, and the placement order

requirement. A MTO channel component will be deployed where it is best fit. The

physical MTO channel locations may be different from logical MTO channel locations.

Therefore an event may be routed through a path which is not the best path to the event

delivery. To optimize the event delivery path, the following formula is used to obtain the

best path at a given time.

Definition 10: Event Message Path

Location of an event to deliver LE can be expressed LE = C.EventHandler(E) if the

event is handled in the MTO channel C, or LE = SuperChannel(C).EventHandler(E) if the

message is not handled in the MTO channel C. C.EventHandler(E) is a location of the E

vent handler in MTO channel C. SuperChannel(C) is a upper level MTO channel of C.

61

The discovery of event handler’s location is constructed the bottom-up way in

coordination with a MTO channel manager. If an event is handled by the MTO channel

C’s components, the event handle location is set to the channel component location that

handles the event. If it is not handled by itself, the event will propagate to its upper layer

via its channel manager. So, the location of the event handler should be retrieved from

the upper layer (i.e. super MTO channel.)

Intermediate Computing Point

Service End Point
link

channel

physical node

actual event notification logical event notification

C21 C22

C11

C12

C0

E1

C1

C2

A B

C

D

E

F

G H

I

J K

L

M N

O

C0

C1 C2

C11 C12 C21 C22

(A) (B)

Intermediate Computing Point

Service End Point
link

channel

physical node

actual event notification logical event notification

C21 C22

C11

C12

C0

E1

C1

C2

A B

C

D

E

F

G H

I

J K

L

M N

O

C21 C22

C11

C12

C0

E1

C1

C2

A B

C

D

E

F

G H

I

J K

L

M N

O

C0

C1 C2

C11 C12 C21 C22

C0

C1 C2

C11 C12 C21 C22

(A) (B)

Figure 13 Logical and Physical Event Notification Flow

Figure 13 (a) shows the event notification path of E1, and Figure 13 (b) shows the

MTO channel hierarch. The C0 has two sub-MTO channels C1 and C2. In C1, it has two

sub-MTO channels C11 and C12. The MTO channel C1 has MTO channel manager in POP

B. The MTO channel C11 has MTO channel manager in POP D. Event E1 is produced in

MTO channel C11’s POP H and the event E1 is handled in C1’s POP L. Without event

62

message optimization, the event E1 is notified to the MTO channel manager in POP D.

The MTO channel manager of C11 then forwards the event E1 to its upper level MTO

channel’s manager which is located in POP B because it does not have an event handler

of E1. The C1’s MTO channel manager then forwards the E1 to the handler located in

POP L. The pink line is the logical path of the Event E1 notification. It is following the

MTO channel C11’s path and reported to the MTO channel C1 (POP B) and forwarded to

the handler in POP L. However, after the event location discovery process, it redirects the

event notification to POP L, where the E1 is handled.

All events also have their default event handler location, the MTO channel

manager’s location. When an event handler doesn’t respond because of link down,

network congestion, unavailable system, and so on, the event will be delivered to the

default event handler which is included in a network operating system.

4.7 Analogy with TCP connection

A TCP connection is a traditional transporting object in between communication

entities. A definition of a TCP channel can be defined CTCP = ({TCP_stack }, {IP}, {IPsrc,

IPdst}, {}, {closed, listen, syn_rcvd, syn_sent, established, FIN_WAIT_1, FIN_WAIT_2,

closing, time_wait, close_wait, last_ack}). It uses IP protocol as its sub-MTO channel.

One of the noticeable things in these definitions is an event set which is an empty set.

TCP does not produce event. It handles all the generated events such as SYN, ACK,

63

DATA, and FIN by itself, and changes its status rather than produces events. Therefore, a

library function checks the status variables to check if the event occurred.

The TCP protocol stack is the only TCP connection’s component which is

preinstalled at both communication entities. The TCP protocol stack performs manager

and service roles. The TCP protocol stack works as an interface point to the upper layer

or application (manager). It also handles actual data transmission as a service component.

However, it does not need to gather network information actively like Scout in a MTO

channel.

The construction of a TCP connection is undertaken using IP protocols to send SYN

and ACK to establish a connection. All required software components are preinstalled in

both communication end points and intermediate nodes also have IP protocols to forward

the packets. Because the required software is preinstalled in all involved nodes, the

construction of a TCP connection does not required dynamic installation. It also does not

require using path discovery phase to install a channel component. Destruction of a TCP

connection simply releases connection information; it does not unload the protocol

components after termination of the message exchange.

TCP has two points as point of presence; source and destination. It has one

connection from source to destination with given ports. TCP also maintains its own states:

closed, listen, syn_rcvd, syn_sent, established, FIN_WAIT_1, FIN_WAIT_2, closing,

time_wait, close_wait, last_ack.

64

Table 24 Information Metric of TCP from A to E

IP IP(A) IP(B) IP(E)

Role S F R VEP

Label A B E

A * *
MROT

E * *

A 10
GBASE and MQON

B 10

The Information Metric of TCP is shown in Table 24. TCP has partial network

metric because it only can have a next hop to the destination. The MROT is unknown

because it is not a guaranteed service. It does not have DMAP and MQOS; all the required

software components are already installed, and it cannot predict the quality-of-service.

65

CHAPTER 5

Active MTO Channel System Architecture

5.1 Overview of Active MTO Channel System

5.1.1 Active MTO Channel System Model

Network Info. ServerNetwork Info. Server

(optional)(optional)

ServiceService

Component ServerComponent Server ApplicationApplication

ServerServer

ApplicationApplication

ClientsClients

Network OS (ACME)

Composable layer

AvailableAvailable

Computing NodeComputing Node

AvailableAvailable

Computing NodeComputing Node

AvailableAvailable

Computing NodeComputing Node

ServiceService

Find ServerFind Server

Network OS (ACME)

Application

Legacy

Network Layer

Socket Library

Composable Network

Adaptation Library

(GRACE)

OS

Network Info. ServerNetwork Info. Server

(optional)(optional)

ServiceService

Component ServerComponent Server ApplicationApplication

ServerServer

ApplicationApplication

ClientsClients

Network OS (ACME)

Composable layer

Network OS (ACME)

Composable layer

AvailableAvailable

Computing NodeComputing Node

AvailableAvailable

Computing NodeComputing Node

AvailableAvailable

Computing NodeComputing Node

ServiceService

Find ServerFind Server

Network OS (ACME)

Application

Legacy

Network Layer

Socket Library

Composable Network

Adaptation Library

(GRACE)

OS

Network OS (ACME)

Application

Legacy

Network Layer

Socket Library

Composable Network

Adaptation Library

(GRACE)

OS

Figure 14 An Active MTO Channel System Model

Figure 14 depicts an active MTO channel system model. It consists of applications,

active MTO channel system library (GRACE), network OS (ACME), service find

server(s), service component server(s), and network information server(s). Applications

use a special library called the general active channel constructor extension (GRACE) to

66

use a MTO channel. The GRACE is very close to the Berkeley socket library. Active

channel management enforcer (ACME) is an added component in a network node

operating system to support dynamic composition of the MTO channel in each active

node as well as in application nodes. A service find server is used to bind the user’s

requirement to a specific MTO channel service. A service component server is a

repository of MTO channel’s components and serves for dynamic component loading. A

network information server is an optional server to provide network wide information

such as the network connection map and physical resources of the network/system in the

network which might be needed by manager components to know about the network

topology and capacity metric.

5.1.2 Active MTO Channel System Node OS Service Layer Architecture

The Active MTO Channel System Architecture is divided into three tiers: application

subscriber layer, compose-able service layer, and enhanced network layer. Figure 15

shows the layers.

67

ServerServer

ApplicationApplication
ReceiverReceiver

ApplicationApplication

ServiceService

EndEnd

PointPoint

(SEP) (SEP)

ChannelChannel

ComponentComponent

ServiceService

EndEnd

PointPoint

(SEP)(SEP)

ChannelChannel

ComponentComponent

ACMEACME

(NOS)(NOS)
ACMEACME

(NOS)(NOS)
ACMEACME

(NOS)(NOS)
ACMEACME

(NOS)(NOS)

Programmable CHANNELProgrammable CHANNEL

Application
Subscriber Layer

Enhanced
Network
OS Layer

Compose-able
Service Layer

GRACE (MTO Channel Library)

ServerServer

ApplicationApplication
ReceiverReceiver

ApplicationApplication

ServiceService

EndEnd

PointPoint

(SEP) (SEP)

ChannelChannel

ComponentComponent

ServiceService

EndEnd

PointPoint

(SEP)(SEP)

ChannelChannel

ComponentComponent

ACMEACME

(NOS)(NOS)
ACMEACME

(NOS)(NOS)
ACMEACME

(NOS)(NOS)
ACMEACME

(NOS)(NOS)

Programmable CHANNELProgrammable CHANNEL

Application
Subscriber Layer

Enhanced
Network
OS Layer

Compose-able
Service Layer

GRACE (MTO Channel Library)

Figure 15 The Three Tiers of System Architecture in Active MTO Channel System

Formalism

The first is the application subscriber layer. More specifically, the network

independent part of the domain routines resides in this tier. The second is the

composeable service layer. The components in this layer are programmable. However;

they execute strictly under the control of the enhanced OS layer and help in the local

state’s dependent application. The third is the enhanced network OS layer which houses

the service components that are loaded and executed. It bridges between the services and

applications.

5.1.3 Application Subscriber Layer

Many parties participate in the construction and maintenance of a dynamic service

composition. The process is not a simple task but it does not mean to be complex to use.

68

The service construction needs to be easy for an application. Of the three layers, the

application subscriber layer has the best knowledge about what are the applications/users

requirements. The application should remain independent from the service layer, but it

should have the means to reflect its requirements to a service and to access the status of

the service. The supplemented MTO channel library, GRACE, supports uniform

interfaces to the application and hides the complexity of the MTO channel construction

from the application developer.

Current Socket APIs are one of the most successful interfaces for network

communication. Only a small set of APIs is necessary to set up and use a network service.

The APIs are independent from the operating systems, physical hardware, and underlying

protocols. All the management of a connection for the socket is hidden from the

application. Because of their simplicity, application programmers love to use socket

interfaces. When new protocols are developed, an augmented set of options are included

in the socket APIs. These services options should be defined when a socket is created. In

current socket API these services are static and the options are not flexible. The required

functionality should pre-exist in the network layer before it can be used. Also, for some

services, each communicating party involved in the transmission should support the

option and underlying functionality. So, the available service is limited further from the

function set given from the one entity.

The active MTO channel system is supported by the new GRACE application user

interface. It has been designed as the socket library. However, the underlying

functionalities of the GRACE are quite different from the legacy socket library. It

69

borrows the simplicity and forms from the socket library. The GRACE supports dynamic

MTO channel binding. Therefore, the GRACE’s role is quite different from that of the

general socket library.

The GRACE is used as an end point programming interface (EPPI) by applications

to access MTO channels. The GRACE application user interfaces are shown in Table 25.

Using GRACE, an application can launch any MTO channel.

5.1.4 Compose-able Service Layer

A compose-able service layer is a layer where the custom MTO channel resides. In

this layer MTO channel components are loaded, bond, and are executed. A MTO channel

may have more than one MTO channel component. When a MTO channel component(s)

is required, a node operating system (ACME) loads the component and executes it in this

MTO channel layer space. This layer is managed by the ACME. ACME supports basic

functionalities, i.e. load, execute, terminate, and unload components, and the scheduling

and managing of system resources. The requests of MTO channel

load/execute/terminate/unload are invoked by a MTO channel manager which is a

representative component in a MTO channel, or an application library at initial MTO

channel set up time. ACME may actively manage MTO channel layer, i.e. purging the

unused MTO channel components, but a MTO channel manager takes responsibility for

the management of its MTO channel components. Communication in between the MTO

channel components is predefined by a MTO channel designer. However, a MTO channel

70

can use other MTO channels to perform or augment its function. The communication

between a MTO channel and its sub-MTO channel takes place the same way that the

application library calls a MTO channel. In this fashion, the MTO channel can construct

complicated functions using the other MTO channels while maintaining the simplicity of

its interfaces.

5.1.5 Enhanced Network OS Layer

The network layer should be augmented for the dynamic MTO channel load and

execution. Legacy networks do not require load and execution because all the functions

in such networks are pre-loaded when the operating system is loaded. Even though

operating systems use dynamic libraries to load and unload a set of network components

in run time, the function set which is available to the system remains the same.

The basic functions of the enhanced network OS layer are load, unload, execute, and

terminate with regard to a MTO channel component. However, for system integrity, the

enhanced network OS layer should limit the usage of the system using policies. The

enhanced network OS layer can limit the MTO channel components that can be executed

in the node, as well as the usage of system resources, and can validate the authority of the

requests, and so on. The network operating system (ACME) in this dissertation is used to

indicate the enhanced network OS layer.

71

5.2 Application Programming Interfaces

CPICPI CPICPI EPPIEPPIEPPIEPPI

NETWORKNETWORK NETWORKNETWORK

EnhancedEnhanced

Network Layer (ACME)Network Layer (ACME)

ACTIVE ROUTERACTIVE ROUTER

ClientClient

ApplicationApplication
End PointEnd Point

ComponentComponent
ServerServer

ApplicationApplication
End PointEnd Point

ComponentComponent
ServiceService

Component(sComponent(s))

(a) Passive-end stack (b) embedded stack (c) active-end stack

CPICPI

EnhancedEnhanced

Network Layer (ACME)Network Layer (ACME)

NETWORKNETWORK

EnhancedEnhanced

Network Layer (ACME)Network Layer (ACME)

GRACEGRACE GRACEGRACE GRACEGRACE

EPPIEPPI EPPIEPPI EPPIEPPICPICPI CPICPI EPPIEPPIEPPIEPPI

NETWORKNETWORK NETWORKNETWORK

EnhancedEnhanced

Network Layer (ACME)Network Layer (ACME)

ACTIVE ROUTERACTIVE ROUTER

ClientClient

ApplicationApplication
End PointEnd Point

ComponentComponent
ServerServer

ApplicationApplication
End PointEnd Point

ComponentComponent
ServiceService

Component(sComponent(s))

(a) Passive-end stack (b) embedded stack (c) active-end stack

CPICPI

EnhancedEnhanced

Network Layer (ACME)Network Layer (ACME)

NETWORKNETWORK

EnhancedEnhanced

Network Layer (ACME)Network Layer (ACME)

GRACEGRACE GRACEGRACE GRACEGRACE

EPPIEPPI EPPIEPPI EPPIEPPI

Figure 16 Network Services Layers for Dynamic Service System Construction

Programming Interface: Unlike classical channels, the network OS provide two

interfaces. First is the end point programming interface (EPPI) to the application

(source(s) and sink(s)) or to MTO channel to request and run a MTO channel. The other

is the component programming interface (CPI) for MTO channel components to execute

and co-ordinate their functions. The general active channel constructor extension

(GRACE) supports EPPI. The active channel management enforcer (ACME) supports

CPI. It is possible that a MTO channel component uses EPPI for managing its sub-MTO

channel. An application may directly call ACME APIs also, but it is not recommended.

Services: Below the interface, the following new network layer services are now

required for a MTO channel: (a) MTO channel installation service (b) intra-channel-

component communication service, and (c) network state exchange service. All MTO

channel components are categorized in three different component types. A manager,

72

which represents the MTO channel and takes responsibility of the MTO channel service

usually located at the actuator end of the connection. The service components, which are

deployed in the intermediate nodes, perform service on the contents and deliver them to

the next point. Scout components are optional which are deployed and perform

information gathering or processing before the MTO channel is fully installed. The figure

above shows the service stacks in three positions. The junction nodes use EPPI, but no

application component runs on them. However, since, the junction points can be a typical

active router, instead of relying on general OS, an enhanced network layer is created on

top of the router. The enhanced network layer identifies dynamic MTO channel

communication from regular routing operation and when dynamic MTO channel data

arrives, it diverts the dynamic MTO channel packet towards proper components. The

enhanced network layer also allocates the CPU and memory resources among the

competing MTO channel components and acts as a MTO channel component scheduler.

To support a composite MTO channel, the active MTO channel system supports

following groups of APIs.

A MTO channel construction is initiated by an application by calling a GSocket

library function. The general active channel constructor extension (GRACE) provides

similar functionality to the socket library while it is hiding the internal differences of the

MTO channel architecture. The application user interfaces for the construction of a MTO

channel is shown in Figure 17.

