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CHAPTER 1  

Introduction 

 

The current data communication network has enough transmission speed to handle 

not only simple data but also complex data such as multi-media content. The network 

also has enhanced transmission reliability to support reliability-critical applications such 

as network attached storage (NAS) and storage area network (SAN). Many netcentric 

systems, for example, Content Delivery Network (CDN), Content Service Network 

(CSN), distributed computing, and Grid computing exploit the enhanced network speed 

and reliability to build a service in a network. [22][23] 

The netcentric systems construct a service by connecting their distributed software 

components to a network. To perform their service, the netcentric systems require 

customized communication features such as application specific routing-path control, 

application categorized delay and jitter control, real-time communication speed and error 

detection, fault-resilient transmission, and data forwarding rate control. [34][35][36] The 

development of a netcentric system on top of a simple data forwarding service partially 

fulfills the netcentric system’s requirements. [12][13][14] Therefore, a netcentric system 

developer builds the application specific communication features into his software 

components. However, it only can react on communication messages at the 

communication end point in a netcentric system’s component, although many application 

specific transmission features need custom actions along the communication path in 
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network. Even when a developer implements custom communication features, he has 

limited tools such as the socket library for building the features. 

An active network supports a netcentric system developer by expanding the 

network’s classical roles from simple data forwarding to an application specific 

programmability in a network. [13] In the active network paradigm, the routers or 

switches of the network perform customized communication features such as gathering 

and merging data from a set of senders (Concast), content aware gateway service (CAG), 

and dynamic video transcoding. [12][37] An active network, on the other hand, supports 

very little reusability on the construction of its own network embedded components. 

Until now, an active network has not provided code reusability at the level that CORBA 

or Globus Toolkit provides but only that the degree of template or static class basis which 

depends on the programming language used. [22][24] Because the required components 

are decided at implementation time and not at deployment time, when a custom 

communication connection is set up, a specific network component should be loaded in a 

targeted active node. It cannot use similar components which support required functions. 

Therefore maintaining required software components as well as deploying them is 

another heavy task in active network architecture. 

This dissertation presents a developed framework for building a complex netcentric 

system that supports the following features to facilitate development of a netcentric 

system: 
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• Platform and language independent reusability on network embedded components 

• Simplification of building a complex communication channel by recursive 

channel composition 

• Enhanced utilization of network embedded components by service function based 

deployment time component binding 

• Resource adaptive custom communication channel construction over distributed 

computation nodes 

The framework also has features such as dynamic pathway planning, autonomous 

custom service construction, interfacing with service subscriber application and network, 

embedded system monitoring and visualization support, and dynamic interpretation of 

service description and service component discovery. 

This dissertation is organized in the following way. In section 2, related works on the 

netcentric system and the needs for a new approach are presented. In section 3, design 

issues in the netcentric system framework are explored. Service construction formalism 

and optimization issues are presented in section 4. The netcentric made-to-order (MTO) 

channel system architecture is shown in section 5. In section 6 and 7, a single MTO 

channel and a multi-level MTO channel construction methods and sequences are covered. 

Application perspective considerations are discussed in section 8. In section 9, 

implemented systems and their experimental results are shown. Finally features and 

results of the developed framework are discussed in section 10. 
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CHAPTER 2  

Netcentric Systems 

 

Many aspects of the programmable network have been investigated since it drew 

attention. The active network paradigm is one direction that opens a way to process 

packets in network. [15] Many works have been done and continued to support easy and 

robust programmability in an active network. [39] 

In this section, netcentric systems will be explored, and design considerations of our 

active made-to-order (MTO) channel system will be presented. 

 

2.1 Related Works 

 

2.1.1 ANTS 

 

ANTS by Wetherall, et al. provides a Java-based network protocol-building and 

deploying framework. [14] They built an architecture that supports automatic and 

dynamic deployment of new protocols. The architecture deploys a new protocol as it is 

needed, and the protocol does not have interaction with previous deployed network 

protocols. The ANTS protocol architecture uses capsules, code groups, and protocols. 

Figure 1 (a) shows a capsule composition hierarchy. A capsule is a generalized 

replacement for a packet. A capsule shows which forwarding routines are used to process 
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the capsule. A code group that is forwarded as a unit by the code distribution system is a 

collection of related capsule types. A protocol that is handled as a unit in an active node 

is a collection of related code groups. 
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Figure 1 The Capsule Composition Hierarchy and Demand Loading of Code Groups 

 

When forwarding routines for a capsule are not available in an active node, the active 

node loads the code group from its previous node and processes the capsule as shown in 

Figure 1 (b). 
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package apps;

import ants.*;

public class PMTUProtocol extends Protocol {

public PMTUProtocol() throws Exception {
startProtocolDefn();

startGroupDefn();

addCapsule(“apps.PMTUCapsule”);
endGroupDefn();

endProtocolDefn();
}

}

 

Figure 2 ANTs PMTUProtocol Code 

 

The ANTS system developed using the Java programming language. [37] The ANTS 

toolkit includes four base classes: Node, Protocol, Application, and Capsule. Each active 

node is represented by an instance of the Node class. The Channel class is used to 

instantiate each network interface.  An application is developed by using the Application 

class. A new service is developed by subclassing the Capsule and Protocol classes. An 

ANTS developer makes his own custom protocols by using the base classes. An 

application developer who uses developed services writes his application programs by 

subclassing the provided Application class and uses the service by instantiating the 

developed protocol class. Figure 2 shows a sample ANTS protocol source code. The 

PMTUProtocol uses the Protocol class as its base class and defines its capsule group. 
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2.1.2 CANEs 

 

Sanders, et al. suggest a slot processing model, CANEs, on top of Bowman Node OS. 

[16] A CANEs execution environment (CANEs EE) supports reasonable forwarding 

performance to active applications and modular service construction. It has two goals: to 

support the development of active applications which require reasonable forwarding 

performance and to provide a framework for the modular service construction. The 

CANEs EE has two parts, a fixed part that represents a uniform processing applied to 

every packet and a variable part that represents a customized functionality for the packets. 

The variable part, called an injected program, may be node-resident or is loaded from a 

remote site. The fixed part, called an underline program, declares shared variables, 

allocated spaces, and exported variables. The injected program imports the shared 

variables of its underlying programs to create bindings between the shared variables and 

the references. A modification to the variables is copied into local variables for use after 

the processing ends. 
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canes_referenced_global_per_flow (canes_packet_t *, cur_pkt);
void add_ip(void)

{
canes_packet_t *      pk;
struct o_if *         interface;
...
pk = c_Ip(cur_pkt);
…

channel_data_ptr = (channel_data_ptr_t)&pk->buffer[route_info_offset];

...
generic_addr aa;

boolean i = oif_find_addr_by_channel(pk->from, addrtype_ip, &aa);
memcpy(&channel_data_ptr->hops[num_hops].ip_addr, &aa.addr.ip, aa.l);

...
/* update the info in the headers */
pk->size += sizeof(channel_info_t);

} /* End add_ip */

void _entry(void)
{

cur_pkt = canes_import_global_per_flow("Cur-Pkt");
}

 

Figure 3 Add IP Injected Program 

 

The CANEs introduces a notion of the slot where an injected program resides and 

runs on it. [38] A CANEs EE uses shared variables to communicate among its active 

programs. Shared variables are exported and imported among active programs and used 

as communication points. The CANEs’ example systems are developed in the C 

programming language, even though it is not limited to a specific programming language. 