73

Application

GRACE

ACMEService

Channel

ServiceFindServer

ServiceComponentServer

NetworkInformationServer

Service

Channel

FindService()

FindServiceComponent()

GSocket()

Connect(), Close()

Bind(), Listen(), Accept()

SetServiceProperty()

LoadService(), UnloadService()

StartService(), StopService()

GetHandle()

RetrieveServiceComponent()

GetStatus()

GetServicePropertyList()

SetServiceProperty()

GetNetworkInfo()

VerifyPrivilege()

VerifyServiceComponent()

Application

GRACE

ACMEService

Channel

ServiceFindServer

ServiceComponentServer

NetworkInformationServer

Service

Channel

FindService()

FindServiceComponent()

GSocket()

Connect(), Close()

Bind(), Listen(), Accept()

SetServiceProperty()

LoadService(), UnloadService()

StartService(), StopService()

GetHandle()

RetrieveServiceComponent()

GetStatus()

GetServicePropertyList()

SetServiceProperty()

GetNetworkInfo()

VerifyPrivilege()

VerifyServiceComponent()

Figure 17 Application Programming Interfaces for a MTO Channel Construction

There are six entities participating in the service constructions. Table 25 shows

ACME interfaces. ACME interfaces are used as CPI to service components. It supports

load/unload/start/stop of a service, verification of privilege and a service component’s

integrity as well as the retrieval of a service handler.

Table 25 Active Channel Management Enforcer (ACME: Network OS) APIs

Interface Description

int LoadService(servicename) Load a service

int UnloadService(servicename) Unload a service

servicehandle StartService(servicename) Start a service

int StopService(servicehandle) Stop a service

servicehandle GetHandle(servicename, servicedescription) Get a handler a service by name

int VerifyPrivilege(userid, operation, targetobject)
Check and verify privilege of a

user for the operation

int VerifyServiceComponent(servicecomponentname)
Check and verify a service

component’s integrity

74

Table 26 Service Component APIs

Interface Description

status GetStatus() Retrieve status information of the service

servicepropertylist GetServicePropertyList() Return a service property list

int SetServiceProperty(serviceproperty, value) Assign a service property value

int Send(databuffer, size) Send contents using the service

int Receive(databuffer, size) Receive contents via the service

The service components should support five APIs by defaults as shown in Table 26.

These five application programming interfaces should be implemented in all service

components. They have status information retrieval, property handling, and data

communication functions.

Table 27 General Active channel Constructor Extension (GRACE) APIs

Interface Description

sockethandle GSocket(service) Define a GRACE socket

int Connect(sockethandle) Connect a service entity

int Close(sockethandle) Close a service

int Bind(sockethandle) Binding a GRACE socket

int Listen(sockethandle) Listening a GRACE socket connection

sockethandle Accept(sockethandle) Accepting GRACE socket connection

servicepropertylist

GetServicePropertyList(sockethandle)
Retrieve a service property list

int SetServiceProperty(sockethandle,

serviceproperty, value)
Assign a service property

int Send(sockethandle, buffer, size) Send contents using the GRACE socket

int Receive(sockethandle, buffer, size) Receive contents via the GRACE socket

GRACE application programming interfaces are used by applications and a MTO

channel component to create a sub-MTO channel. Table 27 shows the interfaces. It is

designed as close as the Berkeley Socket interface to easy migration of a socket

programmer to the new MTO channel programming yet enough to support the

exploration of a custom MTO channel service.

75

Table 28 Service and Network Information APIs

Entity Interface Description

servicename FindService(service)
Retrieve a service

name
Service Find Server

servicecomponentname

FindServiceComponent(servicename)

Retrieve a service

component name

Service Component

Server

int

GetServiceComponent(servicecomponentname)

Load a service

component

Network Information

Server

NetworkMap

GetNetworkInfo(networkinfoname, buffer)

Retrieve a network

information

The service find server, service component server, and network information server

interfaces are shown in Table 28. The service find server interfaces are used by GRACE

and service component to find a service that satisfies the specification as well as the

functionalities. The service component server interfaces are used by GRACE and a MTO

channel manager to load a service component. The network information server may be

used optionally. The network information server sends network information as a return to

the GetNetworkInfo() interface call.

5.3 Single MTO Channel Construction

The MTO channel construction sequence is explained with an example of a basic

MTO channel service.

A basic MTO channel is a simple forwarding MTO channel service. It consists of

BC_MGR, BC_SRC, BC_CTR, and BC_DST. BC_MGR is a manager component of the

MTO channel. It will charge for the rest of the MTO channel construction after it is

76

invoked by the system. BC_SRC and BC_DST are source and destination components

which send and receive data from/to the application it connects. BC_CTR is a MTO

channel component deployed in the path in between the applications.

Client

GSocket GServerSocket

NOS

BCMGR

BC_SRC BC_CTR BC_DST

Component Server

findService(simplechannel) Server

NOS NOS

(service name)

ServiceFindServer

L
o
a

d
S

e
rv

ic
e

(c
o
m

p
o
n

e
n
tn

a
m

e
)

Retri
eveServ

ice
Com

ponent
(c

om
ponentn

am
e)

(c
om

ponent)

S
ta

rt
S

e
rv

ic
e
(c

o
m

p
o
n
e
n

tn
a
m

e
)

in
v
o

k
e

L
o

a
d

S
e
rv

ic
e
(b

c
_

src
)

in
v
o
k
e

in
v
o

k
e

in
v
o
k
e

LoadService(bc_ctr)

LoadService(bc_dst)

StartService(bc_dst)

StartService(bc_ctr)
R

e
tr

ie
v
e
S

e
rv

ic
e
C

o
m

p
o
n

e
n
t(

c
o
m

p
o

n
e

n
tn

a
m

e
)

(c
o

m
p

o
n

e
n

t)

Retri
ev

eS
erv

ice
Com

ponent
(c

om
ponent

nam
e)

(com
ponent)

c
o

n
n

e
c
t(

)

s
e
n

d
()

re
c
e
iv

e
()

c
o
n

n
e

c
t()

connect() connect()

c
o
n

n
e

c
t()

s
e

n
d

()

send() send()

s
e

n
d

()

re
c
e

iv
e

()
receive() receive()

re
c
e
iv

e
()

findServiceComponent(servicename)

(service component name)

NetworkInfoServerGetNetworkInfo

(path, C
lient, S

erver))

(path))

Client

GSocket GServerSocket

NOS

BCMGR

BC_SRC BC_CTR BC_DST

Component Server

findService(simplechannel) Server

NOS NOS

(service name)

ServiceFindServer

L
o
a

d
S

e
rv

ic
e

(c
o
m

p
o
n

e
n
tn

a
m

e
)

Retri
eveServ

ice
Com

ponent
(c

om
ponentn

am
e)

(c
om

ponent)

S
ta

rt
S

e
rv

ic
e
(c

o
m

p
o
n
e
n

tn
a
m

e
)

in
v
o

k
e

L
o

a
d

S
e
rv

ic
e
(b

c
_

src
)

in
v
o
k
e

in
v
o

k
e

in
v
o
k
e

LoadService(bc_ctr)

LoadService(bc_dst)

StartService(bc_dst)

StartService(bc_ctr)
R

e
tr

ie
v
e
S

e
rv

ic
e
C

o
m

p
o
n

e
n
t(

c
o
m

p
o

n
e

n
tn

a
m

e
)

(c
o

m
p

o
n

e
n

t)

Retri
ev

eS
erv

ice
Com

ponent
(c

om
ponent

nam
e)

(com
ponent)

c
o

n
n

e
c
t(

)

s
e
n

d
()

re
c
e
iv

e
()

c
o
n

n
e

c
t()

connect() connect()

c
o
n

n
e

c
t()

s
e

n
d

()

send() send()

s
e

n
d

()

re
c
e

iv
e

()
receive() receive()

re
c
e
iv

e
()

findServiceComponent(servicename)

(service component name)

NetworkInfoServerGetNetworkInfo

(path, C
lient, S

erver))

(path))

Figure 18 A Single MTO Channel Construction Sequences

Figure 18 describes a single MTO channel construction sequence using a basic MTO

channel service. A client application requests a simple MTO channel service from a

GRACE. The active channel system library, GRACE, contacts a service find server via

findService(). A service find server returns a proper service name, i.e. basic MTO

channel. The GRACE also requests to find service component using a

findServiceComponent() function call. When the GRACE has the service component

name, it requests load of a MTO channel component, BC_MGR, to the node operating

system, ACME. The ACME checks its repository for the requested MTO channel

component. If the ACME does not have the component, it contacts its service component

77

server to load the component. After the component is loaded, the GRACE invokes the

component (a manager component) to initiate a MTO channel construction. The invoked

MTO channel manager starts its predefined sequences with given information from the

application, e.g. end points, required bandwidth, et cetera. The MTO channel manager

uses the network information server or uses Scout components to discover the network

map. With the network map, the MTO channel manager decides the proper locations for

its other components, in this case BC_SRC, BC_CTR, and BC_DST. The MTO channel

manager requests ACME(s) for loading other components and requests to invoke them.

The other components start to connect other service components after they are initiated.

The location information of other components is sent to a service component by a MTO

channel manager. After all, the MTO channel components are connected, the manager

signals to the application that the MTO channel construction is finished and ready to use.

The application sends data to the MTO channel after it receives the ready signal from the

MTO channel.

5.4 Multi-level MTO Channel Construction

A multi-level MTO channel construction is similar to a single MTO channel

construction. It has an added sub-MTO channel construction phase and a MTO channel

optimization phase when a sub-MTO channel is required for supporting the service

requirements. A MTO channel manager requests a finding service from a service find

server that is the same request as in the application does. A MTO channel manager uses

78

service MTO channel name returned from the service find server to invoke the sub-MTO

channel. The MTO channel manager also sends parameters to construct sub-MTO

channels. The invoked sub-MTO channel manager deploys and invokes its sub-MTO

channels and components independently from upper level MTO channel construction

with given parameters. However, when a sub-MTO channel manager encounters an error

during its MTO channel construction, it generates an event and notifies the upper-level

MTO channel manager to coordinate the error handling. The upper-level MTO channel

manager re-organizes its sub-MTO channel or components, or it makes an error event and

notifies the error to its upper-level MTO channel manager.

Client

GSocket GServerSocket

ACME
(a)

Component Server

Server

ServiceFindServer

NetworkInfoServer
GC_mgr(a,e)

GC_mgr(f,e)ARC_mgr(a,f)

ACME
(f)

ACME
(g)

ACME
(h)

ACME
(i)

ACME
(j)

ACME
(e)

ARC_mgr(f,g,h)

CC_mgr(f,h)

ARC_mgr(f,j,h)

ARC_mgr(h,i,e)

CC_mux/demux
(f,h)

CC_mux/demux
(f,h)

ARC_src(a,f) ARC_dst(a,f)

ARC_src(f,g,h) ARC_ctr(f,g,h) ARC_dst(f,g,h)

ARC_src(f,j,h) ARC_ctr(f,j,h) ARC_dst(f,j,h)

ARC_src(f,j,h) ARC_ctr(f,j,h) ARC_dst(f,j,h)
control connection

data connection

1

2 2

3 3

3
3

4

4

4

4

4 4 4

5 5

5

5

5 5

Client

GSocket GServerSocket

ACME
(a)

Component Server

Server

ServiceFindServer

NetworkInfoServer
GC_mgr(a,e)

GC_mgr(f,e)ARC_mgr(a,f)

ACME
(f)

ACME
(g)

ACME
(h)

ACME
(i)

ACME
(j)

ACME
(e)

ARC_mgr(f,g,h)

CC_mgr(f,h)

ARC_mgr(f,j,h)

ARC_mgr(h,i,e)

CC_mux/demux
(f,h)

CC_mux/demux
(f,h)

ARC_src(a,f) ARC_dst(a,f)

ARC_src(f,g,h) ARC_ctr(f,g,h) ARC_dst(f,g,h)

ARC_src(f,j,h) ARC_ctr(f,j,h) ARC_dst(f,j,h)

ARC_src(f,j,h) ARC_ctr(f,j,h) ARC_dst(f,j,h)
control connection

data connection

Client

GSocket GServerSocket

ACME
(a)

Component Server

Server

ServiceFindServer

NetworkInfoServer
GC_mgr(a,e)

GC_mgr(f,e)ARC_mgr(a,f)

ACME
(f)

ACME
(g)

ACME
(h)

ACME
(i)

ACME
(j)

ACME
(e)

ARC_mgr(f,g,h)

CC_mgr(f,h)

ARC_mgr(f,j,h)

ARC_mgr(h,i,e)

CC_mux/demux
(f,h)

CC_mux/demux
(f,h)

ARC_src(a,f) ARC_dst(a,f)

ARC_src(f,g,h) ARC_ctr(f,g,h) ARC_dst(f,g,h)

ARC_src(f,j,h) ARC_ctr(f,j,h) ARC_dst(f,j,h)

ARC_src(f,j,h) ARC_ctr(f,j,h) ARC_dst(f,j,h)
control connection

data connection

control connection

data connection

1

2 2

3 3

3
3

4

4

4

4

4 4 4

5 5

5

5

5 5

Figure 19 A Multi-level MTO Channel Construction Sequences

79

Figure 19 presents signaling among the MTO channel construction systems of a

generic MTO channel from POP a to POP e which is shown in Figure 11. A client request

for a GC from a to e initiates the construction. GSocket() requests to find the proper

MTO channel service which has bandwidth indication features, in this case GC. Using

the name returned from a service find server. GSocket() contacts ACME for loading and

initiating the GC MTO channel service. The ACME loads the GC MTO channel manager

(GC_mgr) and invokes it. GC_mgr requests network information from a network

information server. After GC_mgr discovers the deployment plan using its planning

algorithm, it requests to find a MTO channel service which has alternative path

construction features. The name of the altered routing channel (ARC) is returned from the

Service Find Server, and the GC_MRG uses this MTO channel name to request loading

and initiating the MTO channel service manager (ARC_mgr) for a to f. It also uses the

GC to construct a MTO channel for f to e. ARC(a,f) constructs itself by loading and

initiating its other components (ARC_src, ARC_dst). GC(f,e) uses a concurrent MTO

channel to fill up from f to h and uses a ARC(h,i,e). CC(f,h) finding altered routing

service by query to a service find server and uses ARC(f,g,h) and ARC(f,j,h) as its sub-

MTO channels. The CC(f,h) also completes its construction by loading its own

components, CC_mux/demux, in f and h then connects the ARC(f,g,h) and ARC(f,j,h)’s

SEPs to its CC_mux/demux. After CC(f,h) and ARC(h,i,e) is constructed, the GC(f,e)

connects those two sub-MTO channels. The GC(a,e) connects ARC(a,f) and GC(f,e) to

80

complete its construction. Finally, GC(a,e) notifies the application of of its readiness, and

the application initiates communication.

5.5 Meta Information Language

5.5.1 Brief description of MIL

A meta information description language (MIL) is required for language independent

interface design in building network centric MTO channel system. MIL is used to

describe MTO channel component interfaces, MTO channel component manuals,

network information, computational information, and user requirements. With MIL, a

MIL parser generates an automated manual for MTO channel component developers and

end users.

Some of the MILs, the one that describes network information for instance, should

be interpreted in run-time. Therefore, the MIL should be a simple language to interpret in

run-time.

5.5.2 MIL Grammar

The MIL grammar is shown in the following figures.

81

[api] = [function]+

[function] = <function> à
<name>string</name> à
(<desc>string</desc>) à
(<param>parameter</param>)* à
(<return>parameter</return>) à
</function>

[api] = [function]+

[function] = <function> à
<name>string</name> à
(<desc>string</desc>) à
(<param>parameter</param>)* à
(<return>parameter</return>) à
</function>

Figure 20 The MIL Grammar for API Description

Figure 20 describes the MIL grammar for API description. API is composition of

functions. Each function starts with a <function> tag and ends with </function>. In each

function, the name of the function is a mandatory field while description, parameters, and

return value are optional.

[PMAP] = <pmap> à
<name>string</name> à
(<desc>string</desc>) à
<origin>[location]</origin> à
<topology>[topology]</topology> à
([component])+ à
<order><netorder>[orders]</netorder>
<exeroder>[orders]</exeorder></order> à
</pmap>

[location] = <url>string</url>

[topology] = tree | linier | star | ring | weighted graph

[component] = <component> à
<name>string</name> à
(<desc>string</desc>) à
<location>(* | [node] | on [component].set) </location> à
(<invoke>(* | [time])</invoke> à
</component>

[orders] = ((<seq>(component)+</seq>) | (<concur>(component)+</concur>))+

[PMAP] = <pmap> à
<name>string</name> à
(<desc>string</desc>) à
<origin>[location]</origin> à
<topology>[topology]</topology> à
([component])+ à
<order><netorder>[orders]</netorder>
<exeroder>[orders]</exeorder></order> à
</pmap>

[location] = <url>string</url>

[topology] = tree | linier | star | ring | weighted graph

[component] = <component> à
<name>string</name> à
(<desc>string</desc>) à
<location>(* | [node] | on [component].set) </location> à
(<invoke>(* | [time])</invoke> à
</component>

[orders] = ((<seq>(component)+</seq>) | (<concur>(component)+</concur>))+

Figure 21 A Placement Map MIL Grammar

82

A placement map MIL grammar is shown in Figure 21. This grammar is used by the

MIL parser and generates MTO channel component placement information.

5.5.3 MIL parsing and output generation

IDL text
front end

parser

back end

parser

Manual page

C Language API

Java Language API

IDL

Parsing Tree

Generating

Options

IDL parser

input

g
en

er
a
te in

p
u

t

g
en

er
a
te

IDL text
front end

parser

back end

parser

Manual page

C Language API

Java Language API

IDL

Parsing Tree

IDL

Parsing Tree

IDL

Parsing Tree

Generating

Options

IDL parser

input

g
en

er
a
te in

p
u

t

g
en

er
a
te

Figure 22 A MIL Parsing and Output Generation Architecture

The MIL parser has two components, the front end parser and the back end parser.

The front end parser generates a parse tree based on an input MIL text. The generated

parse tree is an internal representation of the MIL description. The back end parser takes

the generated parse tree and produces a proper output format indicated by generation

options. Different language output requires only a different back end parser.

5.5.4 Parsing tree structure

The parsing tree consists of three properties, name, value and attributes. The name

property contains the node name in a parsing tree. The value property has content value

83

for the name. The attribute property has an attribute of the name and value set. Each node

may have child node(s).

IDL

Parsing Tree

IDL

Parsing Tree

Name: function

Value: function

Attribute: N/A

Name: function

Value: function

Attribute: N/A

Name: name

Value: GSocket

Attribute: N/A

Name: name

Value: GSocket

Attribute: N/A

Name: desc

Value: override ..

Attribute: N/A

Name: desc

Value: override ..

Attribute: N/A

Name: param

Value: domain

Attribute: int32

Name: param

Value: domain

Attribute: int32

Name: param

Value: type

Attribute: int32

Name: param

Value: type

Attribute: int32

Name: param

Value: protocol

Attribute: int32

Name: param

Value: protocol

Attribute: int32

Name: return

Value: errorcode

Attribute: int32

Name: return

Value: errorcode

Attribute: int32

IDL

Parsing Tree

IDL

Parsing Tree

Name: function

Value: function

Attribute: N/A

Name: function

Value: function

Attribute: N/A

Name: name

Value: GSocket

Attribute: N/A

Name: name

Value: GSocket

Attribute: N/A

Name: desc

Value: override ..

Attribute: N/A

Name: desc

Value: override ..

Attribute: N/A

Name: param

Value: domain

Attribute: int32

Name: param

Value: domain

Attribute: int32

Name: param

Value: type

Attribute: int32

Name: param

Value: type

Attribute: int32

Name: param

Value: protocol

Attribute: int32

Name: param

Value: protocol

Attribute: int32

Name: return

Value: errorcode

Attribute: int32

Name: return

Value: errorcode

Attribute: int32

Figure 23 A MIL Parsing Tree Structure

Figure 23 represents an example of the MIL parsing tree structure for the GSocket

function call described in Figure 24.

84

<function>

<name>GSocket</name>

<desc>overriding conventional socket interface</desc>
<param>

<int32>[domain]</int32>
</param>

<param>
<int32>[type]</int32>

</param>

<param>
<int32>[protocol]</int32>

</param>
<return>

<int32>errorcode<int32>
</return>

</function>

int GSocket(int domain, int type, int protocol) generate

<function>

<name>GSocket</name>

<desc>overriding conventional socket interface</desc>
<param>

<int32>[domain]</int32>
</param>

<param>
<int32>[type]</int32>

</param>

<param>
<int32>[protocol]</int32>

</param>
<return>

<int32>errorcode<int32>
</return>

</function>

<function>

<name>GSocket</name>

<desc>overriding conventional socket interface</desc>
<param>

<int32>[domain]</int32>
</param>

<param>
<int32>[type]</int32>

</param>

<param>
<int32>[protocol]</int32>

</param>
<return>

<int32>errorcode<int32>
</return>

</function>

int GSocket(int domain, int type, int protocol)int GSocket(int domain, int type, int protocol) generate

Figure 24 A MIL Description for a GSocket Function Call

The MIL parser reads the description and generated an output as shown in Figure 24,

in this case a back end parser is the C programming language parser.

85

<PMAP>
<name>Altered routing channel</name>
<desc>
<author>author</author>

</desc>
<origin>
<url>https://medianet.kent.edu/capsules/*.cap</url>

</origin>
<topology>[tree]</topology>
<component>
<name>altc</name>
<desc>ARC channel Manager</desc>
<location>*</location>
<invoke>*</invoke>

</component>
<component>

<name>altc_src</name>
<desc>ARC actuator</desc>
<location>Actuation End Point</location>

</component>

<component>
<name>altc_ctr</name>
<desc>ARC forwarder</desc>
<location><each><path></each></location>

</component>
<component>

<name>altc_dst</name>
<desc>ARC audience</desc>
<location>Audience End Point</location>

</component>
<order>

<netorder>
<seq>[altc][altc_src][altc_ctr][altc_dst]</seq>

</netorder>
<exeorder>
<seq>[altc][altc_src][altc_ctr][altc_dst]</seq>

</exeorder>
</order>

</PMAP>

<PMAP>
<name>Altered routing channel</name>
<desc>
<author>author</author>

</desc>
<origin>
<url>https://medianet.kent.edu/capsules/*.cap</url>

</origin>
<topology>[tree]</topology>
<component>
<name>altc</name>
<desc>ARC channel Manager</desc>
<location>*</location>
<invoke>*</invoke>

</component>
<component>

<name>altc_src</name>
<desc>ARC actuator</desc>
<location>Actuation End Point</location>

</component>

<component>
<name>altc_ctr</name>
<desc>ARC forwarder</desc>
<location><each><path></each></location>

</component>
<component>

<name>altc_dst</name>
<desc>ARC audience</desc>
<location>Audience End Point</location>

</component>
<order>

<netorder>
<seq>[altc][altc_src][altc_ctr][altc_dst]</seq>

</netorder>
<exeorder>
<seq>[altc][altc_src][altc_ctr][altc_dst]</seq>

</exeorder>
</order>

</PMAP>

Figure 25 A PMAP for Altered Routing Channel

The PMAP for an altered routing MTO channel is described in Figure 25. This

description also has enough information such as the number of software components and

who ordered them. With this meta information, the run-time system determine which

place a MTO channel component can be located.

86

CHAPTER 6

System Visualization

Though traditional networking research has ignored visualization, the monitoring

and management of complex distributed systems is becoming critical for high-

performance distributed computing. However, monitoring an active distributed system

such as Grid, the active application or the Internet content services have several serious

obstacles to overcome. The first set of complexity evolves from the scale, dynamism and

versatility requirements. An additional challenge arises from autonomous ownership of

the Internet systems. It is further complicated by the hierarchical and multi-party nature

of the netcentric systems development pathway. During run-time, a sound message

management principle becomes very important otherwise, a potentially huge number of

status messages can result in a serious performance drag.

6.1 Related Researches on Visualization

Recently, there have been few pioneering works in the area of Grid visualization.

Tierney, et al. [4][5] suggested an agent based monitoring system to automate the

execution of monitoring sensors and the collection of event data in a Grid environment.

They use a direct connection between a producer and a consumer to reduce

communication traffic.

87

Waheed, et al. [8] developed monitoring infrastructure to share monitored data using

common APIs. The infrastructure is built on three basic components; sensors, actuators,

and a Grid event service; at the top of those basic components, they built a layered

monitoring system. Another layer-based visualization system was suggested by

Bonnassieux, et al. [6]. They offered a flexible presentation layer in a huge and

heterogeneous environment. It provides a simple, autonomous and extensible model that

enables the visualization of any level of abstraction using a hierarchical view model of

resources status, with propagation of monitoring status up to the top of the tree view. The

gathered information for monitoring can also be used for system management. Reed, et al.

[7] suggest using system monitoring results for adaptive control to improve system

reliability. The system uses diskless check-pointing, which enables more frequent

checkpoints by redundantly saving check-pointed data in memory, and low-cost

mechanisms to capture data for failure prediction, which enables the creation of dynamic

schemes for improved application resilience.

6.2 Visualization Architecture Requirements

One of the major challenges that differentiate netcentric systems from traditional

modular distributed software is the fact that the concept of internet autonomous systems

(that separate the network from the Internet) also extends to the software systems. This

hierarchically dependent multiparty involvement extends to both the development

process of compose-able services as well as to the runtime service ownership. Clearly,

88

these systems are not built as a one simple big program. Rather, they are built with

several independent system components running on multiple computing systems. Each

system component is also composed with several sub-components and distributed among

multiple computing systems. Also unique is the fact that, quite often these are developed

under multiple autonomous service authorships, and deployed and managed under

multiple service ownerships. Because of such a nature, system monitoring and controlling

get considerably more difficult and complex. In addition, the current trend whereby

network based sub-systems and components have to go through frequent modification for

the newly included or upgraded components makes the overall task even less manageable.

As a result, the system management and monitoring software encounters difficulties to

visualize the whole system across the participating computing systems and services, and

sometimes the software is faced with disparity between system status reports and control

messages and their representation in the system. However, the same complexity makes

monitoring and visualization of the process nevertheless more critical. Therefore, there

should be support for autonomous modular visualization.

6.3 Other Features of Visualization

The following architectural features are offered to overcome the challenges of the

netcentric system’s visualization:

• Controllability of message flow.

• Adaptation of system viewer’s perspectives.

89

• Use of meta information for interpretation of current system information.

As the system gets bigger, the generated system status messages also grow. Without

controllability of a system message flow, a system is easily overwhelmed by the

generated status messages and cannot deliver important information.

The system status representation should be useful enough to produce multiple points

of views. A user requires different perspective views depending on a user’s interests at a

given moment. Representing the same system information in various ways will increase a

user’s focus on his/her interests.

The separation of system information data and its structures by using meta

information makes it easy to upgrade system components while the system is running and

verifying message information as well. Using the meta information also leverages the

automation of system information representation. A system can generate various target

representations by dynamically interpreting message data with its meta information.

A visualization schema is built on the powerful process description language of Petri

Net. A Petri Net is a graphical and mathematical modeling tool which consists of places,

transitions, and arcs that connect them. [16] It is a powerful tool for modeling systems

that are concurrent, asynchronous, distributed, parallel, nondeterministic, and stochastic.

It is well suited to describe a system’s status and its transition. Recent proposal of Petri

Net Markup Language (PNML) is pushing Petri Net language to a more interchangeable

format for system modeling. [15].

90

The proposed framework is particularly suitable for monitoring the lifecycle of

loosely coupled and scalable complex multiparty active systems. The developed

formalism allows the sub-system to maintain its own status and control messages within

it. A sub-system, when used as a part of a high level composed system, can further report

its status and control messages to its upper level system. Furthermore, each level supports

several reporting and message propagation modes to allow performance tuning. The time,

type, and content of messages are decided initially by the system designer. However,

these default behaviors can be overridden by a system operator or an administrator at run-

time. A privileged user can freely control and monitor the system status using a flexibly

configurable multi-view visualization system from any authorized terminal.

6.4 Visualization of Architecture

User Interface

Status Monitor

Control Parser

Control Monitor

Status flow Control flow Message description flow

System

ComponentSystem

ComponentSystem

Component

System

ComponentSystem

ComponentSystem

Component

System

ComponentSystem

ComponentSystem

Component

storage

System

ComponentSystem

ComponentSystem

Component

Status Monitor

Status Monitor

System

ComponentSystem

ComponentSystem

Component

Status Monitor

Status Monitor

Status Monitor
storage

Control Monitor

Message Parser

Status Monitor

User Interface

Status Monitor

Control Parser

Control Monitor

Status flow Control flow Message description flowStatus flow Control flow Message description flow

System

ComponentSystem

ComponentSystem

Component

System

ComponentSystem

ComponentSystem

Component

System

ComponentSystem

ComponentSystem

Component

storage

System

ComponentSystem

ComponentSystem

Component

Status Monitor

Status Monitor

System

ComponentSystem

ComponentSystem

Component

Status Monitor

Status Monitor

Status Monitor
storage

Control Monitor

Message Parser

Status Monitor

Figure 26 The Visualization System Architecture

91

Figure 26 describes the symbolic representation of the visualization system

architecture. The monitoring components of a service are run on ACME. They are

deployed and executed on ACME as a part of a service construction. A status monitor

(SM) processes the status message of a sub-system. A SM stores status message structure

descriptions and delivers or saves status messages of the sub-system. A control monitor

(CM) handles control messages. A CM is added in a sub-system when the sub-system

supports a control mechanism from outside of the system. Initiation and execution of a

monitor is coordinated by sub-system management software.

6.5 Dynamic Message Binding and Interpretation

Based on the service design considerations, the visualization system should support 1)

dynamic interpretation of the system status messages, 2) seamless navigation through

layer abstraction and the visualization of the given layer of a system, 3) uniform method

of visualization at all levels. The meaning of a status message is represented in a well

formed status structure description language and is gathered by a status monitoring

system. When a new system component is developed, the descriptions of its status

message structures and the descriptions of its state diagram are supplied by the developer

together with the component. As per this template, a status monitoring system and a

visualization system dynamically bind and interpret the meaning of a status message with

the given description.

92

(b)

<!ELEMENT STAT_MSG (SYS_ID, SUBSYS_MOD_ID,
SYS_STAT_ID, STAT_EXE_CNT, SYS_STAT,

SVC_INST_ID, SVC_SUB_INST_ID, SVC_INST_STAT?,

SVC_LOC_INST_ID, PFM_ID, PFM_STAT?,

RPT_MODE?, PERIOD?) >
<!ELEMENT SYS_ID (MSG_ST16) >

<!ELEMENT SUBSYS_MOD_ID (MSG_ST16) >
<!ELEMENT SYS_STAT_ID (MSG_ST16) >

<!ELEMENT STAT_EXE_CNT (MSG_ST4) >

<!ELEMENT SYS_STAT (MSG_ST4) >

<!ELEMENT SVC_INST_ID (MSG_ST16) >

<!ELEMENT SVC_SUB_INST_ID (MSG_ST16) >
<!ELEMENT SVC_INST_STAT (MSG_ST4) >

<!ELEMENT SVC_LOC_INST_ID (MSG_ST16) >

<!ELEMENT PFM_ID (MSG_ST16) >
<!ELEMENT PFM_STAT (MSG_ST4) >

<!ELEMENT RPT_MODE (REALTIME|BATCH|TRACE) >
<!ELEMENT PERIOD (#PCDATA) >

<!ELEMENT MSG_ST16 (HD_ID16, HD_DESC16) >

<!ELEMENT MSG_ST4 (HD_ID4, HD_DESC12) >

<!ELEMENT HD_ID16 (#PCDATA) >

<!ATTLIST HD_ID16 size CDATA #FIXED “16”>
<!ELEMENT HD_DESC16 (#PCDATA) >

<!ATTLIST HD_DESC16 size CDATA #FIXED “16”>

<!ELEMENT HD_ID4 (#PCDATA) >
<!ATTLIST HD_ID4 size CDATA #FIXED “4”>

<!ELEMENT HD_DESC12 (#PCDATA) >
<!ATTLIST HD_DESC12 size CDATA #FIXED “12”>

(a)100 ALT_CHANNEL

10 ALT_FORWARDER

5 print

1000 print_cnt

3 RUN 005

Alternate Routing Channel SVC 004

Fowarder 7 ESTABLISHED

6 node6

5000 KENT AN #001

10 FULL_SERVICE 1 REALTIME

(a)

0 16 31

(b)

<!ELEMENT STAT_MSG (SYS_ID, SUBSYS_MOD_ID,
SYS_STAT_ID, STAT_EXE_CNT, SYS_STAT,

SVC_INST_ID, SVC_SUB_INST_ID, SVC_INST_STAT?,

SVC_LOC_INST_ID, PFM_ID, PFM_STAT?,

RPT_MODE?, PERIOD?) >
<!ELEMENT SYS_ID (MSG_ST16) >

<!ELEMENT SUBSYS_MOD_ID (MSG_ST16) >
<!ELEMENT SYS_STAT_ID (MSG_ST16) >

<!ELEMENT STAT_EXE_CNT (MSG_ST4) >

<!ELEMENT SYS_STAT (MSG_ST4) >

<!ELEMENT SVC_INST_ID (MSG_ST16) >

<!ELEMENT SVC_SUB_INST_ID (MSG_ST16) >
<!ELEMENT SVC_INST_STAT (MSG_ST4) >

<!ELEMENT SVC_LOC_INST_ID (MSG_ST16) >

<!ELEMENT PFM_ID (MSG_ST16) >
<!ELEMENT PFM_STAT (MSG_ST4) >

<!ELEMENT RPT_MODE (REALTIME|BATCH|TRACE) >
<!ELEMENT PERIOD (#PCDATA) >

<!ELEMENT MSG_ST16 (HD_ID16, HD_DESC16) >

<!ELEMENT MSG_ST4 (HD_ID4, HD_DESC12) >

<!ELEMENT HD_ID16 (#PCDATA) >

<!ATTLIST HD_ID16 size CDATA #FIXED “16”>
<!ELEMENT HD_DESC16 (#PCDATA) >

<!ATTLIST HD_DESC16 size CDATA #FIXED “16”>

<!ELEMENT HD_ID4 (#PCDATA) >
<!ATTLIST HD_ID4 size CDATA #FIXED “4”>

<!ELEMENT HD_DESC12 (#PCDATA) >
<!ATTLIST HD_DESC12 size CDATA #FIXED “12”>

(a)100 ALT_CHANNEL

10 ALT_FORWARDER

5 print

1000 print_cnt

3 RUN 005

Alternate Routing Channel SVC 004

Fowarder 7 ESTABLISHED

6 node6

5000 KENT AN #001

10 FULL_SERVICE 1 REALTIME

(a)100 ALT_CHANNEL

10 ALT_FORWARDER

5 print

1000 print_cnt

3 RUN 005

Alternate Routing Channel SVC 004

Fowarder 7 ESTABLISHED

6 node6

5000 KENT AN #001

10 FULL_SERVICE 1 REALTIME

(a)

0 16 31

Figure 27 A Status Message Structure and a Status Message

The visualizer integrates with a code server-based hierarchical service deployment

framework. Each system can have isomorphic sub-systems and/or code components.