Underlying programs export shared variables, and injected programs import the shared 

variables to make connections. A developer develops his own underlying and injected 

programs. A developed program registers its shared variables globally to expose them 

and to be used by other programs. Developed programs come with CANEs user interface 

(CUI) messages. The CUI messages contain the path to the underlying and injected 
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CANEs code. CUI files for an injected program should be sent to an active node in order 

to run a program. The application that uses a CANEs packet uses CANEs APIs to send 

and receive a packet. In the packet, channel identification is included to dispatch the 

packet to a proper service. A sample injected program is shown in Figure 3. 

 

2.1.3 PLAN and SNAP 

 

PLAN and SNAP which were suggested by Hicks and Moore, et al., entail a 

language-based programmable network approach. [19][20] The programs are lightweight 

and restricted in functionality. A PLAN packet contains a field called chunk. The Chunk 

consists of a code written in PLAN language: an entry point which indicates the first 

function to execute and bindings which describe arguments for an entry function. When 

each active node receives a PLAN packet, a PLAN interpreter interprets the packet and 

runs the codes in the chunk field. SNAP is currently a developing system which uses a 

special purpose language and virtual machine interpreters. 

A PLAN has two phases of software development: one for PLAN services and the 

other for PLAN packets. A PLAN service is a PLAN program which is called by codes in 

a PLAN packet. A PLAN service is installed manually or dynamically in an active node. 

The Java or the OCaml programming language is used for developing a PLAN service. 
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fun ping (source:host, destination:host, outgoing:bool) : unit =

if outgoing and (thisHost () = destination) then

(OnRemote (ping (destination, source, false), 
source, getRB (), defaultRoute)

)
else

if not outgoing and (thisHost () = destination) then

print ("Success")

else OnRemote (ping (source, destination, outgoing),
destination, getRB (), defaultRoute)

 

Figure 4 A PLAN Program: Ping 

 

A PLAN program is written in the PLAN programming language developed for the 

PLAN packet. It consists of two components: a code and an invocation. The code consists 

of a series of definitions. The definitions bind names to abstractions, which take the form 

of functions, values, and exceptions. The invocation consists of the function calls to be 

evaluated at the next evaluation point. A PLAN developer uses the PLAN programming 

language for PLAN packets. Figure 4 shows a ping program written in the PLAN 

language. 

 

2.1.4 Netscript 

 

Silva, et al. introduce Netscript, which is for developing active service protocols by 

using a high-level programming language and environment. [21] It provides means to 

build a service from primitive operators by layering active elements above active or non-

active components to use their services. It supports dynamic changes in its dataflow; a 
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box, which represents Netscript computation, can be added, removed, connected or 

disconnected at runtime. 

 

box template RTMP
{

box import “http://cs.columbia.edu/ns/boxlib/RTMPControl.nbt” RTMPControl

box import “http://cs.columbia.edu/ns/boxlib/IP_RTMPMuxDemux.nbt” IP_RTMPMuxDemux
box import “http://ietf.org/ns/boxlib/IP.nbt” IP;

connect
{

IP.rcvUp-> IP_RTMPMuxDemux.rcvDown,
IP_RTMPMuxDemux.sndDown -> IP.sndUp,

IP_RTMPMuxDemux.rcvUp ->RTMPControl.rcvDown,
RTMPControl.sndDown -> IP_RTMPMuxDemux.sndUp,

}
}

 

Figure 5 A Netscript Program 

 

A Netscript service consists of boxes and connections among the boxes. The boxes 

are computational parts, and connections describe the connections among the boxes. A 

Netscript service developer describes boxes and their connections in Netscript language. 

A box imports other boxes. It also includes a connection section which describes the 

connections among the imported boxes. Figure 5 shows a sample Netscript program. In 

the sample program, a box is implemented in a Java bean which includes SndUp, 

SndDown, RcvUp, and RcvDown interfaces to communicate with other boxes. The box 

can use templates to extend an existing protocol.  
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2.1.5 Distributed and Grid Computing 

  

The active network’s success seems to still be limited to lower network functionality 

with limited state programmability. It has limited support for the reusability on pre-

developed component such as language based or static network component reusability. 

Distributed and Grid computing, on the other hand, explored high level programming 

reusability and enabled better software component recycling. Their service construction 

methods are enhanced dramatically. A software developer uses well designed 

infrastructures such as CORBA, and Globus Toolkit to build his services on Distributed 

and Grid computing. [22][24] Open Grid Services Architecture enables the integration of 

services and resources among distributed and heterogeneous organizations. The Globus 

Toolkit addresses issues of security, information discovery, resource management, and 

portability. [23] With the infrastructures, a service designer can concentrates more on his 

work. 

However, when the service designer connects his service components through 

network, he still builds his network connection on a legacy network; he takes advantage 

on elegant software object reusability but has lack of application oriented communication 

control supports from a network. He develops required features at the communication end 

points in his components. Because of the consolidation of custom communication 

controls into a software object, the developed communication features are reused only 

thorough a static method such as a library. The location and reusability limitation causes 
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developer’s enormous efforts to hold network connection controls even in Distributed 

and Grid computing. 

 

2.2 Proposed System Approach 

 

The current ongoing netcentric systems have entailed an enormous amount of work 

to set up a programmable network architecture. Their architectures support a dynamic 

load-ability of software components on an active node and a modularity of plug-in 

softwares. 

 

Table 1 Netcentric Systems’ Features 

 ANTS CANEs PLAN NetScript 

Code Location Outside Outside Inside Outside/Inside 

Composition Language Java LIANE PLAN NetScript 

Service Construction 

Language 
Java C Java/OCaml Java 

Code Loading 

Location 

Previous 

node 
Code Server In Packet In Packet 

Code Installation Time 

Before 

Capsule 

Processing 

Before a 

Service Start 
With Packet With Packet 

Required Code 

Resolving Time 

Service 

Development 

Time 

Service 

Development 

Time 

Service 

Development 

Time 

Service 

Development 

Time 

Resource adaptation 
Single node 

only 

Single node 

only 

Single node 

only 

Single node 

only 

Event propagates No No No No 

 

Table 1 shows netcentric systems’ features. The netcentric systems have 

programmability on network connection, a dynamic code loading mechanism, 
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interference free a new protocol support from existing protocols. However, their 

architectures only have language-based reusability, or limited network component 

reusability by binding required code at development time while distributed and Grid 

computing support very high level reusability on their software modules but not in their 

communication objects. Even when the netcentric systems deploy their network 

embedded components on active nodes, they are deficient in systematical consideration 

of available resources in overall active nodes in a network. 

Information division and binding are required when a system is dynamically 

configuring a service with deliberation of network resources. The presented netcentric 

systems have lack of information division and binding features. They fixed service 

components for processing packet at a programming time when they have limited 

knowledge of actual resources and user’s requirements at their running time. This causes 

a less adaptive deployment planning of a service system and reduces dynamicity of 

system configuration. 

Here an Active Made-to-Order Channel System (AMCS) that supports a dynamic 

MTO channel construction and management framework with MTO channel reusability is 

presented. A MTO channel is a transmission object in between two or more 

communication entities. Examples of a MTO channel and its usages are explored. The 

AMCS’ recursive channel construction method leverages reusability of MTO channels 

when the system build a complex MTO channel. The AMCS has the following 

capabilities: 
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• Dynamic MTO channel components loading/unloading 

• Reusability on MTO channels 

• Dynamic binding of MTO channel and sub-MTO channel during run time 

• Adaptation to run time system 

• Embedded system status monitoring support 

The AMCS system loads MTO channel components when a service is initiated. The 

binding of a MTO channel name to an actual MTO channel is performed at a service 

construction time not a service development time. This increases independence and 

flexibility of the service construction. The separation also enhances maintenance on 

service components that is not supported by static components binding protocols. The 

AMCS system augments the reusability of a developed MTO channel by using it as a 

sub-component of another MTO channel service. The AMCS system can constructs a 

service over distributed nodes. It is different from most other systems which construct a 

service on a node not over distributed nodes. Using the service construction, the proposed 

system builds a service which can not be performed with resources on single node. 

In the following sections, netcentric system design considerations, the MTO channel 

system architecture, the MTO channel construction formalisms, and the MTO channel 

construction optimizations will be presented. 
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CHAPTER 3  

Design Issues in Complex Netcentric Systems 

 

A dynamic composition of complex netcentric systems is not a simple task. To 

consolidate the framework system, from the software engineering issues to information 

division and sharing were visited. 

 

3.1 System Design Considerations 

 

Because most previous approaches for building a complex networked system have 

eventually focused on building a more complex construction process using an elementary 

standard transport library for their connectivity, a software engineering approach for 

building a transportation channel is entailed as an important design consideration. 

Conceptually an active network provides a platform for building a complex 

communication system. The active network, however, lacks a polymorphic framework 

with inheritance property which includes both a process and an interaction construct. The 

developed system constructs a complex transportation channel by reusing other channels 

systematically. The channel construction should use uniform interfaces from a simple 

channel construction to a complex channel composition. 

During a channel set up planning phase, the designed netcentric system provides a 

deployment time mapping mechanism that entails application knowledge into a channel 
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construction. It is a critical requirement to get an appropriate specification language for 

mapping application needs into a MTO channel and network resource requirements. The 

description of the application needs to be interpreted and used to find a specific service 

MTO channel which supports the requirements. Also, the service description is bonded 

with a MTO channel’s resource requirement description, and the system/network 

resource requirement description will be produced. 

The netcentric system supports accessing network states. In classical design, each 

layer in the network software stack has been strongly isolated from its upper layer. This 

model simplified the development of the first generation applications. The flip side of the 

design choice is that now network states are very difficult to access. Therefore, the upper 

layer cannot take advantage of reacting to the dynamic network status changes. The 

designed netcentric system provides uniform interfaces to access dynamic network status 

information to leverage its adaptation on system/network status changes. 

For building an efficient network MTO channel layer for active application, system 

level re-provisioning will be required so that embedded service components can be 

mutually secured and trusted, and yet will allow open standard-based access to network 

local states. To accommodate adaptation for network status, dynamic relocation is needed. 

In service reconfiguration, additional constraints are placed by the requirements of 

minimum interruption of the ongoing service sessions. The service relocation must 

reduce the impact on overall processing and communication delay. 

Another critical component that arises in dynamic service composition is the creation 

of a powerful middle-layer abstraction. While the dynamic service itself can be a 
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complex system, the subscription and the use of the composed service should be easy and 

intuitive. This required provisioning is on a middle-layer abstraction, where third-party 

developers can develop the components required for dynamic service, while the end-point 

users and applications can take advantage of these services with an easy to use interface. 

A MTO channel is a dynamically constructed transportation service system. A MTO 

channel represents not only a connection object among service points, but also a service 

system which processes information while it is in transit. 

The designed MTO channel system runs on top of an active network system, even 

though the system’s basic requirements are i) reliable control message transfer among 

participated nodes, ii) load and run software components in a network node, iii) reliable 

component delivery to a network node. 

 

3.2 Information Division and Sharing 

 

Multiple participants are involved in a MTO channel construction. Fractional 

information is supplied by each participant. A channel is constructed by dynamically 

binding the information during set up and run time. In this section, three participated 

entities are identified and examined for a MTO channel construction. 
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3.2.1 Information Division 

 

The developed system has three different information providers for the MTO channel 

construction. The identified providers are a MTO channel developer who develops a 

MTO channel and its components, a user or application that uses the constructed MTO 

channel, and a network which supplies information for the running system/network 

environment. The three information provider model helps in the task separation in the 

development processing and is the key to any possibility of complex application 

engineering. First, the fragmentation will be looked, than how the system glues them 

together will be explained. 

The MTO channel designer knows very well about the operation mode, the control 

flow and the detail architecture of a MTO channel. He also knows the situational 

constraints of the MTO channel components. However, the MTO channel designer does 

not have the knowledge of the exact network and system map on which the MTO channel 

will run. The MTO channel designer provides the MTO channel components that are 

required to establish a service. He also provides canonical maps that have placement 

information of the MTO channel components and connection information among them. 

In addition, he also supplies logical resource requirements of the MTO channel. 

The user/subscriber application is eager to remain completely ignorant about the 

MTO channel architecture, components, and its connections; it is mostly interested in the 

service that the MTO channel provides. The subscriber, on the other hand, is the first 
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member to know the location of the end-points and the most knowledgeable participant 

among the three involved entities about the characteristics of traffic that will flow 

through the MTO channel. The subscriber is expected to have a fair idea about the nature 

of the service it will receive from the MTO channel, though it may not know the exact 

metric that the MTO channel designer used to quantify it. It also reserves its right to 

know how much it is actually getting. Consequently, it supplies service-end-points and 

quality of service/traffic information. However, as a user of a channel it must know about 

the semantics of the service. This includes the semantics of events available from a 

channel as well as role of some of the well known parts of the channel. Typically various 

component programs of a channel play distinct logical role in the realization of the 

transport service of the channel.  A channel user is expected to know these roles though 

not the internal functions of the components. 

The system and network environment information comes from a network through 

node OSes. A node OS does not have any prior knowledge about a MTO channel 

architecture, its components capacity, or required network capacity. It also does not know 

in advance about the traffic characteristics or sizes. This is, nevertheless, the most 

knowledgeable entity among the three about the underlying network infrastructure, i.e., 

the actual network topology, and the quantity and capacities of its various elements. 

Therefore, it provides a base topology graph and the quality-of-network information. 
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3.2.2 Information Binding 

 

The information dependency is shown in Figure 6. 
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Figure 6 The Tripartite Information Dependency among the Application Program, MTO 

Channel, and the Network OS 

 

The user application supplies an end-point vector (VEP) and a quality-of-traffic 

metric (MROT). A network operating system supplies a run-time base topology graph 

(GBASE) and a quality-of-network metric (MQON). A MTO channel designer supplies a 

component map (CMAP), a transformation function T(), and channel planning function 

P(). The transformation function T() is used for generating an channel’s own end-point 

topology graph. The end-point topology graph (GEP) is computed based on a given end-

point vector (VEP) and a base topology graph (GBASE). 
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The dynamic component placement map (DMAP) is calculated using the end-point 

topology graph (GEP), the component map (CMAP), the quality-of-traffic metric (MROT), 

and the quality-of-network metric (MQON). 