Each time a system is installed (i.e. all of its sub-systems are launched), a hypothetical

state monitor is assumed to be concurrently instantiated. A set of messages is generated

towards this state monitor in the sub-system’s leader component. A visualization system

can use a subset of the messages to present various perspectives on the system. The key

challenge here is that these messages should carry enough information to identify itself

with respect to the various perspective frameworks within which an active service

operates along with the actual status information. Figure 27 shows an example of status

message structure and a status message. Below a tri-partite identifier system is provided.

This message system encodes the fields in its messages (i) system identifier, (ii)

93

subsystem component identifier, (iii) system state identifier, (iv) state execution count, (v)

system status, (vi) service instance identifier, (vii) service subsystem instance identifier,

(viii) service instance status, (ix) service location instance identifier, (x) platform

identifier, and (xi) platform status. The primary state identifier (set i-iii) is assigned by

the programmer who has coded the active components. This identifier set has to be

hierarchically unique within a specific version of specific software. The identifier set (vi-

vii) is to be assigned by the active service administration system (such as EEs/ ANETDs)

while installing and initializing instances of the service at each instantiating of loaded

components. Again, these identifier sets have to be hierarchically unique within the

service administration domain. The last identifier x is to be supplied by the active node

owner. It is assigned when a node joins an active network domain. The status information

iv and v is computed by the code components at run time and thus its value is designed

by the programmer. The service instance status information viii, if any, is passed on to

the monitor messaging agents by the service administration local agent (such as node EE).

The status information xi, if any, is set by the local node administrator during the period

the service is running. The monitor messaging system collects and composes the

messages prior to generating the messages. Messages can contain control flags to control

the mode of reporting and even to filter the content to tune performance. The system

allows three reporting modes (i) REAL-TIME, (ii) BATCH, (iii) TRACE-ONLY. In real-

time mode the monitor messages are generated and sent when the code executes through

the state points. In BATCH-ONLY mode the messages are generated in real-time but

forwarded periodically in batch. The period is decided by a PERIOD field. The mode

94

feature only modifies the time of sending the monitor messages but do not affect their

content. Three flags are further used to negotiate filtering the three status fields in the

messages. In every message sent by the monitor messaging agent, the flags are set

according to the current value of these flags. A set of control messages can be potentially

sent in reverse direction to request change in these flags (and the PERIOD field). The

transition among the modes is shown in Figure 28.

r

Discover Upper Report
Entry

Message

Received

Report

Ready

Realtime
Ready

Report Ready

Timer

Expired

Batch

Ready

Message
Received

Trace

Ready

End of Trace

End of Run Report Ready

Message

Received

Receive Messages Send Messages

Change to Batch Mode

Change to Realtime Mode

Change to Realtime Mode

and trace=off

Change to Trace Mode

Change to Trace Mode

Change
to Batch Mode and

trace=off

Receive Messages

Store Messages

Timer Alarm

No Stored Message

Send Messages

Stored Messages Exist

Receive Messages

Store Messages and

Set trace=on

Receive

End of Run MSG

Set trace=off

No Stored Message

Send Messages

Stored Messages Exist

p

p

p p

p

p

p
p

p

p p

p

p

p

p

p

p

p

p

p

p

p

p
p

p

p

p

p

p

p
p

p

p

p

p

p

p

p

p

p

p

p

p

p

Receive

State

Message

Send

State

Message

s

Configuration

Information

r

End of Run

Message
r

Control

Messages

c

c

c c

c

c

s

r

s

Figure 28 The Monitoring Point Status Transition Diagram

6.6 Visualization of Concurrent MTO Channel

The description of the concurrent MTO channel (CC) was given in section 5.4. In

this section, the additional materials for visualization information of the CC are described.

95

A concurrent MTO channel (CC) is a simple but powerful MTO channel which is

not available in current TCP/IP communication networks. The concurrent MTO channel

(CC) is using a sub-MTO channel altered routing channel (ARC) to guarantee that the

established MTO channel does not have an overlapped path from source to destination.

When the concurrent MTO channel system is running, the channel components

generate status information. Because of the ARCs are used by the CC, the components in

ARCs are also generate status information. This status information is delivered to the

visualization system and displayed in proper format that was chosen by a channel

monitor/user. The visualization system should support different views of similar

messages based on the user’s convenience. Each service component status transition is

shown in Figure 29.

96

Receive Construction

Request

S0

Load Module

S1

Start Module

S2

S3

Construct Sub-modules

S4

Receive Data

S8

Send Data

Receive Stop | EOT

S5

Destruct Sub-modules

S6

Stop module

S7

Unload module

channel

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

[x=r]

[x=r]

color U = with r | m;

color I = int;

color V = with c | d;

var x: U;

var i: I;

c

c

c

if x=r then 1`c

else empty

c

d

d c

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

S0: Inactivate

S1: Construction Request Received

S2: Module Loaded

S3: Module Activated

S4: Module Ready

S5: Module Stop Request Received

S6: Module Released

S7: Module Stopped

S8: Data Received

Figure 29 The MTO Channel Component Service Status Diagram

97

Figure 30 is a snapshot of MTO channel control center program for MTO channel

control and status report. The MTO channel control center program is a central control

program for a MTO channel construction system. It sends initial configurations to a MTO

channel construction system and monitors each MTO channel control system node’s

status and events.

Figure 30 A Color Coded MTO Channel Control Center Control & Status Window

Hierarchical view of the same system status view is shown in Figure 31. The

component colors represent their current status.

98

Concurrent

Channel

Alternate
Channel (2)

Concurrent
Channel Manager

Alternate

Channel Manager

Forwarder 1 Forwarder 2 Forwarder 3

MUX/DEMUX 1 MUX/DEMUX 2

MUX/DEMUX (2)

Alternate
Channel 1

Forwarder (3)
Alternate

Channel Manager

Forwarder 1 Forwarder 2 Forwarder 3

Alternate
Channel 2

Forwarder (3)

SUB_SETUPED

N/A

LOADED

ACTIVATED

INITIALIZED

ESTABLISHED

SUSPENDED

DEACTIVATED

UNLOADED

Figure 31 A MTO Channel System Hierarchical Process View

Each system component has its own status, for examples: loading, activation,

initialization, established, unloaded, and so on. The status change information of the

system is stored and replayed any time later for detailed investigation. The review

interface shown in Figure 30 consists of simple forward and backward buttons but the

value of the function cannot be ignored.

99

CHAPTER 7

An Additional Example of Service Transport MTO Channel

7.1 SONET MTO Channel

Adaptation is a fundamental phenomenon in natural systems. It seems that

engineering of any large and complex system intrinsically requires the inbuilt ability of

its components to adapt. Internet has already grown into a mega net with global reach.

Now, with the emerging need of advanced applications, it is poised to evolve into a

complex system of systems. With its expansion, the asymmetry of the Internet is also

increasing. Historically, the initial Internet architecture had been conceived to cope with

the heterogeneity of network standards. [40] Before the problem had been solved, it now

appears that a second era is underway of in progress. It seems that the next generation of

the Internet will have to deal with more intrinsic (and perhaps harder to overcome)

heterogeneity— the asymmetry of hard network resources such as bandwidth, or

switching capacity. [41] This asymmetry can evolve from the fundamental physical

limitations at the fringe of extreme technology such as the power crunch in an

intergalactic network element, or from something as mundane and insurmountable as

socioeconomic disparity,- i.e. the digital divide.

In this section, a MTO channel that concentrates on creative adaptation is presented.

There are quite a few works tending adaptive systems—particularly in the areas of

scalable video communication, web caching, and very recently in mobile information

100

systems. This section presents a MPEG-2 rate transcoding MTO channel, which

addresses the issue of adaptation from two levels. It adapts with respect to two critical

network resources— bandwidth and the processing resource at the junction nodes. While

the link bandwidth adaptation has been addressed up to some extent in a few of the recent

research studies little attention has been paid to the node capacity adaptation. The

transcoder senses local asymmetry in link capacities at various junction points of a

network. Based on that, it accordingly adapts the video stream rate. On the second level,

the transcoder MTO channel also senses the local computation power to execute its rate

adaptation task. And thus, based on the network computational power, it demonstrates

self-organization behavior. In each of these adaptive behaviors, it employs a number of

techniques. For rate adaptation in the first stage it uses full re-quantization-based

transcoding. For extreme rate scalability, it further employs a focal object based region

discriminating encoding. To adjust with the processing power problem, it first can shift

back to a low computation mode of transcoding using motion vector computation bypass.

However, when a single node becomes insufficient, it dynamically migrates computations

to neighboring nodes in search of increased processing power. The available bandwidth

and computation resources are subject to change during the run time, and the

measurement methods of the resources are can be enhanced. In this paper, however,

shows one possible implementation for a video transcoding MTO channel that can deploy

its components in network based on the available resources and can adapt computation

and bandwidth change. The implemented MTO channel is called Self-Organizing

101

Network Embedded Transcoder (SONET). This section provides an architectural

overview of this MTO channel system.

7.1.1 SONET MTO Channel Architecture

SONET is a full video transcoding MTO channel. It transcodes a video stream to

adapt to the user’s requirements, and the available computing and network resources. It

deploys its components based on the computing and network resources. The MTO

channel’s components are SONET_mgr, SONET_enc, and SONET_mux. Depending on

the component’s needs, the SONET MTO channel deploys as many SONET_encs as

possible to fulfill the user required transcoding rates. The MTO channel connection and

its components are shown in Figure 32.

SONET_mgr

SONET_enc

SONET_mux
SONET_enc

SONET_enc

SEP SEPICP

transcoding rate

Application
(video server)

Application
(video player)

SONET Channel

SONET_mgr

SONET_enc

SONET_mux
SONET_enc

SONET_enc

SEP SEPICP

transcoding rate

Application
(video server)

Application
(video player)

SONET Channel

Figure 32 The SONET MTO Channel Architecture

102

SONET_mgr is a manager component and it will be located in a SEP. The

SONET_mgr decodes the video stream and multiplexes the decoded video stream to

SONET_enc. The video stream is processed in a video segment unit. The SONET_mgr

includes a scheduler to distribute video segment units among available SONET_encs.

The SONET_mgr also works as an event handler which is generated by SONET_mux for

reporting transcoding rate information to adapt network and computing environment

where the MTO channel runs.

SONET_enc is a video encoding component and located in ICP. In SONET MTO

channel, SONET_enc is performing transcoding work as well as forwarding the

transcoded contents to the SONET_mux. SONET_enc is receiving video segment units to

transcode from SONET_mgr, which is a manager of the SONET MTO channel. Besides

the video segment unit to transcode, SONET_enc also receives parameters from the

SONET_mgr which are used to transform the input video segment unit to output video

contents. The parameters are configured to adapt current network and computing

environment which is of course coordinated by the MTO channel manager, SONET_mgr.

SONET_mux is a multiplexing component in a SONET MTO channel and is

deployed in a SEP. It sends transcoded video segment units in sequence. It generates

events which report current transcoding rates in each encoding path. The events are

handled in the manager component, SONET_mgr. The events will trigger actions in

SONET_mgr to schedule encoding paths, change number of encoders to use, and

generates parameters for SONET_encs to adapt the run time environment change.

103

7.1.2 Visualization of SONET MTO Channel System

The application deployment map is shown in Figure 33.

Figure 33 A SONET MTO Channel’s Application Deployment Map

The SONET MTO channel’s application deployment map shows where the

components are located and how they are connected to each other.

104

Receive Request

S0

Discover Network Map

S1

Configure System

Deployment

S2

Deploy Modules

S3

S4

S5

S6

Start Transcoding

System Unload

Change
System Configuration

Change System
Configuration

S0: ready

S1: Request Received
S2: Map Discovered

S3: Deploy Decided

S4: Module Deployed
S5: System Run

S6: New Configuration Ready

MSG Connect

Network Connection Diagram

Modules
m

S3

Modules

Load Module

Module
Loaded

Module

Activated

Activate Module

All Modules are deployed
Not All Modules are

deployed

S4

IN

OUT

OUT

Deploy Modules

m

m

m

m

m

m

m

m

m

m

m

Figure 34 The SONET Service Status Transition

Figure 34 shows the whole system status window. The whole system status

information is received by SONET’s control center program as the system runs. It

initiates service construction when it receives a SONET service request from an

application. During its deployment phase, it uses a network connection diagram and

generates a deployment map. The system deploys its components according to the

deployment map. When the system is faced with environment changes, it reconfigures the

deployment map and changes the system configuration during run time. Status messages

are generated during the system’s lifetime and the structure descriptions are loaded when

the visual system is initiated. When the visual system receives a system status message,

105

the visual management system interprets the value with given system status message

description.

Figure 35 A Component Status Transition Diagram View of SONET System

The map displays computing systems with components on them and their

connections. With component status descriptions, the status representation can be more

intuitive as shown in Figure 35.

Figure 36 A System Wide Controls and Status Representation Window

The control and status management system should also support whole system

controls and other system wide status. Figure 36 represents system wide control and

status information. The performance meter is a control slide for the system performance.

System performance value changes initiate the generation of control messages. The

106

generated control messages are delivered to the effected components. The performance of

the system, in this case current frame rates, will have a new status as a result.

Figure 37 A System Configuration Window

Detailed status messages and control messages are available in the status window.

Figure 37 shows the status window at the left bottom and the system configuration

window at the middle left.

7.2 Jitter Controlled SONET MTO Channel

In the dynamic service composition MTO channel, a computation may not receive

the same resource on all its runs or it may change even when a computation is underway.

The computation can happen in chunks involving multiple locations. In between the data,

pipes will transit streams of data from one computational unit to another. A key challenge

in this vision of harnessing network technology for a giant computing MTO channel is

107

the complex and synchronized management of data streams between these computing

entities.

The temporal characteristics of the information flow among the computational units

make serious impacts on the time when the service end receives the processed

information. This problem is quite different from its counterparts in classical networks.

Delay-jitter management will be a central concern irrespective of the framework of

networked computing. This will be a major and central concern for conventional time

sensitive application processing such as media streaming. Interestingly, many other

application processes, which are not normally known to be time sensitive, may become

so. The new variability introduced by uncertain computation resources available over a

loosely federated resource pool can seriously destabilize synchronization, load balancing,

and the utilization efficiency of known distributed solutions.

A MTO channel development sometimes does not need to reuse an entire MTO

channel; rather, it may customize an existing MTO channel component. The presented

Jitter controlled SONET MTO channel is a video transcoding MTO channel as shown in

section 7.1 with application-data-unit-level jitter and delay controls. Component reuse

can be applied in this augmentation where it only needs to customize the scheduling

component, SONET_mgr, and reuses the other components in the SONET MTO channel.

108

7.2.1 Related Works for Delay and Jitter Controls

The recent schemes proposed for jitter and delay control can be roughly categorized

based on the traffic modeling (statistical vs. observation based adaptation), and the action

level (end-to-end vs. network layer techniques). [27][28][29]Argiriou and Georgiadis

suggested a technique for adapting the transmission rate of an application while

maintaining the perceived quality at the receiver at acceptable levels. [30] When a new

connection arrives in the system it renegotiates rates for all running applications. Khan,

Yang, and Gu proposed the rate symbiosis technique between application and network

transport, using an interactive generalization of TCP sending end-point. [9] It does not

require any expensive end-to-end measurement. Zhang and Ferrari presented the rate

control static priority (RCSP) scheme, which can provide multi-objective queuing

including jitter optimization for Poisson like traffic distribution. [29] In this scheme, a

component called regulator is assumed on each stream for traffic shaping based on its

optimization objective. A component called scheduler was assumed on switches to

resolve the priority for the multiplexed flow. Boorstyn, et al. has presented an algorithm

for providing statistical assurance which they call “effective envelope” for traffic

scheduling and demonstrated it for optimizing jitter at an intermediate node where

multiple video connections between multiple sender and receivers intersect. [27] The

method assumes continuous-time fluid-flow traffic. Each intermediate node has one input

regulator for each stream, and a scheduler. The regulators and the scheduler work jointly.

109

Bennett, et al. used special features, called Expedited Forwarding
1
 (EF), to guarantee

delay jitter bound in Differentiated Services architecture. [31] The packet forwarding at a

specific rate is guaranteed if (i) a connection is admitted at connection time in EF PHB,

and if (ii) the traffic obeys the assumed idealized statistical distribution.

The observation-based controls monitor traffic in each node, rather than relying on

any static traffic model. The monitored information is fed to a scheduler at switch.

Rexford, et al. argue that knowledge of a traffic pattern is not easy to obtain, or is limited,

as in the case of live video conferencing. [28] They show a Hopping-Window smoothing.

Stone and Jeffay described a policy called queue monitoring, which observes delay jitter

and dynamically adjusts display latency for low latency conference calls. [32] By

monitoring display queue, it retrieves changing end-to-end delay and corrects jitters

without time synchronization. Mansour and Patt-Shamir also suggest jitter control

algorithms by monitoring buffer fill rates. [33]

Compared to the previous works, this paper addresses the problem with respect to

joint communication and computation delay. This is unique to the Internet based

computing environment. Dynamic path resource estimation is used in the suggested

sytem. Information stream centric computing adds a number of new challenges. Even in a

real network environment, it is difficult to obtain the source traffic model. In the active

paradigm, network computation adds an additional set of complex variability. All

network nodes do not have the same processing capability. The processing time can vary

for different contents and for the degree of customization. The initial data can

1 RFC 3246 defines the Expedited Forwarding Per-Hop Behavior (PHB) with the intent to provide a building block for low delay, low

jitter and low loss service by ensuring that the EF aggregate is served at a certain configured rate.

110

dramatically alter in size and time spacing at each stage of servicing. The capsule data

unit can be of unequal size. All packets are not uniformly needed by the service capsules.

Also, there is an effect of non sequential access. Some of the packets should be used at

the same time by the service component, while some others may not be accessed at all. In

this paper, a joint buffering and scheduling based algorithm are demonstrated which

corrects both computation and transmission difference to reduce the jitter variations to get

jitter free play of a video stream.

7.2.2 Multi-path Jitter Model

Application 1 Component 1

Component 3

Component 4 Application 3

Application 2

Component 2

),,1(

,

sspiS

pgt
−),,(

,

sspiD

pgu
),,(

,

sspiD

pgt
),,1(

,

sspiE

pgu
+),,1(

,

sspiE

pgt
+),,2(

,

sspiX

pgu
+),,2(

,

sspiX

pgt
+),,3(

,

sspiP

pgu +

),,1(

,

sspise

pgd
−),,(

,

sspiD

pgd
),,(

,

sspide

pgd
),,1(

,

sspi

pg

E
d

+),,1(

,

sspiem

pgd
+),,2(

,

sspiX

pgd
+),,2(

,

sspimp

pgd
+

),,(

,

sspisp

pgd

),1,(

,

sspiD

pgt
+),1,1(

,

sspiE

pgu
++),1,1(

,

sspiE

pgt
++),1,2(

,

sspiX

pgu
++

),1,(

,

sspisp

pgd
+

),1,(

,

sspide

pgd
+),1,1(

,

sspi

pg

E
d

++),1,1(

,

sspiem

pgd
++

Application 1 Component 1

Component 3

Component 4 Application 3

Application 2

Component 2

),,1(

,

sspiS

pgt
−),,(

,

sspiD

pgu
),,(

,

sspiD

pgt
),,1(

,

sspiE

pgu
+),,1(

,

sspiE

pgt
+),,2(

,

sspiX

pgu
+),,2(

,

sspiX

pgt
+),,3(

,

sspiP

pgu +

),,1(

,

sspise

pgd
−),,(

,

sspiD

pgd
),,(

,

sspide

pgd
),,1(

,

sspi

pg

E
d

+),,1(

,

sspiem

pgd
+),,2(

,

sspiX

pgd
+),,2(

,

sspimp

pgd
+

),,(

,

sspisp

pgd

),1,(

,

sspiD

pgt
+),1,1(

,

sspiE

pgu
++),1,1(

,

sspiE

pgt
++),1,2(

,

sspiX

pgu
++

),1,(

,

sspisp

pgd
+

),1,(

,

sspide

pgd
+),1,1(

,

sspi

pg

E
d

++),1,1(

,

sspiem

pgd
++

Figure 38 The Multi-path Jitter Model

111

In this section, a jitter analysis framework for a multi-path computation MTO

channel is provided first.

In any computing service, the delay (and jitter) can occur not only in the network

pathway during the transmission, but also in the processing capable nodes during their

processing. Therefore, overall delay contains computation delays as well as transmission

delays. The model will include both.

The notation will be explained first. The notation is rather complex because of the

three-level mapping required between the flow, processing and the network. For denoting

the delays, the following two-level notations are used. Subscripts are used to refer to the

ADU’s sequence number (g) and the path number (p). Each ADU is processed by a set of

sub-task components (M). There can be multiple instances of a component in a network.

First each sub-path should have a copy of each component. Also, for some type of

services (such as tree-computing in a multicast distribution scenario shown in Figure 38)

an information stream on its way can encounter multiple services with recurrence of the

whole set of transformations. Components are also ordered and have a stage index.

Therefore, in the superscript, each component’s M is also identified with its stage index

(i), service number (s) and the sub-path number (sp) within this service. These three

appear as an argument of the stage name. Thus, let g, p, sp, m, s denotes respectively the

g-th ADU, path number, sub-path number, component name, and the delay stages in a

service. Then the delay experienced by an ADU along a path p can be expressed as:

()∑=
M

m

sspim

pgpg dD
),,(

,, (1a)

112

For example the computing service is defined by a set of sub-task processing stages:

},,{ XEDA ⊆

Where, D, E, X respectively represent the computation delays in the computing unit

D, E, and X units. Their orders are 1, 2 and 3 respectively. Thus the total delay stages

include the communication delays as well:

},,,,{ XexEdeDM ⊆

Here, de and ex represent the communication delays in the first and second stages

respectively.

Thus the objective of the proposed algorithm is to reduce the variation in inter-

departure time from the joint defined by (1b):

∑ −−=
Stream

g

pgpg DDJ ,1,

(1b)

Each component has a computation delay. This computation delay can be shown as

in (2).

ii

c

isspia

pg Bred /
),,(

, ×= (2)

Here, e
i
 is the input ADU size in bits, r

i
c is a computation needed for the component

in flops per input bits. Bi is the processing power on the node running the component (or

cycles allocated to the service) in units of flops. After the stream flows via a processing

capable component, its size can change. The output stream size is represented by a stage

expansion factor. The stream size after the i-th stage is thus expressed as in (3).

∏
=

×=
i

j

ji
rFf

0

 (3)

113

Let f
i
 is an output stream size while F is an initial input stream size and r

i
 is a stage

expansion factor or output bits per input bits of a stage i. The relation of f
i
, e

i
 and r

i
 is

shown in (4)

iii fer =× (4)

The delay in a link is shown in (5).

ijisspiij

pg Bfd /),,(

, = (5)

Here, f
i
 is an output stream size as seen in (3) while B

ij
 is a bandwidth of link i.

7.2.3 Algorithm

Following is the structure of the control algorithm. The logical components

dynamically estimate the incoming link bandwidths and computation rates experienced

by the ADUs. Following the same flow path the estimates then flow downstream into the

joint component. The joint node then sends the aggregate feedback back to the fork point

that dynamically schedules the newly arriving ADUs along the sub-paths to reduce the

overall jitter and timely processing of the ADUs.

Proper sub-path selection for a given ADU in a stream is critical to reduce delay

jitter in a stream having several processing stages. Selection of proper sub-path is based

on the delays measured along the competing paths.

114

7.2.4 Scheduling

Given the streaming rate (R), the algorithm estimates a relative target arrival time

(Tg) at the destination for each ADU. A quantity maximum allowed delay is estimated for

each ADU based on this deadline.

The algorithm chooses a least weighted time path (to be explained shortly) among

the paths which have predicted delay less than the maximum allowed delay.

When there are multiple conforming sub-paths, the weighted time is a time based on

the average delay time and the delay variation of the sub-path. If no sub-path could

process a given ADU within the deadline for it, then the least delay time sub-path is

chosen without considering the variations.

The algorithm starts optimistically. At the start of the flow, the average delay is

initialized to the lowest possible delay of the path and the delay variation is initialized to

zero. During the run time, the average time and delay variations are adjusted by

measurement on each sub-path. The joint gathers individual delays and delay variations

from each sub-path and informs the values to the scheduler in fork. So, even if the initial

values are not correct, the algorithm improves the estimates as processing progresses.

7.2.5 Delay Estimation

An expected sub-path delay is the sum of (i) expected delay of transmission from

fork to the first sub-path processor, (ii) sub-path processing time, and (iii) transmission

115

time from last sub-path processor to the joint. The following equation is used for deriving

expected delays along each sub-path:

),,1(

,

),,1(

,

),,(

,

),,(

,

~~~~ sspiex

pg

sspiE

pg

sspide

pg

sspisp

pg dddd
++ ++=  (6) 

 

Links Capacity Estimation: As seen in (5), ),,(

,

~ sspide

pgd and ),,1(

,

~ sspiex

pgd
+ can be predicted 

based on f
i
 and B

ij
, but f

i
 and B

ij
 may vary for several reasons. The actual compression on 

each ADU can vary from the ideal compression ratio. The network activities on a link 

may cause different B
ij
 values from time to time. So, each of the nodes in a sub-flow 

including the joint estimates the average values based on previous measurements: 

),,(

,

),,(

,

~
/~~ sspiij

pg

isspiij

pg Bed =  (7) 

The bandwidth for each incoming link is approximated by each receiving node, 

including the fork node, using the method shown in (8). 

k

BkB
B

sspiij

pkg

sspiij

pkgsspiij

pg

),,(

),1(

),,(

),2(),,(

,

)1(~ −− +−×
=  (8) 

Here, k is the number of ADUs which arrived at the receiver node or arrived at the 

joint using sub-path sp. The g(k) is a k-th ADU number which passed through the sub-

path sp. The join estimates the quantity separately for each incoming flow. If the path has 

no history then the last known or initially known bandwidth is used.  Please note that the 

right hand side quantities of the equation are observed bandwidth at the joint, not a 

prediction. 



 

 

116 

 

Processing Capacity Estimate: Similar to the transmission delay, the component 

delay can also be different from the ideal expected value.  Thus, averages are estimated 

here as well. 

),,(

,

),,(

),1(

),,(

),2(),,(

,

)1(~ sspia

pg

i

sspia

pkg

sspia

pkgsspia

pg Qe
k

dkd
d +×

+−×
= −−  (9) 

Equation (9) is for delay of a component a (a⊆A). It is derived from the average 

delay per bit observed on the previous ADU’s on the sub-path sp and the current input 

ADU size, e
i
. Also, in each component, it has a queuing delay ),,(

,

sspia

pgQ . In computing 

service all the components do not operate in identical speed. Each processing component 

thus maintains an incoming queue of unprocessed ADUs. There is negligible queuing 

delay on the component D. It is relatively fast though compared with the encoding speed. 

The encoder’s queuing delay is given to equation (10). 

node.the  in scheduled ADU unstartedW

sppath -sub in encoder in c, ADU, encoding current oftime  Start

time Current

sppath -sub in encoder in c, ADU, encoding current of delay expected

=

=

=

+−−= ∑
∈

),,(

),,(

,

),,(

,

),,(),,(

,

),,(

,

:
~

~
)(

~

W

sspiE

s

c

sspiE

pc

w

sspiE

pw

sspiE

sc

sspiE

pc

sspiE

pg

T

T

d

dTTdQ

 (10) 

The delay variations of sub-paths are used to select a proper sub-path for a given 

ADU. Its use provides the worst expected delay time in each path and thus can help in 

selecting reliable path. Equations (11) and (12) are used to track delay variation. 

1

~
)(

)(

),,(

,

),,(

),(),,(

, +
+×

=
k

dkdAvr
dAvr

sspisp

pg

sspisp

pkgsspisp

pg  (11) 

1

)()(
)(

),,(

,

),,(

,

),,(

),(),,(

,

~

+

−+×
=

k

dAvrk
dVar

sspisp

pg

sspisp

pg

sspisp

pkgsspisp

pg

ddVar  (12) 



 

 

117 

 

7.2.6 Buffering 

 

To absorb the jitter, the joint maintains an optimum jitter buffer. The queuing delay 

in joint, dg,p
x(i,sp,s)

, do as not need to be considered in selecting a sub-path because the 

joint absorbs it. The joint buffer also absorbs the jitter in the multi-path flow. The joint 

tries to send the ADUs at a smooth rate to the source. In the joint, the buffer size is 

occasionally dynamically estimated to provide the jitter absorption while keeping the 

delay at a minimum. The delay variation and maximum delay is used to get proper buffer 

size. The following equations are used to get buffer size at the joint. First, the maximum 

probable path delay is estimated in equation (13) for each path. Then, the worst path 

delay is estimated in equation (14). In a similar way, the estimation of the worst observed 

path delay variance is calculated using equations (15) & (16). The buffer size is 

dynamically adjusted to accommodate the maximum expected delay including the worst 

possible overshoot indicated by the delay variance. 

)
~

()
~

()
~

()
~

( ),,1(

,

),,1(

,

),,(

,

),,(

,

sspiex

pg

sspiE

pg

sspide

pg

sspisp

pg dMaxdMaxdMaxdMax
++ ++=  (13) 

)
~

,...,
~

,
~

()
~

( ,

,

,1

,

,0

,,

ssp

pg

s

pg

s

pg

s

pg dddMaxdMax =  (14) 

))
~

(())
~

(())
~

(())
~

((
),,1(

,

),,1(

,

),,(

,

),,(

,

sspiex

pg

sspiE

pg

sspide

pg

sspisp

pg dVarMaxdVarMaxdVarMaxdVarMax
++ ++=

 
(15) 

)))
~

()),...,
~

()),
~

(())
~

( ,

,

,1

,

,0

,, ((((
ssp

pg

s

pg

s

pg

s

pg dddd VarMaxVarMaxVarMaxMaxVarMax =  (16) 

AverageADUperADUofNodVarMaxdMaxBufferSize
ssp

pg

ssp

pg ××+= sec)(.)))
~

((.)
~

(( ,

,

,

, α
 

(17) 

Where 
α

=1 is typically used. 



 

 

118 

 

7.2.7 Scheduling Algorithm 

 

A sub-path is selected for processing each ADU, a part of the information stream. 

The selection is based on the processing delay of the sub-path. First, it selects available 

sub-paths satisfying targeted delay of the ADU of the information stream. Among the 

available sub-paths satisfying the minimum delay constraints, it chooses the sub-path 

with the lowest variability. On the other hand, if there is no sub-path satisfying the 

targeted delay, then it chooses the lowest delay sub-path without considering the 

variability. 

SelectSubPath(AllowedDelay)

if subPathListSize > 0

return selSubPath

GetAvailSubPathList

(AllowDelay)

Select lowest

delay sub-path

Select lowest

weight sub-path

Y

N

ComputingTime(sp)

return weightTime

weightTime =

Delay(sp) + Var(sp)

GetAvailSubPathList(AllowDelay)

for (p<MAX_AVAIL_SUBPATH)

if Delay(p) < AllowDelay

add subPath sp to

AvailSubPathList

Return

AvailSubPathList

Y

N

Y

N

SelLowestWeightSubPath

for (p<SubPathListSize)

if ComputingTime(p) <

ComputingTime(selSubPath)

selSubPath = p
Return

selSubPath

N

Y

N

Y

SelLowestDelaySubPath

for (p<MAX_AVAIL_SUBPATH)

if Delay(p) <

Delay(selSubPath)

selSubPath = sp

Return

selSubPath

N

Y

N

Y

(a)
(b)

(c) (d)

(e)

SelectSubPath(AllowedDelay)

if subPathListSize > 0

return selSubPath

GetAvailSubPathList

(AllowDelay)

Select lowest

delay sub-path

Select lowest

weight sub-path

Y

N

SelectSubPath(AllowedDelay)

if subPathListSize > 0

return selSubPath

GetAvailSubPathList

(AllowDelay)

Select lowest

delay sub-path

Select lowest

weight sub-path

Y

N

ComputingTime(sp)

return weightTime

weightTime =

Delay(sp) + Var(sp)

ComputingTime(sp)

return weightTime

weightTime =

Delay(sp) + Var(sp)

GetAvailSubPathList(AllowDelay)

for (p<MAX_AVAIL_SUBPATH)

if Delay(p) < AllowDelay

add subPath sp to

AvailSubPathList

Return

AvailSubPathList

Y

N

Y

N

GetAvailSubPathList(AllowDelay)

for (p<MAX_AVAIL_SUBPATH)

if Delay(p) < AllowDelay

add subPath sp to

AvailSubPathList

Return

AvailSubPathList

Y

N

Y

N

SelLowestWeightSubPath

for (p<SubPathListSize)

if ComputingTime(p) <

ComputingTime(selSubPath)

selSubPath = p
Return

selSubPath

N

Y

N

Y

SelLowestWeightSubPath

for (p<SubPathListSize)

if ComputingTime(p) <

ComputingTime(selSubPath)

selSubPath = p
Return

selSubPath

N

Y

N

Y

SelLowestDelaySubPath

for (p<MAX_AVAIL_SUBPATH)

if Delay(p) <

Delay(selSubPath)

selSubPath = sp

Return

selSubPath

N

Y

N

Y

SelLowestDelaySubPath

for (p<MAX_AVAIL_SUBPATH)

if Delay(p) <

Delay(selSubPath)

selSubPath = sp

Return

selSubPath

N

Y

N

Y

(a)
(b)

(c) (d)

(e)

 

Figure 39 Sub-Path Selection Algorithms 

 



 

 

119 

 

7.2.8 Complexity of the Path Selection 

 

The flowchart of the path selection algorithm is given in Figure 39. The time 

complexity of GetAvailSubPathList(), SelLowestDelaySubPath(), and 

SelLowestWeightSubPath() take O(sp). The time of ComputingTime() take O(1). The 

time of SelectSubPath() =O(sp)+{O(sp) or O(sp)}. Therefore, the SelectSubPath() takes 

O(sp) while sp is the number of sub-path. Generally the number of sub-paths is relatively 

small. So, the algorithm is reasonably fast. 

 



 

120 

 

CHAPTER 8  

Performance Analysis 

8.1 Test bed 

8.1.1 ABONE 

 

The suggested active MTO channel system (AMCS) does not need to have a specific 

hardware platform or software infrastructure. However, the experiments of the AMCS 

have been conducted on ABONE, launched under the DARPA ANI Initiative. [25] 

ABONE is an operational network and provides an Internet wide network of routing as 

well as processing capable nodes. Providers can contribute a confederation of computing 

capable nodes. Independent application involving multiple trust domains can be securely 

launched and executed.  ABONE currently has about 100 nodes. The nodes are available 

from Europe, Asia and North America. DARPA’s goal is to achieve about 1000 nodes. 

Resources in individual nodes are contributed and managed locally and independently by 

the contributing site administrators. However, the administrators do not have to manage 

the remote users. Authenticated remote applications can install and execute programmed 

components on any collection of these nodes via the ABONE backbone management and 

control backplane being a part of a centralized user pool. The codes are distributed via an 

enlisted set of Trusted Code Servers  (TCS), which help authenticating them prior to 

distribution. The security domains are handled by the backplane control system. The 

backplane is being maintained by the ABONE Coordination Center (ABOCC) at ISI at 



 

 

121 

 

the University of Southern California. ABONE status can be monitored live from the 

ABOCC web site. [15] Technical information about ABONE is available from ABOCC. 

However, in this section a brief elaboration of its architecture and security relevant to our 

experiment is provided. 

8.1.2 ABONE Software Architecture 

 

The software structure of ABONE node involves a native Node Operating System 

(NOS) and Execution Environments (EEs). Current ABONE nodes are running on a 

variety of underlying NOS including Linux, Solaris and FreeBSD. Each EE acts like a 

remote shell providing a programming construct to a processing capable component. 

Nodes can support multiple EEs. Each EE can run multiple applications from multiple 

user domains concurrently. A number of EEs have been developed. Currently ABOCC 

permanently supports ASP, ANTS, and PLAN. [14][26]  The management & control of 

ABONE nodes is provided by the ANETD system.  [15] The ANETD allows users to 

obtain secured and controlled access to the ABONE resources. Its central function is to 

provide a safe execution environment for programmable components from multiple trust 

domains under the supported EEs. It itself has been designed as a special EE (account 

ABOCC) to support its own management, such as starting, stopping, monitoring and 

upgrading of the ANETD. At the core of ANETD is a robust access control and security 

model that enables users, codes, and nodes to be authenticated without individual node 

administrators to worry about them. 

 



 

 

122 

 

8.1.3 ABONE Security & Authentication Model 

 

ANETD uses 512 bit public key cryptography to authenticate control commands. 

Each control command sent to an ANETD is digitally signed to ensure that ANETD 

access control policies are soundly enforced. ANETD enforces access control by 

enforcing two overlapping security domains. (a) It allows execution, deployment and 

control commands only originating from a set of known pairs, which is maintained by a 

list called the access control list (ACL). (b) It downloads and executes code only from a 

set of trusted servers (HTTP servers or local files/directories) specified in trusted code-

server list (TCL). There are two categories of ACL and TCL: master and local. If 

ANETD is running as ABONE node, than it first reads all master ACL/TCL files, which 

are maintained and fetched from an ABOCC server, followed by all available local 

ACL/TCL files, which are maintained by local ABONE node administrators. If a node is 

configured as standalone, ANETD applies all local ACL/TCL files. The access control 

list (ACL) contains client node list. Each list has client ID, public key of the client which 

is a 512-bit public key, and optional parameters. The trusted code-server list contains a 

list of servers represented by a URL form, which specifies a single file or the root 

directory of permissible download codes.  

 

8.1.4 Concurrent MTO Channel Experimental Environment 

 

In the test bed environment, Linux boxes in a gigabit Ethernet connection are used. 

A concurrent MTO channel and altered routing channels are used for performance 



 

 

123 

 

measurement of the MTO channel construction. Figure 40 shows the test bed. The 

network nodes run RedHat 9.0 and uses AMD Athlon XP 1800+ or 1700+ with 256MB 

Memory. 

 

cchannel

cc_src

cc_dst

altchannel

altchannel

altcsrc

altcsrc

altcctr

altcctr

altcdst

altcdst

mk02mk01

mk00

mk03

Module Server

ServiceFindServer

NetworkInfoServer

mk04

Module Server

ServiceFindServer

NetworkInfoServer

mk04

Kent Active Node ClusterKent Active Node Cluster
 

Figure 40 The MTO Channel Construction Test Bed 

 

Table 29 shows the tested MTO channel’s types and sizes. The concurrent MTO 

channel and the altered routing MTO channel are written in the Java programming 

language. They are compiled and executed in JDK 1.4.2. 

 

Table 29 The Tested MTO Channel’s Types and Sizes 

Channel Component Name Component Type 
Component Size 

(byte) 

CC_mgr Channel Manager 24531 

CC_src Service Server 20133 
Concurrent MTO 

Channel 
CC_dst Service Server 18049 

ALTC_mgr Channel Manager 16461 

ALTC_src Service Server 14898 

ALTC_ctr Service Server 14896 

Altered Routing 

MTO Channel 

ALTC_dst Service Server 14890 



 

 

124 

 

 

8.1.5 SONET MTO Channel Experimental Environment 

 

In SONET test environment, a total of five ABONE nodes are used, each machine 

runs RedHat Linux 7.1. They include three AMD Athlon 1.4GHz machines, one AMD 

Athlon XP 1700+ machine, and one dual Pentium III 450Mhz machine. Three encoders 

were used in the simulation.  The nodes receive authenticated transcoding service 

components from a code server located at KSU Medianet Lab. Those are run on Athlon 

1.4GHz, Athlon XP 1700+, and dual Pentium III 450MHz machines. The deployment, 

management and monitoring process was automatic and adaptive. 

Selected nodes had different computation powers to make sure that paths have 

different delay variations in transcoding a video stream. The selected source video 

streams had identical contents but were initially encoded with different frame and ADU 

size (GOP size).  The node and link capacities also had dynamic variations. There were 

other activities on the processing capable nodes as they were running on open ABONE. 

The SONET MTO channel manager had a full graphical interface running on a local 

machine, and it provided the one point graphical visualization to the run time state of the 

entire component system. In the SONET MTO channel system, the system monitoring is 

built-in and thus the statistic information is gathered without any other modification. The 

status monitoring costs are already included in the signaling costs. 

 

 



 

 

125 

 

Table 30 The SONET MTO Channel’s Types and Sizes 

Channel Component Name Component Type 
Component Size 

(byte) 

SONET_mgr Channel Manager 93127 

SONET_enc Service Server 87881 
SONET MTO 

Channel 
SONET_dec Service Server 25351 

 

Table 30 shows the SONET MTO channel’s components, types, and sizes. The 

SONET MTO channel is written in the C programming language and compiled by GCC 

2.96. 

 

8.2 Experiment Results 

 

8.2.1 MTO Channel Deployment Overhead 

8.2.1.1 MTO Channel Optimization 

 

The optimization is done before actual MTO channel deployment. The optimization 

is done when the channel deployment planning time. Figure 41 shows number of used 

channel components for GC(a,e) in section 4.5. 

 



 

 

126 

 

11

3

33

2
3

15

0

10

20

30

40

50

N
u

m
b

e
r 

o
f 

C
o

m
p

o
n

e
n

ts

Unoptimized Optimized

Number of used MTO Channel Component

ARC

CC

GC

Total: 47

Total: 20

 

Figure 41 The Number of Used MTO Channel Component in GC(a,e) 

 

GC has one component in the MTO channel, and CC has three channel components 

to deploy. The number of deploying channel components for the ARC MTO channel is 

three plus the number of intermediate computing points (ICPs) for ARC_ctr components. 

The number of MTO channel components for GC(a,e) is 47 (unoptimized) and 20 

(optimized). 

 



 

 

127 

 

1333
760

962

1300

0

500

1000

1500

2000

2500

3000

3500

T
im

e
 (

m
s
)

Parallel Setup Sequential Setup

CC MTO Channel Assembly Time

ARC2

ARC1

CC

Total: 3022

 

Figure 42 A CC MTO Channel Assembly Time 

 

Figure 42 shows the MTO channel assembly complexity. If a MTO channel were 

constructed sequentially, it would take 3022 ms. However, when the MTO channel is 

constructed in parallel, as it normally is, it only take 1333 ms. 

 

8.2.1.2 Concurrent MTO Channel 

 

The following figures show the measurement result of MTO channel construction 

overhead. 



 

 

128 

 

Channel Construction Overhead (Load)

0

2

4

6

8

10

12

14

cc

cc
_s

rc

cc
_d

st
al
tc

al
tc
_sr

c

al
tc
_ct

r

al
tc
_ds

t

al
tc
2

al