Finally, the quality-of-service metric (MQOS) is derived from the dynamic component 

placement map (DMAP), the quality-of-network metric (MQON), and the quality-of-traffic 

metric (MROT). 

A legacy TCP connection also needs information from an application, a network, and 

a software developer to set up its connection. A TCP connection has two pairs of IP 

addresses and port numbers as VEP: one for source and the other for destination. The 

quality-of-traffic metric (MROT) in the TCP is simply a connectivity from the source to 

the destination. This meaning is embedded when an application requests a TCP 

connection. A network supports base topology graphs, GBASE and MQON, even though 

those are primitive information, i.e., a partial network graph for a path of a given packet 

for GBASE and an availability of a path from the source to the destination for MQON. All 

the required software and functions are pre-installed in each node that participates in the 

communication. The component map (CMAP) are not needed for a TCP connection, and 

the deployment map (DMAP) is not generated for the same reason; all the software is 

pre-installed. A TCP connection generates GEP for each packet. The GEP is determined at 

a given time for a packet and is not persistent during the connection’s lifetime.  The 

quality-of-service metric (MQOS) are the same as the quality-of-network metric (MQON): 

providing reach-ability. 
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CHAPTER 4  

MTO Channel Formalism 

 

4.1 Definition of a MTO channel 

 

A MTO channel is a transport object in between communication entities. A MTO 

channel is made up of computing points of presence (POP) and these POPs are connected 

via links. A POP can be a simple connection point or a computing component between 

sub-MTO channels. A special POP called a service end point (SEP) is a POP connected 

to an application or another MTO channel. A link is a simple connection or another MTO 

channel called a sub-MTO channel connecting two POPs. 

 

Definition 1: MTO channel 

A MTO channel C is a connected graph and defined as a quintuple C = (M, C’, P, E, 

S). A MTO channel has five types of assets. M is a set of MTO channel software objects 

(called components). C’ is a set of sub-MTO channels which are used by this MTO 

channel C. P is a set of points of presence (POP) where the MTO channel computation is 

needed to realize the MTO channel service. E is a set of event objects that relates to C. S 

is a set of state variables representing the MTO channel’s state. 
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M is a set of MTO channel component that can be located in POP and performs 

computations on the data that flow in the MTO channel. C’ is a set of sub-MTO channels 

which is connecting the MTO channel’s components. In the MTO channel, data is 

delivered with or without modification of its contents based on the sub-MTO channel that 

it uses or on the channel components. P is a set of points of presence (POP) where the 

computations on the MTO channel happen. E is a set of events that is generated by the 

MTO channel, and which carries extra information for MTO channel system management, 

status reports, commands for software components, and so on. S is a set of state variables 

representing a state of the MTO channel. 

 

Definition 2: Component Set 

A component set of MTO channel C, M, is a set of the all MTO channel’s 

components, M = m1 ∪  m2 ∪ … ∪ mN. mN is the N-th component in channel C. A 

component is a software program in the MTO channel that has its own computation 

and/or transmission algorithms to fulfill the tasks of the MTO channel C. 

 

A component set of MTO channel C, M, is a set of software components in the MTO 

channel. The components perform their computation and/or transmission algorithms on 

data to realize the tasks of the MTO channel C. A MTO channel should have at least one 

component. A MTO channel deploys the channel components in the network and the data 

that is transmitted is processed and delivered by the components. All components of a 

MTO channel C may not be required at run time. The actual used MTO channel 



 

 

25 

 

components are determined dynamically at run time based on the platform of the MTO 

channel runs and user’s requirements. Because of the dynamicity of channel construction, 

whole MTO channel components should be available when the MTO channel is 

requested. 

The information provided by a channel developer comes with the channel 

components. The information may be delivered separately but should be provided with 

the channel component by the channel designer. 

When an application requests a MTO channel, it provides roles of each POP in 

application provided information. Each role should have at least one component. Multiple 

components may be allocated for a single role. 

 

Definition 3: Sub-MTO Channel Set 

A sub-MTO channel set, C’, is a set of MTO channels used in a MTO channel C. C’ 

= {Cs1, Cs2, Cs3, …, CsN | where Csx ∈ MTO channel and N is number of sub-MTO 

channels} 

 

Each sub-MTO channel in a sub-MTO channel set C’ is an independent MTO 

channel which can be used as a stand alone. The sub-MTO channel also can use its sub-

MTO channels to perform its tasks. 
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Definition 4: Point of Presence (POP) Set 

A point of presence (POP) set of MTO channel C, P, is a set of union of all its POPs, 

P = p1 ∪ p2 ∪ … ∪ pN. pN is a N-th POP in MTO channel C. A POP is location 

information where the MTO channel C’s component(s) is resided and performs its 

functions on it. Each POP also includes role information of the POP. A role represents 

the logical task of the POP such as sender, receiver, and forwarder. 

 

A set of POPs in a MTO channel C has point of presence information in the MTO 

channel. The MTO channel C’s component(s) is located in a POP and realizes its 

functions to perform the channel’s tasks. Each POP not only has location information but 

also includes role information of the POP. A role identifies the logical task of the POP 

such as sender, receiver, and forwarder. The upper-level channel or application gives role 

information to its sub-channels for the sub-channel’s POPs where the upper-level channel 

or application is connected to. The other POPs’ roles are given by the channel while it 

plans its channel construction. The MTO channel component will be mapped in a POP 

and performed computation. Because of the dynamicity of a MTO channel, using POPs 

may change during the execution. There are two types of POPs, service end point (SEP) 

and intermediate computing point (ICP). A SEP is a POP which also can connect to the 

other MTO channel’s SEP. An ICP only connects POPs which belong to the MTO 

channel’s components including the MTO channel’s sub-MTO channel. 
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An event is an information object which carries control, and management, as well as 

status information among MTO channel components. An event set of a MTO channel is 

represented in the following way. 

 

Definition 5: Event Set 

An event set of MTO channel C, E, is a set of events which includes all events 

generated by the MTO channel except the events processed by the MTO channel.  

E = Ec
g
 - Eh[C]. E is produce-able events of MTO channel C. Ec

g
 is generated events in 

the MTO channel C. Eh(C) is processed events in the MTO channel C. An event is an 

object that has control or status information of the channel and that is not part of 

messages to be transferred as a content of the channel. An event has an event handler 

which processes the event. If no event handler is found, NOS performs a default action 

for the event that is indicated by the system configuration. 

 

The producible events of a MTO channel C are generated events in the MTO channel C 

except the events which are processed by the MTO channel C. An event name is created 

by a channel designer with properly structured method, so that the MTO channel system 

can uniformly identify and processes the event. An event is generated in a channel 

component, and the event is processed by its event hander. If the event handler is found 

in the same MTO channel, then the event is consumed by the event hander. If an event 

hander is not found in the same MTO channel, the event is propagated to its upper-level 

channel. The event that is propagated to the upper-level channel is producible events of 
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the MTO channel C. The producible events delivered their upper-level channel or 

processed by a node OS when no event handler is found for those events. 