tc
2_s

rc

al
tc
2_c

tr

al
tc
2_d

st

Channel Component Name

T
im

e
 (

m
s
)

load

 

Figure 43 A Loading Overhead for CC MTO Channel Construction 

 

Figure 43 is a graph for the loading overhead of the concurrent MTO channel 

construction. The differences of each component size mainly cause the loading time 

differences. The loading time is relatively small compared to the service time of a MTO 

channel. 

 

Channel Construction Overhead (Activation)

0

100

200

300

400

500

600

700

cc

cc
_s

rc

cc
_d

st
al
tc

al
tc
_sr

c

al
tc
_ct

r

al
tc
_ds

t

al
tc
2

al
tc
2_s

rc

al
tc
2_c

tr

al
tc
2_d

st

Channel Component Name

T
im

e
 (

m
s
)

act

 

Figure 44 An Activation Overhead for CC MTO Channel Construction 



 

 

129 

 

 

Figure 44 shows the activation overhead of the MTO channel construction system. 

An activation time is a time period needed to activate a MTO channel component from 

the time of a specific MTO channel component invocation request to the time of 

notification reception from the invoked component. The time overheads are relatively 

larger than the other overheads because of the efficiency of the Java virtual machine. The 

MTO channel construction system was programmed in java language for its portability. 

 

8.2.1.3 SONET MTO Channel 

 

(a) (b)

(c)

Server

Player

SONET_enc
SONET_enc

SONET_mgr
SONET_enc

CM

SONET_mux

Server

Player

SONET_enc
SONET_enc

SONET_mgr
SONET_enc

CM

SONET_mux

SONET_mux

Server

Player

SONET_enc

SONET_enc

SONET_mgr

SONET_encCM

(a) (b)

(c)

Server

Player

SONET_enc
SONET_enc

SONET_mgr
SONET_enc

CM

SONET_mux

Server

Player

SONET_enc
SONET_enc

SONET_mgr
SONET_enc

CM

SONET_mux

Server

Player

SONET_enc
SONET_enc

SONET_mgr
SONET_enc

CM

SONET_mux

Server

Player

SONET_enc
SONET_enc

SONET_mgr
SONET_enc

CM

SONET_mux

Server

Player

SONET_enc
SONET_enc

SONET_mgr
SONET_enc

CM

SONET_mux

Server

Player

SONET_enc
SONET_enc

SONET_mgr
SONET_enc

CM

SONET_mux

Server

Player

SONET_enc
SONET_enc

SONET_mgr
SONET_enc

CM

SONET_mux

Server

Player

SONET_enc
SONET_enc

SONET_mgr
SONET_enc

CM

SONET_mux

SONET_mux

Server

Player

SONET_enc

SONET_enc

SONET_mgr

SONET_encCM

SONET_mux

Server

Player

SONET_enc

SONET_enc

SONET_mgr

SONET_encCM

SONET_mux

Server

Player

SONET_enc

SONET_enc

SONET_mgr

SONET_encCM

SONET_mux

Server

Player

SONET_enc

SONET_enc

SONET_mgr

SONET_encCM

 

Figure 45 SONET MTO Channel Test Network Configurations 



 

 

130 

 

 

Figure 45 shows the network test bed for performance measurements. The system 

was tested in three test bed scenarios. In the first scenario, (shown in Figure 45(a)) the 

application as well as the SONET MTO channel components-- all were deployed in a 

single autonomous system’s LAN. In the second scenario the application end points 

(server and players) were in different networks but SONET MTO channel computation 

was performed in a single network (shown in Figure 45(b)).  

20

15.4

29.1

28.6

30.7

18.6

15.1

27.9

27.3

30.1

18.9

14.9

28.4

28

29.7

0

20

40

60

80

100

120

140

T
im

e
 (

m
s
)

testbed 1 testbed 2 testbed 3

Module Deployment Time

SONET_enc3

SONET_enc2

SONET_enc1

SONET_mux

SONET_mgr

123.8 119.0 119.9

 

Figure 46 A SONET MTO Channel Component Deployment Time 

 

In the third setup, the application as well as each SONET MTO channel component, 

was in distinct networks (shown in Figure 45(c)). The corresponding component 

deployment time of each test bed is shown in Figure 46. The component deployment time 

is averaged over 10 trials in each test bed. As shown in this figure, the first test bed takes 

more while the second and third test beds take approximately the same amount of time. 



 

 

131 

 

The stacks show how much time is taken by individual components of the system. In all 

three scenarios the total component deployment took about 1.2 seconds. It includes 

authentication, automatic component transfer and their activation in each processing 

capable node. 

Channel Construction Overhead (Activation)

34

35

36

37

38

39

40

SONET_mgr SONET_enc1 SONET_enc2 SONET_enc3 SONET_mux

Channel Component Name

T
im

e
 (

m
s

)

Act

 

Figure 47 An Activation Overhead for SONET MTO Channel Construction 

 

Figure 47 shows an activation time for SONET MTO channel. The SONET MTO 

channel is written in the C programming language. The activation time is faster than the 

time of concurrent channel, which is written in the Java programming language. 

 

 

 

 

 



 

 

132 

 

8.2.2 Signaling Overhead 

 

8.2.2.1 Concurrent MTO Channel 

 

Channel Construction Overhead (signal)

0

20

40

60

80

100

120

140

cc

cc
_s

rc

cc
_d

st
al
tc

al
tc
_sr

c

al
tc
_ct

r

al
tc
_ds

t

al
tc
2

al
tc
2_s

rc

al
tc
2_c

tr

al
tc
2_d

st

Channel Component Name

S
ig

n
a
l 

(b
y
te

s
)

signal

 

Figure 48 A Signaling Overhead for MTO Channel Construction 

 

The signaling overhead for MTO channel construction is shown in Figure 48. The 

required signal is measured in byte size. The size of the signal is very small considering 

the size of actual communication data quantity. 

 

8.2.2.2 SONET MTO Channel 

 

The entire synchronization was performed by inter components signals. Clearly, a 

concern was how much communication resource was consumed by this. Therefore, the 

signaling overhead is logged in each component. The signal overhead is plotted in Figure 



 

 

133 

 

49. It plots individual SONET MTO channel components in scenario. For comparison, 

the second bar also shows the actual ADU data volume. This is a log plot. As shown in 

Figure 49, relatively small network resources are used for achieving coordination and 

control among the components. 

1

10

100

1000

10000

100000

T
im

e
 (

m
s
)

Control

Signals

Data Control

Signals

Data Control

Signals

Data

Test bed 1 Test bed 2 Test bed 3

Control signal vs. Data transfer time

SONET_mux

SONET_enc

SONET_mgr

573

75921

345

62819

380

63103

 

Figure 49 Control Signals vs. Data Transfer Time on Different Networks 

 

It uses the same video. Thus, the transcoding time and control signals remain the 

same. Test bed 1 takes approximately 12 seconds more on transferring data than test bed 

2 or 3. This indicates network resources are bottleneck in test bed. 

 

 

 

 



 

 

134 

 

8.2.3 Concurrent Channel’s Transmission Speed 

 

Transmission Time

9.1

21.4

33.8

70.1

122.4

6.0
12.5

18.8

53.8

107.8

0

20

40

60

80

100

120

140

11.573 34.719 56.517 113.034 169.551

Data Size (MB)

E
la

p
s

e
d

 T
im

e
 (

S
e
c

)

One Path

Two Path

 

Figure 50 A Concurrent Channel’s Data Transmission Time 

 

A concurrent channel’s data transmission time is shown in Figure 50. The 

experimented concurrent channel is used one and two transmission paths. The concurrent 

channel has performance benefit over single path transmission. Over the all data 

transmission size, the double path channel has advantage over single path channel. 

However, it receives less promotion when the transmission data size is small to fill its 

buffer than more data ready. The double path concurrent channel also consumes 

significant time on handling transmission data when the data is larger than it normally 

can process. 

 



 

 

135 

 

8.2.4 SONET MTO Channel’s Cold Start Adaptation for Video Sizes 

 

Performance comparision

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50 55

GOP No.

F
ra

m
e

 p
e
r 

s
e
c

o
n

d
s

1 2 3
Number of processors

320x240x9

320x240x12

320x240x15

704x480x9

704x480x12

704x480x15

 

Figure 51 A Performance Comparisons among Different Frame Size and Computation 

 

Figure 51 shows the frame-rate observed in their sample run on a small uncontrolled 

(with background computational and communication load) processing capable network 

consisting of 5 processing capable routers (with capacity ranging from 400 MHz ~ 1.5 

GHz P4 processors, and the interconnections were 10/100 Ethernets with uncontrolled 

cross traffic). The system is deployed by itself and finds optimum mapping. Figure 51 

plots the frame/ second statistics recorded at the GOP-MUX unit. It plots the performance 

for both 320x240 and 704x480 frame sizes streams at three different ADU (GOP) sizes. 

The computation load heavily depends on the number of macro-blocks and frame size. 

Based on the frame size the frame transcoding rate varied from 5-30 frames/second. 



 

 

136 

 

The adaptive behavior is noticeable at the step-like increments at the very beginning. 

Initially, the MTO channel used only one processing capable node. The single node was 

unable to sustain the target rate. Soon, it auto-deploys additional nodes. For example, for 

704x480 video the second and the third nodes were deployed some time before the 20th 

and 60th seconds respectively. These delays represent the full feedback and effectuation 

delays. They include (i) the time to detect insufficiency, (ii) the time for stream auto 

deployment, and (iii) the time it takes the new results to appear at the MUX. As evident 

from the jumps, only three processing capable paths were available. This is dependent on 

the underlying network configuration. 

The above results have been obtained from a transcoder running in full motion 

computation (FMC) mode [17]. While a general purpose transcoder supporting arbitrary 

video processing will require full encoding and decoding (used here), more special 

purpose processing can be performed by domain specific optimized computation. For 

example, further acceleration is achievable if motion vector computation bypass (MCB) 

mode is selected. However, the actual speedup is quite complex by the very nature of the 

paradigm. It will depend on the cost of full motion search which is also configurable, and 

the ability of computational paths (not only the computing power but also the required 

bandwidth). 

 

 

 

 



 

 

137 

 

8.2.5 SONET MTO Channel’s Adaptation for Compute Power  

 

FPS adaptation time

0

5

10

15

20

25

30

35

40

45

50

47
85

7

49
67

1

52
52

9

55
31

0

57
33

7

58
55

8

59
86

2

60
61

2

61
54

0

62
64

0

63
29

6

64
28

9

65
24

9

66
15

3

66
86

3

67
85

2

68
71

8

69
69

8

70
90

6

71
51

7

72
40

0

Time (ms)

F
ra

m
e
 p

e
r 

s
e
c
o

n
d

s

T1 Event T2 Event T3 Event T1 FPS T2 FPS T3 FPS

5
8

0
3

8

6
0

2
4

0

6
8

5
3

0

5
7

8
8

7

6
0

1
3

3

6
8

6
3

4

5
8

0
6

4

5
9

5
4

4

6
7

8
5

2

FPS adaptation time

0

5

10

15

20

25

30

35

40

45

50

47
85

7

49
67

1

52
52

9

55
31

0

57
33

7

58
55

8

59
86

2

60
61

2

61
54

0

62
64

0

63
29

6

64
28

9

65
24

9

66
15

3

66
86

3

67
85

2

68
71

8

69
69

8

70
90

6

71
51

7

72
40

0

Time (ms)

F
ra

m
e
 p

e
r 

s
e
c
o

n
d

s

T1 Event T2 Event T3 Event T1 FPS T2 FPS T3 FPS

5
8

0
3

8

6
0

2
4

0

6
8

5
3

0

5
7

8
8

7

6
0

1
3

3

6
8

6
3

4

5
8

0
6

4

5
9

5
4

4

6
7

8
5

2

 

Figure 52 A FPS Adaptation Reaction Time 

 

The SONET MTO channel system offers two forms of adaptation. The first is the 

change in the availability of the processing-capable nodes and the other is the change in 

their computing powers. In this experiment, incremental allocation of additional CPU 

power is emulated in the processing-capable nodes into the system in three steps (events 

T1, T2 and T3) by changing the target frame rate of the SONET MTO channel system. 

The corresponding change in SONET_mux buffers throughput frame rate (FPS) 

observed in the SONET_mux unit is shown in Figure 52. As shown in this figure, the 

reaction starts 1.5 to 2.2 seconds while the completion of reaction takes 9.8 to 10.7 

seconds. Whenever there is a change in the network condition/ capacity the adaptive 



 

 

138 

 

system responds.  It also shows the reaction time. More computation power gave more 

performance boost as expected. However, the first impacts of the events on the 

throughput were reflected in about 1.5 to 2.2 seconds. It took a little more time before the 

full effects took place. 

8.2.6 SONET MTO Channel’s Adaptation for Output Data Rate Change 

 

Rate adaptation time

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

97
07

7

97
17

7

97
41

5

97
49

3

97
64

3

97
64

3

97
89

2

98
04

3

98
06

9

98
32

9

98
46

4

98
76

4

98
88

7

99
20

2

99
22

0

99
43

7

99
54

7

99
81

6

10
01

16

10
03

08

10
04

09

10
09

68

10
10

37

10
12

17

10
12

46

10
14

82

Time (ms)

G
O

P
 s

iz
e

 (
b

y
te

s
)

T1 Event T2 Event T3 Event T1 Size T2 Size T3 Size

9
8

0
4

3

9
8

8
8

7

9
9

4
3

7

9
7

8
9

2

9
8

3
2

9

9
9

5
4

7

9
8

0
6

9

9
8

7
6

4

9
9

8
1

6

Rate adaptation time

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

97
07

7

97
17

7

97
41

5

97
49

3

97
64

3

97
64

3

97
89

2

98
04

3

98
06

9

98
32

9

98
46

4

98
76

4

98
88

7

99
20

2

99
22

0

99
43

7

99
54

7

99
81

6

10
01

16

10
03

08

10
04

09

10
09

68

10
10

37

10
12

17

10
12

46

10
14

82

Time (ms)

G
O

P
 s

iz
e
 (

b
y
te

s
)

T1 Event T2 Event T3 Event T1 Size T2 Size T3 Size

9
8

0
4

3

9
8

8
8

7

9
9

4
3

7

9
7

8
9

2

9
8

3
2

9

9
9

5
4

7

9
8

0
6

9

9
8

7
6

4

9
9

8
1

6

 

Figure 53 A Rate Adaptation Reaction Time 

 

The other adaptation ability of the system is to adapt with respect to the change in 

communication capacity. The adaptability is emulated by changing SONET_mux’s 

outgoing link bandwidth allocation from the transcoding system. This change 

automatically triggered the increase in the transcoding ratio of the SONET MTO channel 

system. In Figure 53, the corresponding rate adaptation trigger points and the reaction 



 

 

139 

 

time is shown. As shown in this figure, the reaction starts 0.4 to 0.8 seconds while the 

completion of the reaction takes 1.4 to 1.7 seconds. 

Compared to the FPS adaptation, the rate adaptation’s reaction time is faster, because 

SONET_enc can generate a rate adapted data output immediately in the middle of the 

transcoding, while the FPS adaptation is only shown after a whole ADU is carried and 

transcoded throughout the SONET MTO channel system. 

 

8.2.7 Jitter Controlled SONET MTO Channel’s Jitter & Delay Reduction  

 

Figure 54 and Figure 55 show the simulation results. Figure 54 plots the jitter 

performance both with and without applying the technique. It shows the result for frame 

size 320x240. The x-axis is the GOP number (ADU number) in the video stream and the 

y-axis is delay jitter in seconds. Figure 55 shows the result of frame size 704x480. 

As seen in Figure 54 and Figure 55, delay jitters are reduced dramatically with a 

delay jitter control scheduling. The first few ADUs have more delay jitter variations 

because the scheduler doesn’t know proper initial delays of each path. After some time, 

however, the scheduler adapts in a running environment.  



 

 

140 

 

(a )

3 2 0 x 2 4 0 , G O P  s iz e  9 ,  N o  S c h e d u le d

-3 0

-2 0

-1 0

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 9 1 7 2 5 3 3 4 1 4 9 5 7 6 5 7 3 8 1 8 9 9 7 10 5

G O P  N o .

J
it

te
r
 (

s
e

c
)

(b )

3 2 0 x 2 4 0 , G O P  s iz e  9 , S c h e d u le d

-8

-6

-4

-2

0

2

4

6

1 9 1 7 2 5 3 3 4 1 4 9 5 7 6 5 7 3 8 1 8 9 9 7 1 0 5

G O P  N o .

J
it

t
e

r
 (

s
e

c
)

(c )

3 2 0 x 2 4 0 , G O P  s iz e  1 5 , N o  S c h e d u le d

-3 0

-2 0

-1 0

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 5 9 1 3 1 7 2 1 2 5 2 9 3 3 3 7 4 1 4 5 4 9 5 3 5 7 6 1 6 5

G O P  N o .

J
it

te
r
 (

s
e

c
)

(d )

3 2 0 x 2 4 0 ,  G O P  s iz e  1 5 ,  S c h e d u le d

-6

-4

-2

0

2

4

6

8

1 0

1 2

1 5 9 13 1 7 21 2 5 2 9 3 3 37 41 4 5 49 5 3 57 6 1 65

G O P  N o .

J
it

te
r 

(s
e

c
)

(a )

3 2 0 x 2 4 0 , G O P  s iz e  9 ,  N o  S c h e d u le d

-3 0

-2 0

-1 0

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 9 1 7 2 5 3 3 4 1 4 9 5 7 6 5 7 3 8 1 8 9 9 7 10 5

G O P  N o .

J
it

te
r
 (

s
e

c
)

(a )

3 2 0 x 2 4 0 , G O P  s iz e  9 ,  N o  S c h e d u le d

-3 0

-2 0

-1 0

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 9 1 7 2 5 3 3 4 1 4 9 5 7 6 5 7 3 8 1 8 9 9 7 10 5

G O P  N o .

J
it

te
r
 (

s
e

c
)

(b )

3 2 0 x 2 4 0 , G O P  s iz e  9 , S c h e d u le d

-8

-6

-4

-2

0

2

4

6

1 9 1 7 2 5 3 3 4 1 4 9 5 7 6 5 7 3 8 1 8 9 9 7 1 0 5

G O P  N o .

J
it

t
e

r
 (

s
e

c
)

(b )

3 2 0 x 2 4 0 , G O P  s iz e  9 , S c h e d u le d

-8

-6

-4

-2

0

2

4

6

1 9 1 7 2 5 3 3 4 1 4 9 5 7 6 5 7 3 8 1 8 9 9 7 1 0 5

G O P  N o .

J
it

t
e

r
 (

s
e

c
)

(c )

3 2 0 x 2 4 0 , G O P  s iz e  1 5 , N o  S c h e d u le d

-3 0

-2 0

-1 0

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 5 9 1 3 1 7 2 1 2 5 2 9 3 3 3 7 4 1 4 5 4 9 5 3 5 7 6 1 6 5

G O P  N o .

J
it

te
r
 (

s
e

c
)

(c )

3 2 0 x 2 4 0 , G O P  s iz e  1 5 , N o  S c h e d u le d

-3 0

-2 0

-1 0

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 5 9 1 3 1 7 2 1 2 5 2 9 3 3 3 7 4 1 4 5 4 9 5 3 5 7 6 1 6 5

G O P  N o .

J
it

te
r
 (

s
e

c
)

(d )

3 2 0 x 2 4 0 ,  G O P  s iz e  1 5 ,  S c h e d u le d

-6

-4

-2

0

2

4

6

8

1 0

1 2

1 5 9 13 1 7 21 2 5 2 9 3 3 37 41 4 5 49 5 3 57 6 1 65

G O P  N o .

J
it

te
r 

(s
e

c
)

(d )

3 2 0 x 2 4 0 ,  G O P  s iz e  1 5 ,  S c h e d u le d

-6

-4

-2

0

2

4

6

8

1 0

1 2

1 5 9 13 1 7 21 2 5 2 9 3 3 37 41 4 5 49 5 3 57 6 1 65

G O P  N o .

J
it

te
r 

(s
e

c
)

 

Figure 54 A 320x240 Video Stream Jitter Measurement 

 

(a )

7 0 4 x 4 8 0 , G O P  s ize  9 , N o  S c h e d u le d

- 10 0

-5 0

0

5 0

10 0

15 0

20 0

25 0

30 0

35 0

1 9 1 7 2 5 3 3 4 1 4 9 5 7 6 5 7 3 8 1 8 9 9 7 1 0 5

G O P  N o .

J
it

te
r 

(s
e

c
)

( b )

7 0 4 x 4 8 0 , G O P  s iz e  9 , S c h e d u le d

- 2 0

-1 0

0

1 0

2 0

3 0

4 0

5 0

6 0

1 9 1 7 2 5 3 3 4 1 4 9 5 7 65 7 3 8 1 8 9 9 7 1 0 5

G O P  N o .

J
it

te
r
 (

s
e

c
)

(c )

7 0 4 x 4 8 0 , G O P  s ize  1 5 ,  N o  S c h e d u le d

- 10 0

-5 0

0

5 0

10 0

15 0

20 0

25 0

30 0

35 0

40 0

1 5 9 1 3 1 7 2 1 2 5 2 9 3 3 3 7 4 1 4 5 4 9 5 3 5 7 6 1 6 5

G O P  N o .

J
it

te
r
 (

s
e

c
)

(d )

7 0 4 x 4 8 0 , G O P  s ize  1 5 , S c h e d u le d

- 1 0

0

1 0

2 0

3 0

4 0

5 0

6 0

1 5 9 1 3 1 7 2 1 2 5 2 9 3 3 3 7 4 1 4 5 4 9 5 3 5 7 6 1 6 5

G O P  N o .

J
it

te
r

 (
s

e
c

)

(a )

7 0 4 x 4 8 0 , G O P  s ize  9 , N o  S c h e d u le d

- 10 0

-5 0

0

5 0

10 0

15 0

20 0

25 0

30 0

35 0

1 9 1 7 2 5 3 3 4 1 4 9 5 7 6 5 7 3 8 1 8 9 9 7 1 0 5

G O P  N o .

J
it

te
r 

(s
e

c
)

(a )

7 0 4 x 4 8 0 , G O P  s ize  9 , N o  S c h e d u le d

- 10 0

-5 0

0

5 0

10 0

15 0

20 0

25 0

30 0

35 0

1 9 1 7 2 5 3 3 4 1 4 9 5 7 6 5 7 3 8 1 8 9 9 7 1 0 5

G O P  N o .

J
it

te
r 

(s
e

c
)

( b )

7 0 4 x 4 8 0 , G O P  s iz e  9 , S c h e d u le d

- 2 0

-1 0

0

1 0

2 0

3 0

4 0

5 0

6 0

1 9 1 7 2 5 3 3 4 1 4 9 5 7 65 7 3 8 1 8 9 9 7 1 0 5

G O P  N o .

J
it

te
r
 (

s
e

c
)

( b )

7 0 4 x 4 8 0 , G O P  s iz e  9 , S c h e d u le d

- 2 0

-1 0

0

1 0

2 0

3 0

4 0

5 0

6 0

1 9 1 7 2 5 3 3 4 1 4 9 5 7 65 7 3 8 1 8 9 9 7 1 0 5

G O P  N o .

J
it

te
r
 (

s
e

c
)

(c )

7 0 4 x 4 8 0 , G O P  s ize  1 5 ,  N o  S c h e d u le d

- 10 0

-5 0

0

5 0

10 0

15 0

20 0

25 0

30 0

35 0

40 0

1 5 9 1 3 1 7 2 1 2 5 2 9 3 3 3 7 4 1 4 5 4 9 5 3 5 7 6 1 6 5

G O P  N o .

J
it

te
r
 (

s
e

c
)

(c )

7 0 4 x 4 8 0 , G O P  s ize  1 5 ,  N o  S c h e d u le d

- 10 0

-5 0

0

5 0

10 0

15 0

20 0

25 0

30 0

35 0

40 0

1 5 9 1 3 1 7 2 1 2 5 2 9 3 3 3 7 4 1 4 5 4 9 5 3 5 7 6 1 6 5

G O P  N o .

J
it

te
r
 (

s
e

c
)

(d )

7 0 4 x 4 8 0 , G O P  s ize  1 5 , S c h e d u le d

- 1 0

0

1 0

2 0

3 0

4 0

5 0

6 0

1 5 9 1 3 1 7 2 1 2 5 2 9 3 3 3 7 4 1 4 5 4 9 5 3 5 7 6 1 6 5

G O P  N o .

J
it

te
r

 (
s

e
c

)

(d )

7 0 4 x 4 8 0 , G O P  s ize  1 5 , S c h e d u le d

- 1 0

0

1 0

2 0

3 0

4 0

5 0

6 0

1 5 9 1 3 1 7 2 1 2 5 2 9 3 3 3 7 4 1 4 5 4 9 5 3 5 7 6 1 6 5

G O P  N o .

J
it

te
r

 (
s

e
c

)

 

Figure 55 A 704x480 Video Stream Jitter Measurement 

 

A larger-sized ADU video stream has more delay jitter variations than a smaller-

sized ADU. This is due to the transcoding method. The encoders start encoding after all 

needed decoded video data arrives. Hence, the larger ADU size requires more time spent 



 

 

141 

 

waiting. Also, a bigger ADU stream needs more transcoding time than a small-sized 

ADU video stream. It increases the delay jitter variation. So, a larger-sized ADU video 

stream has larger delay jitter variations. If the encoder can start before all needed video 

data is transferred to them, it will reduce delay jitter more. Also, the results show that the 

larger frame video stream creates similar larger delay jitter variations. This is also for the 

same reasons – bigger frames need more transfer time and more transcoding time. 



 

142 

 

CHAPTER 9  

Conclusion 

 

Many anticipated advanced applications request transport speed that current network 

infrastructure can handle. However, until now, to support applications’ requirements, 

each application has developed its own network control components at the ends of the 

communication entities. This covers some requirements, but has limited solutions. The 

programmable network extends the range and the power of network control by allowing 

programmability inside the pathway, as opposed to only the end-to-end control. However, 

current research has yet to provide any framework that supports systematical netcentric 

system composition formalism that offers language and platform independent code 

usability and the development scalability that follows from it. The suggested framework 

for a complex composition of a netcentric system is one of the first proposals towards this 

goal. The advantages of developed framework are shown below. 

Layered service: Currently developed active network architecture is a flat layer 

architecture. All the active network connection is work independently from other active 

connection. An active network connection cannot use other active network connections to 

enhance its programmability on its traffic. Each connection is separate and could not 

work cooperatively. The suggested framework support uniform way to use other MTO 

channel to enhance or add the channels feature by cooperating with its sub-channels 

which are independently developed from the upper-level channel. The introduced 



 

 

143 

 

recursive channel construction hierarchical channel construction by recursively 

constructing its sub-channels. With the recursive channel construction, the framework 

maintains simplicity of channel construction but powerful enough to create complex 

channel construction. 

Application service development: The framework includes the library which 

supports similar interfaces to current socket library that makes the transition from a 

conventional network program to a new MTO channel network program easier. Further 

the framework is giving uniform interfaces to a channel designer to develop their custom 

processing service by using other MTO channels which was developed by other channel 

designer. The framework opens a way to a 3rd party channel designer to develop more 

sophisticated and extensible channel to market, and application developers and other 

channel designers can more concentrate on their service by using the developed channel. 

Limitation of the framework: The framework is created on the assumption that 

communication link for the channel control signal is available. The framework use lower 

level communication link functions to send and receive control signals and 

loading/unloading channel components during its channel construction and its service 

time. If the communication link is not available, a MTO channel could not deploy its 

channel components in network and could not construct the custom communication 

service. 

The framework for netcentric MTO channel system requires little overhead yet is 

powerful enough to provide a construction for complex custom MTO channels. Using the 

recursive netcentric system construction methods, a MTO channel construction remains 



 

 

144 

 

simple and consistent, and the application can use its custom MTO channel as easily as 

the current socket library. The framework also provides a way of an 3rd party channel 

developer develops a channel and other channel developers use the channel to create their 

own channels like the development of current software object components. To be used in 

practical system, it needs to have fundamental channel service implementations such as a 

secure channel, a store-and-forwarding channel, and an error resilience channel. MTO 

channel depository and deployment architecture will leverage the MTO channel 

framework to more practical system to the public. 

This work has been funded by the DARPA Research Grant F30602-99-1-0515 under 

its active network initiative. 



 

145 

 

References 

 

 [1] Seung S. Yang and Javed I. Khan, “Recursive Channel Construction in Network 

Centric Internet Computing System,” US-Korea Conference on Science, Technology 

and Entrepreneurship, August 2004, Research Triangle Park, North Carolina. 

[2] Seung S. Yang and Javed I. Khan, “Open Standard based Visualization of Complex 

Internet Computing Systems,” International Conference on Computer Graphics, 

Imaging, and Visualization, Penang, Malaysia, July 2004 

[3] Seung S. Yang and Javed I. Khan, “Open Standard based Visualization of Complex 

Internet Computing Systems,” Workshop on Interactive Visualization and Interaction 

Technologies, Krakow, Poland, June 2004 

[4] Javed I. Khan and Seung S. Yang, “Delay and Jitter Minimization in High 

Performance Internet computing,” International Conference on High Performance 

Computing, Hyderabad, India, December 2003 

[5] Seung S. Yang and Javed I. Khan, “Delay and Jitter Minimization in Active Diffusion 

Computing,” IEEE International Symposium on Applications and the Internet, pp. 

292-300, Orlando, Florida, January 2003 

[6] Javed I. Khan, Patric Mail, and Seung S. Yang, “Flow Assignment in A Self-

Organizing Video Stream that Auto Morphs Itself while in Transit via a Quasi-

Active Network,” 5
th

 IEEE International Conference on High Speed Networking and 

Multimedia Communications, HSNMC2002, Jeju, Korea, July 2002 

[7] Javed I. Khan, and Seung S. Yang, A Framework for Building Complex Netcentric 

Systems on Active Network, Proceedings of the DARPA Active Networks 

Conference and Exposition, DANCE 2002, May 21-24, 2002, IEEE Computer 

Society Press, San Jose, CA. 

[8] Javed I. Khan, Seung S. Yang, Darsan Patel, et al., Resource Adaptive Netcentric 

System on Acitve Network: A Self-Organizing Video Stream that Auto Morphs 

Itself while in Transit via a Quasi-Active Network, Proceedings of the DARPA 

Active Networks Conference and Exposition, DANCE 2002, May 21-24, 2002, 

IEEE Computer Society Press, San Jose, CA. 

[9] Javed I. Khan, Seung S. Yang, at el., “Resource Adaptive Netcentric System: A case 

study with SONET – a Self-Organizing Network Embedded Transcoder,” ACM 

Multi-Media 2001, September 30 – October 5, 2001, Ottawa, Canada, pp. 617-620. 



 

 

146 

 

[10] Javed I. Khan and Seung S. Yang, Resource Adaptive Nomadic Transcoding on 

Active Network, International Conference of Applied Informatics, AI 2001, 

Feburary 19 – 22, 2001, Insbruck, Austria. 

[11] Javed I. Khan, Seung S. Yang, Made-to-order Custom Channel for Netcentric 

Applications over Active Network, Proc. Of International Conference on Internet 

and Multimedia Systems and Applications, IMSA 2000, November 20-23, 2000, Las 

Vegas, U.S.A., pp. 22-26. 

[12] Bhattacharjee, S., Kenneth L. Calvert, and Ellen W. Zegura, “An Architecture for 

Active Networking,” High Performance Networking’ 97, White Plains, NY, April 

1997 [also available at 

http://www.cc.gatech.edu/projects/canes/papers/anarch.ps.gz, October 98] 

[13] Tennehouse, D. L., J. Smith, D. Sincoskie, D. Wetherall and G. Minden., “A Survey 

of Active Network Research,” IEEE Communications Magazine, Vol. 35, No. 1, Jan. 

97, pp 80-86 

[14] Wetherall, Guttag, Tennehouse, “ANTS: A Toolkit for Building and Dynamically 

Deploying Network Protocols,” IEEE OPENARCH’98, San Francisco, April 1998. 

[also available at http://www.tns.lcs.mit.edu/publications/openarch98.html] 

[15] Steve Berson, Bob Branden, Steve Dawson, “Evolution of an Active Networks 

Testbed,” Proceedings of the DARPA ActiveNetworks Conference and Exposition 

2002, pp. 446-465, San Francisco, CA, 29-30 May 2002 

[16] M. Sanders, M. Keaton, S. Bhattacharjee, K. Calvert, S. Zabele and E. Zegura, 

“Active Reliable Multicast on CANEs: A Case Study,” In Proceedings of IEEE 

OPENARCH 2001. 

[17] Alex Galis, Bernhard Plattner, Eckhard Moeller, Jan Laarhuis, Spyros Denazis, 

HuiGuo, Cornel Klein, Joan Serrat, George T Karetsos, and Chris Todd, “A Flexible 

IP Active Networks Architecture,” The Second International Conference on Active 

Networks (IWAN), Hiroshi Yasuda, Ed., Tokyo Japan, October 2000. 

[18] C. Cook, K. Pawlikowski, and H. Sirisena, “Ants: A toolkit for building and 

dynamically deploying network protocols,” IEEE OPENARCH 02, New York, NY, 

June 2002. 

[19] M. Hicks, P. Kakkar, J. Moore, C. Gunter and S. Nettles, “PLAN: A Packet 

Language for Active Networks,” Proceedings of the International Conference on 

Functional Programming (ICFP’98), September, 1998. 

[20] J. T. Moore and S. M. Nettles, “Towards Practical Programmable Packets,” 

Proceedings of the 20
th

 Conference on Computer Communications (INFOCOM), 

IEEE , Anchorage, Alaska, April, 2001. 

[21] S. da Silva, D. Florrissi, and Y. Yemini, “Composing Active Services in NetScript.” 

DARPA Active Networks Workshop, Tucson, AZ,March 9-10, 1998. 



 

 

147 

 

[22] Daniel Reed, “Grids, the Teragrid, and Beyond,” IEEE Computers, January 2003, pp. 

62-68. 

[23] I. Foster, C. Kesselman, J. Nick, S. Tuecke, “Grid Services for Distributed System 

Integraiton,” IEEE Computer Magazine, 35(6), pp. 37-46, June 2002. 

[24] Common Object Request Broker Architecture (CORBA) group, URL: 

http://www.corba.org 

[25] Steve Berson, “A Gentle Introduction to the ABone,” (ISI), OPENSIG 2000 

Workshop, Napa, CA, 11-12 October 2000. http://www.isi.edu/abone/intro.html 

[26] Andrew T.Campbell, etc., “A Survey of Programmable Networks,” Computer 

Communication Review, vol.29, no.2, pp.7-23, Apr.1999. 

[27] R. Boorstyn, A. Burchard, J. Liebeherr, and C. Oottamakorn, “Statistical service 

assurances for traffic scheduling algorithms,” IEEE Journal on Selected Areas in 

Communications, Special Issue on Internet QoS, 2000. 

[28] J. Redford, S. Sen, J. Dey, W. Feng, J. Kurose, J. Stankovic, and D. Towsley, 

“Online Smoothing of Live Variable-Bit-Rate Video,” In 7
th

 Workshop Network and 

Op. Systems Support for Digital Audio and Video, pp. 249-257, St. Louis, MO, May 

1997. 

[29] H. Zhang and D. Ferrari, “Rate-Controlled Static-Priority Queueing,” In Proceedings 

of IEEE INFOCOM’93, pp. 227-236, San Francisco, CA, March 1993. 

[30] N. Argiriou and L. Georgiadis, Channel Sharing by Rate-Adaptive Streaming 

Applications, IEEE INFOCOM’02, New York, June 2002. 

[31] Jon C. R. Bennett, Kent Benson, Anna Charny, William F. Courtney, Jean-Yves 

LeBoudec, “Delay Jitter Bounds and Pcket Scale Rate Guarantee for Expedited 

Forwarding,” IEEE INFOCOM’01, Anchorage, Alaska, April 2001. 

[32] Donald L. Stone and Kevin Jeffay, “An Empirical Study of Delay Jitter Management 

Policies,” Multimedia Systems Journal, volume 2, number 6, pp. 267-279, January 

1995. 

[33] Y. Mansour and B. Patt-Shamir, “Jitter Control in QoS Networks,” 39
th

 Annual 

IEEE Symposium on Foundations of Computer Science, pp. 50-59, October 1998. 

[34] W. Ma, B. Shen, and J. Brassil, “Content Services Network: The Architecture and 

Protocols,” Proceedings of the WCW’01, Boston, MA, June 2001. 

[35] K. Anagnostakis, M. Greenwald, and R. Ryger, “cing: Measuring Network-Internal 

Delays using only Existing Infrastructure,” Proceedings of the 22
nd

 Annual Joint 

Conference of IEEE Computer and Communication Societies, INFOCOM 2003, San 

Francisco, CA, April 2003 

[36] K. Anagnostakis, M. Greenwlad, S. Ioanndis, A. Keromytis, and D. Li, “A 

Cooperative Immunization System for an Untrusting Internet,” Proceedings of the 



 

 

148 

 

11
th

 IEEE International Conference on Networks, ICON 2003, Sydney, Australia, 

September 2003 

[37] D. Wetherall, “Service Introduction in an Active Network,” Ph. D. Thesis, 

MIT/LCS/TR-773, February 1999.  

[38] Odyssey User’s Guide, Version 1.3, URL http://www.cs.gatech.edu/project/canes 

[39] A. Campbell, H. Meer, M. Kounavis, K. Miki, J. Vicente, and D. Villela, “A Survey 

of Programmable Networks,” ACM Computer Communications Review, April 1999 

[40] Katie Hafner and M. Iyon, Where Wizards Stay up Late: the Origins of the Internet, 

Simon and Schuster, New York, 1996. 

[41] Peter Forman and Robert W. Saint, Creating Convergence, Scientific American, 

November 2000, pp.10-15, URL 

http://www.sciam.com/2001/0101issue/0101stix.html 

 [42] Javed I. Khan and Seung S. Yang, Systems overview of Active Subnet Diffusion 

Transcoding System for Rate Adaptive Video Streaming (NetAVT v2.0), Technical 

Report: 2001-11-04, Kent State University, [available at URL 

http://medianet.kent.edu/technicalreports.html, also mirrored at 

http://bristi.facnet.mcs.kent.edu/medianet ] 

[43] Javed I. Khan, Seung S. Yang, et al., Architecture Overview of Motion Vector Reuse 

Mechanism in MPEG-2 Transcoding, Technical Report: 2001-01-01, Kent State 

University, [available at URL http://medianet.kent.edu/technicalreports.html, 

also mirrored at http://bristi.facnet.mcs.kent.edu/medianet ] 

[44] Javed I. Khan and Seung S. Yang, Architecture Overview of Medianet 

Multiprocessor Transcoder, Technical Report: 2000-08-01, Kent State University, 

[available at URL http://medianet.kent.edu/technicalreports.html, also mirrored at 

http://bristi.facnet.mcs.kent.edu/medianet ] 

[45] Javed I. Khan and Seung S. Yang, Medianet Active Switch Architecture, Technical 

Report: 2000-01-02, Kent State University, [available at URL 

http://medianet.kent.edu/technicalreport.html, also mirrored at 

http://bristi.facnet.mcs.kent.edu/medianet ] 

 

Demonstration 

-    Resource Adaptive Netcentric System on Active Network: SONET, Active Networks 

Conference and Exposition, May 21-24, 2002, IEEE Computer Society Press, San 

Jose, CA. 

 

-   Self-Organizing Network Embedded Transcoder, ACM Multi-Media 2001, September 

30 – October 5, 2001, Ottawa, Canada. 

 



 

 

149 

 

-   Active Transcoder, DARPA Active Network Conference and Exposition, December 1-

4, 2000, Atlanta, GA. 

 