 

Definition 6: State Set 

A state set of MTO channel C, S, is a set of all its states, S = s1 ∪ s2 ∪ … ∪ sN. N is 

the index of a state in MTO channel C.  sN is the N-th state of the MTO channel C. A state 

is an object that represents a condition or stage of the MTO channel C. The states and 

the set of states are provided by the MTO channel C’s designer. 

 

Each MTO channel has its own channel states. A state is an object that represents a 

condition or stage of the MTO channel C that is defined by the channel designer. A set of 

MTO channel’s states is also defined by the channel designer and provided with the 

channel component. The representation of state should be properly structured to be 

interpreted uniformly in the entire system. A state of a channel is independent from its 

sub-MTO channel’s state. However, some common states such as sts_full_setup and 

sts_terminate are included in all channels. The MTO channel designer also provides 

interfaces to access the state of a MTO channel, so that an application or upper-level 

channel can query the state of a channel for sophisticated control and management on its 

traffic. 
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Figure 7 MTO Channel Examples 

 

Some MTO channel examples are shown in Figure 7. Figure 7(a) is a simple MTO 

channel. It has two service end points, and a point which resides in between the SEPs. 

Figure 7 (b) is a MTO channel which combines two MTO channels sequentially. In other 

words, the MTO channel C uses two sub-MTO channels, C1, C2, and connects them in 

sequence. So the contents of the communication should pass through the MTO channels. 

Figure 7 (c) is a MTO channel combined with two MTO channels in parallel. The data 

sending from one of the SEPs of the MTO channel C may use one of the sub-MTO 

channels or both depending on the MTO channel C’s property. Figure 7 (d) is a complex 

MTO channel which uses sub-MTO channels and combines them sequentially and/or in 

parallel. 
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In this paper the hierarchy of a MTO channel is represented by using sub-MTO 

channels enclosed by parentheses. For example, the Figure 7 (e) can be represented 

C(C5(C1,C2),C6(C3,C4)). 

 

4.2 MTO Channel Component Types 

4.2.1 Type by purpose 

 

Components of a MTO channel can be classified by their purpose in the MTO 

channel. There are three types of computing components: manager, scout and service. 

A manager component is a representative component in a MTO channel. It is an 

interface point to its upper layer or an application. A manager component sets up its other 

components as required and terminates the MTO channel when needed. It coordinates 

with its sub-MTO channels to provide a custom service. Also, it handles events and errors. 

A scout component is a component which may be deployed before a MTO channel is 

fully set up. A scout component is used for gathering information in a network node for 

giving information which is required for a MTO channel, i.e. a computational capability 

in a node, or available network bandwidth. 

A service component handles the actual data transfer. It serves actual data 

transmission and supports features of the MTO channel. It also reports exceptions to the 

MTO channel manager and produces events, but actual handling of an exception or an 

event is decided by the MTO channel manager. An IP forwarder is an example of simple 

services. A MTO channel usually has at least two service components – sending and 
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receiving endpoints. Each of the service components typically plays a distinct logical role 

in the realization of the transport service of the channel.  A channel user is expected to 

know these roles though not the internal functions of the components. An IP forwarder is 

an example of simple services. A MTO channel usually has at least two service 

components (or roles) – sending and receiving endpoints. 

 

4.2.2 Type by location 

 

Components of a MTO channel are also classified by their location. There are two 

types of locations: service end point (SEP) and intermediate computing point (ICP). 

A service end point (SEP) component is located at the end of a service; it has 

communication facility with the MTO channel user/application. A SEP component needs 

to monitor its connection to the nearest MTO channel component for connection event 

handling. 

An intermediate computing point (ICP) component is located at the intermediate 

nodes between SEPs. It forwards contents of the MTO channel communication and 

actively applies custom processes to the contents. 

Usually a MTO channel manager and application interface components are located in 

SEP. Many service components are generally located in the ICP with coordination of a 

MTO channel manager. 
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4.3 Recursive MTO Channel Construction 
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Figure 8 Example Network Diagram: Network Diagram in between A and E Nodes 

 

An example network diagram is shown in Figure 8. Numbers above a link represent 

bandwidth of the link in Mbps. A user needs a MTO channel from A to E with 20 Mbps 

bandwidth. A general active channel constructor extension layer parses the user’s 

requirement and will map each requirement to a MTO channel service, i.e. 20Mbps – A 

graph MTO channel service. Note in this example conventional TCP or UDP transport 

will not be able to sustain the required capacity given that classical IP only uses a single 

default path. However, it can be shown that by using graph wide concurrent 

communication and custom transport the bandwidth can be easily satisfied. This example 

is now used to illustrate the concept of recursive construction.   
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The demonstrated solution uses three MTO channel: Graph Channel (GC), Altered 

Routing Channel (ARC), and Concurrent Channel (CC). The GC can use and coordinate 

ARC and CC to set up a required bandwidth channel. The ARC uses TCP between 

segments of given path to support the bandwidth. If a segment in the path cannot be 

connected with a TCP connection to support the bandwidth, it uses GC to connect the 

segment. The CC sets up a connection using multiple ARC channel to support the 

required bandwidth. The definitions and descriptions of the three MTO channels are now 

given: 

Graph Channel: GC = ({gc_mgr, gc_chk}, {“Altered Routing Channel”, 

“Concurrent Channel”}, {“source”, “destination”}, {evt_connected, evt_disconnected, 

evt_resource_changed, evt_sub_channel_error}, {sts_initial, sts_sub_setup, 

sts_full_setup, sts_suspend, sts_terminate}).  

The gc_mgr is the graph MTO channel’s manager component. The channel has 

gc_chk scout component and uses an altered routing MTO channel or a concurrent MTO 

channel as its sub-channel. It has two POPs: source and destination. The channel has four 

events: evt_connected, evt_disconnected, evt_resource_changed, and 

evt_sub_channel_error as well as five channel statuses. 

Altered Routing Channel: ARC = ({arc_mgr, arc_chk, arc_src, arc_ctr, arc_dst}, 

{“Generic Channel”}, {“source”, “intermediate”, “destination”}, {evt_connected, 

evt_disconnected, evt_segment_failure, evt_resource_changed, evt_sub_channel_error}, 

{sts_initial, sts_sub_setup, sts_full_setup, sts_suspend, sts_terminate, sts_num_hops}). 
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An instance of “Altered Routing Channel,” ARC, MTO channel sets up a connection 

with a given path that may not the first preferred path from the source to the destination. 

The ARC MTO channel has five components: arc_mgr as a manager component, arc_src, 

arc_ctr, and arc_dst as service components, and arc_chk as a scout component. The ARC 

MTO channel may use a generic MTO channel, GC, as its sub-channel. 

Concurrent Channel: CC = ({cc_mgr, cc_chk, cc_src, cc_dst}, {“Altered Routing 

Channel”}, {“source”, “destination”}, {evt_connected, evt_disconnected, 

evt_path_failure, evt_resource_changed, evt_sub_channel_error}, {sts_initial, 

sts_sub_setup, sts_full_setup, sts_suspend, sts_terminate, sts_num_paths}). 

A concurrent channel, CC, sets up parallel connection(s) that does not have 

overlapped paths from its source to its destination. It has a manager component (cc_mgr), 

a scout component (cc_chk), a service component in its source location (cc_src), and a 

service component in its destination location (cc_dst). The cc_src and the cc_dst have 

multiplexing and demultiplexing functions on them to distribute and concatenate 

communication messages in the channel. It uses altered routing channels to set up 

required parallel paths from the source to the destination. 

Now a step by step explanation is given how a recursive process can use 

combination of the proposed three MTO channels to create a complex transport under the 

constraints of information division explained in section. 

The preliminary step to use a channel is that a channel designer provides a channel 

definition, such as GC = ({gc_mgr, gc_chk}, {“Altered Routing Channel”, “Concurrent 

Channel”}, {“source”, “destination”}, {evt_connected, evt_disconnected, 
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evt_resource_changed, evt_sub_channel_error}, {sts_initial, sts_sub_setup, 

sts_full_setup, sts_suspend, sts_terminate}) and channel components, such as gc_mgr, 

gc_chk, and a component map such as “c-order:gc_mgr, i-order: (gc_chk) gc_mgr.” The 

component map is supplement information that provides channel component connection 

and invocation order information. The designer can supply the component map as 

imbedded in the channel manager or supplied separately. 

Step 1: When an application requires “a connection from node A to node E with 

20Mbps bandwidth,” the application invokes GSocket function in the GRACE library to 

set up a channel. The GRACE library interprets the semantic, “bandwidth channel,” to 

graph MTO channel (GC) and the constructs an application information metric for 

GC(A,E). The GRACE invokes the GC MTO channel and passes the application 

information metric to the channel. Note that the application information metric is a 

special data structure which contains the information elements identified in Table 2. As 

stated the invoking entity is expected to specify the end point locations, and perhaps few 

additional well known role placement points of the requested sub-channel. 

The application information metric has VEP and MROT. VEP has role and location 

information for the channel. The location information has physical address of the channel 

point-of-presence such as IP(A) and IP(E) and logical address of the POP such as Label 

A and Label E. The VEP also have a role of the POP. The role describes the task of the 

POP such as S for sender, R for receiver, and F for forwarder. At least a channel 

component is assigned to a role. For example a forwarding channel component is 

assigned to a forwarder role. Multiple components, however, can be assigned to a role to 
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perform the role. MROT has description of quality of traffic information. In the MROT 

metric the diagonal value represents throughput for in that location. The other values 

represent bandwidth for the traffic. The MROT, however, is not limited for the bandwidth 

only, but it can represent other qualities such as reliability. The MROT also can be 

described as a separate metric, if it is complex represents in one metric, but in this 

example it is presented in application information metric. 

 

Table 2 Application Information Metric for GC(A,E) 

IP IP(A) IP(E) 

Role S R VEP 

Label A E 

A 20 20 
MROT 

E 20 20 

 

In MROT, the value 20 in index (A,A) means it needs 20Mbps throughput in the node 

A that is same in index (E,E), and the value 20 in index (A,E) presents that it needs 

20Mbps bandwidth. The GRACE library creates the application information metric, 

invokes GC(A,E), and passes the metric to GC(A,E). 

Step 2: With the application information metric, the GC(A,E) creates channel 

invocation information metric, requests a network information metric to NOS, and adds 

the result to the metric as shown in Table 3. Note that channel invocation information 

metric has an expanded data structure which now contains additional information 

elements identified in Table 3. The VEP and the MROT contain the channel application 

information metric data, and the GBASE and the MQON are added from NOS. The metric 
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contains both GBASE, network graph information, and MQON, quality of network 

information, in one representation by representing the connection with its bandwidth and 

node computation capacity in diagonal. 

Table 3 Channel Invocation Information Metric of GC(A,E) 

IP IP(A)       IP(E)                 

Role S       R                 VEP 

Label A B C D E F G H I J K L M 

A 20       20                 
MROT 

E 20       20                 

A 5 10       25         30     

B 10 5 15     5               

C   15 5 10                   

D     10 5 20                 

E       20 5       30         

F 25 5       5 10     15       

G           10 5 25           

H             25 5 25         

I         30     25 5     5   

J           15       5       

K 30                   5 10   

L                 5   10 5 30 

GBASE 

and 

MQON 

M                       30 5 

 

Step 3: Using the channel invocation information metric, the GC(A,E) checks that 

any single path can connect from A to E and supports the given bandwidth. However, no 

single path can support that bandwidth from node A to node E. The GC(A,E) divides the 

path from A to E using altered routing MTO channel, ARC, and checks again. Eventually 

the GC(A,E) checks the possibility of ARC(A,F,E). Now the GC(A,E) has the channel 

invocation information metric with DMAP information as shown in Table 4. The DMAP 

is a planned deployment map which identifies where the channel components or sub-

channels should be deployed. 
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Table 4 Channel Invocation Information Metric of GC(A,E) 

IP IP(A)       IP(E)                 

Role S       R                 VEP 

Label A B C D E F G H I J K L M 

A 20       20                 MROT 
E 20       20                 

A 5 10       25         30     

B 10 5 15     5               

C   15 5 10                   

D     10 5 20                 

E       20 5       30         

F 25 5       5 10     15       

G           10 5 25           

H             25 5 25         

I         30     25 5     5   

J           15       5       

K 30                   5 10   

L                 5   10 5 30 

GBASE 

and 

MQON 

M                       30 5 

DMAP Sub-channels ARC(A,F,E)                         

 

Step 4: The GC(A,E) also creates an application information metric for ARC(A,F,E) 

and call the ARC(A,F,E) scout component (arc_chk) for checking the availability. When 

the GC(A,E) creates the application information metric for ARC(A,F,E), the roles of the 

ARC(A,F,E) is assigned by the GC(A,E). 

 

Table 5 Application Information Metric for ARC(A,F,E) 

IP IP(A) IP(E) IP(F) 

Role S R F VEP 

Label A E F 

A 20  20 

E  20 20 MROT 

F 20 20 20 
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Step 5: With the application information metric from GC(A,E), the ARC(A,F,E) 

augments its channel invocation information metric by adding network information from 

the node OS. The ARC(A,F,E) requests network information from NOS separately from 

its upper-level channel because a channel may require different network information that 

was used in upper-level channel and the upper-level channel does not know what 

information will be used in its sub-channel. In this example, each channel retrieves its 

own network information metric from NOS for its channel construction. 

 

Table 6 Channel Invocation Information Metric of ARC(A,F,E) after adding Network 

Information 

IP IP(A)       IP(E) IP(F)               

Role S       R F               VEP 

Label A B C D E F G H I J K L M 

A 20        20               

E        20 20               MROT 

F 20       20 20               

A 5 10       25         30     

B 10 5 15     5               

C   15 5 10                   

D     10 5 20                 

E       20 5       30         

F 25 5       5 10     15       

G           10 5 25           

H             25 5 25         

I         30     25 5     5   

J           15       5       

K 30                   5 10   

L                 5   10 5 30 

GBASE 

and 

MQON 

M                       30 5 
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Step 6: The ARC(A,F,E) confirmed that the connection from A to E is okay by TCP 

but could not decide the connection from F to E. Table 7 shows the channel information 

metric after it has plan for its channel module and checking the connection from F to E 

with GC(F,E). MQOS is a quality-of-service metric that represents what service quality 

will be given from the channel. In this MQOS, the diagonal denotes throughput of the node, 

and the other values represents how much bandwidth will be given in the connection.  

Note that in the MQOS some bandwidth numbers in MQOS are 25Mbps instead of 20Mbps 

because the channel can support up to 25Mbps in that segment. 

Table 7 Channel Invocation Information Metric of ARC(A,F,E) before Invoking GC(F,E) 

IP IP(A)       IP(E) IP(F)               

Role S       R F               VEP 

Label A B C D E F G H I J K L M 

A 20        20               

E        20 20               MROT 

F 20       20 20               

A 5 10       25         30     

B 10 5 15     5               

C   15 5 10                   

D     10 5 20                 

E       20 5       30         

F 25 5       5 10     15       

G           10 5 25           

H             25 5 25         

I         30     25 5     5   

J           15       5       

K 30                   5 10   

L                 5   10 5 30 

GBASE 

and 

MQON 

M                       30 5 

Components src       dst ctr               DMAP 
Sub-channel           GC(F,E)               

Computing 1       1 1               

A 25         25               

E                           
MQOS 

F 25         25               
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Step 7: The ARC(A,F,E) creates an application information metric for GC(F,E) and 

passes the metric to it.  

 

Table 8 Application Information Metric for GC(F,E) 

IP IP(E) IP(F) 

Role R S VEP 

Label E F 

E 20 20 
MROT 

F 20 20 

 

Even though the ARC(A,F,E) can support more bandwidth than the channel required, 

the bandwidth requirement for its sub-channel still remained same as its bandwidth 

requirement from its upper-level channel. 

 

Step 8: The GC(F,E) is invoked from ARC(A,F,E) with the application information 

metric from ARC(A,F,E) and adds network information to its channel invocation 

information metric shown in Table 9. 
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Table 9 Channel Invocation Information Metric of GC(F,E) after Adding Network 

Information 

IP IP(E) IP(F)         

Role R S         VEP 

Label E F G H I J 

E 20 20         
MROT 

F 20 20         

E 5       30   

F   5 10     15 

G   10 5 25     

H       5 25 20 

I 30   25 25 5   

GBASE and MQON 

J   15   20   5 

 

Step 9: The GC(F,E) checks any single path from F to E is available for the 

requirement, but it is not available. The GC(F,E) divides the path and checks feasibility 

using ARC(F,H,E). 

Table 10 Channel Invocation Information Metric of GC(F,E) before Invoking 

ARC(F,H,E) 

IP IP(E) IP(F)         

Role R S         VEP 

Label E F G H I J 

E 20 20         
MROT 

F 20 20         

E 5       30   

F   5 10     15 

G   10 5 25     

H       5 25 20 

I 30   25 25 5   

GBASE and MQON 

J   15   20   5 

DMAP Sub-channel   ARC(F,H,E)         

 



 

 

43 

 

Step 10: Because of the GC(F,E) does not have other channel component as a service 

component, it has only sub-channel section in its DMAP. The GC(F,E) creates an 

application information metric for ARC(F,H,E) and invokes the ARC(F,H,E). 

 

Table 11 Application Information Metric for ARC(F,H,E) 

IP IP(E) IP(F) IP(H) 

Role R S F VEP 

Label E F H 

E 20  20 

F  20 20 MROT 

H 20 20 20 

 

Step 11: The ARC(F,H,E) uses the application information metric, creates its 

channel invocation information metric, and adds network information from NOS on the 

metric. 

 

Table 12 Channel Invocation Information Metric of ARC(F,H,E) after Adding Network 

Information 

IP IP(E) IP(F)   IP(H)     

Role R S   F     VEP 

Label E F G H I J 

E 20    20     

F  20   20     MROT 

H 20 20   20     

E 5       30   

F   5 10     15 

G   10 5 25     

H       5 25 20 

I 30   25 25 5   

GBASE and MQON 

J   15   20   5 
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Step 12: The ARC(F,H,E) confirmed that the connection from H to E is possible but 

could not decide the connection availability from F to H. So, the ARC(F,H,E) plans to 

check the availability of the segment with GC(F,H). The ARC(F,H,E) plans on its 

channel component deployments based on that it will use GC(F,H) for the segment from 

F to H. Note that the MQOS has some 25Mbps instead of 20Mbps because the channel can 

support maximum 25Mbps in the segment of H to E. The ARC(F,H,E) creates an 

application information for GC(F,H). 

 

Table 13 Channel Invocation Information Metric for ARC(F,H,E) before Invoking 

GC(F,H) 

IP IP(E) IP(F)   IP(H)     

Role R S   F     VEP 

Label E F G H I J 

E 20    20     

F  20   20     MROT 

H 20 20   20     

E 5       30   

F   5 10     15 

G   10 5 25     

H       5 25 20 

I 30   25 25 5   

GBASE and MQON 

J   15   20   5 

Components dst src   ctr     
DMAP 

Sub-channels   GC(F,H)         

Computing 1 1   1     

E  25     25     

F   20   20     
MQOS 

H 25 20   20     

 



 

 

45 

 

Table 14 Application Information Metric for GC(F,H) 

IP IP(F) IP(H) 

Role S R VEP 

Label F H 

F 20 20 
MROT 

H 20 20 

 

Step 13: The invoked GC(F,H) adds network information to its channel invocation 

information metric and checks any single path from F to H is available for the 

requirement. However, it is not available. The GC(F,H) checks any ARC is available for 

the requirement, but it also not available. The GC(F,H) checks CC(F,H) is available for 

the requirement. The GC(F,H) creates an application information metric for CC(F,H). 

 

Table 15 Channel Invocation Information Metric of GC(F,H) before Invoking CC(F,H) 

IP IP(F)   IP(H)   

Role S   R   VEP 

Label F G H J 

F 20   20   
MROT 

H 20   20   

F 5 10   15 

G 10 5 25   

H   25 5 25 
GBASE and MQON 

J 15   25 5 

DMAP Sub-channels CC(F,H)       

 

Table 16 Application Information Metric for CC(F,H) 

IP IP(F) IP(H) 

Role S R VEP 

Label F H 

F 20 20 
MROT 

H 20 20 
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Step 14: The CC(F,H) adds network information to its channel invocation 

information metric and checks ARC(F,G,H) and ARC(F,J,H) are possible for the 

requirement. The CC(F,H) creates application information metrics for ARC(F,G,H) and 

ARC(F,J,H). 

 

Table 17 Channel Invocation Information Metric of CC(F,H) before Invoking 

ARC(F,G,H) and ARC(F,J,H) 

IP IP(F)   IP(H)   

Role S   R   VEP 

Label F G H J 

F 20   20   
MROT 

H 20   20   

F 5 10   15 

G 10 5 25   

H   25 5 25 
GBASE and MQON 

J 15   25 5 

Components src   dst   
DMAP 

Sub-channel ARC(F,G,H), ARC(F,J,H)       

Computing 1   1   

F 20   20   MQOS 

H 20   20   

 

Table 18 Application Information Metric for ARC(F,G,H) 

IP IP(F) IP(G) IP(H) 

Role S F R VEP 

Label F G H 

F 10 10  

G 10 10 10 MROT 

H  10 10 
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Table 19 Application Information Metric for ARC(F,J,H) 

IP IP(F) IP(H) IP(J) 

Role S R F VEP 

Label F H J 

F 10  10 

H  10 10 MROT 

J 10 10 10 

 

Step 15: The ARC(F,G,H) adds network information to its channel invocation 

information metric and confirms that the connection for the path FGH supports the 

requirement. Now the ARC(F,G,H) completes its deployment planning and its creates 

channel information metric from the channel invocation information metric and returns 

its deployment information metric to CC(F,H). The channel information metric has same 

contents except that it has complete information on channel construction planning. 

Therefore the channel information metric has VEP, MROT, GBASE and MQON, DMAP, MQOS, 

and its sub-channels DMAP and MQOS. Table 20 shows the ARC(F,G,H)’s channel 

information metric. 

Step 16: The ARC(F,J,H) also confirms the availability and returns its deployment 

information metric to CC(F,H) too. The ARC(F,G,H) and ARC(F,J,H) are the terminal 

MTO channel. So, after they finalize its channel construction plan, it forwards its DMAP 

and MQOS information to its upper-level channel. 
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Table 20 Channel Information Metric of ARC(F,G,H) 

IP IP(F) IP(G) IP(H) 

Role S F R VEP 

Label F G H 

F 10 10   
MROT 

G 10 10 10 

H   10 10 

F 5 10   

G 10 5 25 
GBASE and MQON 

H   25 5 

DMAP Components src ctr dst 

Computing 1 1 1 

F 10 10   

G 10 10 10 
MQOS 

H   10 10 

 

Table 21 Channel Information Metric of ARC(F,J,H) 

IP IP(F) IP(H) IP(J) 

Role S R F VEP 

Label F H J 

F 10   10 

H   10   MROT 

J 10   10 

F 5   15 

H   5 20 GBASE and MQON 

J 15 20 5 

Components src dst ctr 
DMAP 

Computing 1 1 1 

F 15   15 

H   15 15 MQOS 

J 15 15 15 

 

Note that MQOS is 15Mbps not 10Mbps because it can support up to 15Mbps. 
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Step 17: The CC(F,H) completes its deployment information after it receives 

deployment information metric from ARC(F,G,H) and ARC(F,J,H). The CC(F,H) creates 

its channel information metric by including the deployment information metric from its 

sub-channel at the end of its channel invocation information metric. The CC(F,H) now 

completes its channel construction plan, and it also forwarding its deployment 

information metric to its upper-level channel, GC(F,H). 

 

Table 22 Channel Information Metric of CC(F,H) 

IP IP(F)   IP(H)   

Role S   R   VEP 

Label F G H J 

F 20   20   
MROT 

H 20   20   

F 5 10   15 

G 10 5 25   

H   25 5 25 
GBASE and MQON 

J 15   25 5 

Components src   dst   
DMAP 

Sub-channel ARC(F,G,H), ARC(F,J,H)       

Computing 1   1   

F 20   20   MQOS 

H 20   20   

ARC(F,G,H) DMAP Components src ctr dst   

Computing 1 1 1   

F 10 10     

G 10 10 10   
MQOS 

H   10 10   

ARC(F,J,H) DMAP Components src   dst ctr 

Computing 1   1 1 

F 15     15 

H     15 15 
MQOS 

J 15   15 15 
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Step 18: The deployment information of each channel forwarded to its upper level 

channel and finally the GC(A,E) has the channel information metric as shown in Table 23. 

Table 23 Channel Information Metric for GC(A,E) 

IP IP(A)       IP(E)                 

Role S       R                 VEP 

Label A B C D E F G H I J K L M 

A 20       20                 
MROT 

E 20       20                 

A 5 10       25         30     

B 10 5 15     5               

C   15 5 10                   

D     10 5 20                 

E       20 5       30         

F 25 5       5 10     15       

G           10 5 25           

H             25 5 25         

I         30     25 5     5   

J           15       5       

K 30                   5 10   

L                 5   10 5 30 

GBASE and MQON 

M                       30 5 

DMAP Sub-channels ARC(A,F,E)                         

Components src       dst ctr               ARC(A,F,E) 

DMAP 
Sub-channel           GC(F,E)               

Computing 1       1 1               

A 25         25               

E                           

MQOS 

F 25         25               

GC(F,E) DMAP Sub-channel           ARC(F,H,E)               

Components         dst src   ctr           

Sub-channels           GC(F,H)               

Computing         1 1   1           

E         25     20           

F           20               

ARC(F,H,E) 

DMAP 

H         25 20   20           

GC(F,H) DMAP Sub-channels           CC(F,H)               

Components           src   dst           
CC(F,H) DMAP 

Sub-channel           

ARC(F,G,H), 

ARC(F,J,H)               

Computing           1   1           

F           20   20           MQOS 

H           20   20           

ARC(F,G,H) 

DMAP Components           src ctr dst           

Computing           1 1 1           

F           10 10             

G           10 10 10           

MQOS 

H             10 10           

ARC(F,J,H) 

DMAP Components           src   dst   ctr       

Computing           1   1   1       

F           15       15       

H               15   15       

MQOS 

J   15   15   15               
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4.4 Complexity of a MTO Channel 

 

During a MTO channel set up, specific MTO channels are discovered, and the 

discovered MTO channels are constructed on network nodes. The discovery of the 

required MTO channels is an unbounded problem and its complexity can reach from 

linear to a NP-complete problem. For example, a channel construction from two nodes in 

a network with all TCP connections is bounded in O(E) where E is number of edges in 

the network. However, a channel builds a Hamiltonian path that makes a path between 

two nodes of a network graph that visits each node exactly once is a NP-complete 

problem. In practical case, a channel construction is performed in network that has 

limited number of nodes and connections with small number of channel components and 

sub-channels. Therefore, the channel construction happens in reasonable amount of time. 

The MTO channel set up process, however, has not only a discovering (planning) process 

but also a construction process in network. The construction process of the required MTO 

channel is relatively new in network. The conventional network has all the software that 

is required to set up a connection. The MTO channel construction complexity is 

dominated by the number of MTO channel components required to deploy and execute. 

There are two types of construction costs to build a MTO channel; one for the form cost 

of the MTO channel, and the other cost for the assembly of the MTO channel. The form 

complexity is a channel construction complexity that reflects how much overhead will be 

endowed in network to form the channel. It includes overheads such as signaling 
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overhead to construct a channel in network and loading and activating channel 

component overheads. In most case the form complexity is dominated by how many 

channel components and sub-channels are needed to build a service. The assembly time 

complexity is a time complexity to construct a MTO channel service. Because 

independent channels can be constructed simultaneously, it is subjected to the depth of 

channel construction not the number of required channel. Later, a channel optimization 

algorithm is explored to reduce a channel formation complexity. The assembly time 

complexity is used for estimate channel construction time to set up a timer for error 

handling during the channel construction. 

 

4.4.1 MTO Channel Form Complexity 

 

Definition 7: MTO Channel Form Complexity 

The form complexity of a MTO channel C, FormComplexity(C), is defined as 

FormComplexity(C) = (Cs,Cc). The CS is a sub-MTO channel form complexity and Cc is a 

MTO channel component form complexity. The sub-MTO channel form complexity, Cs is 

defined as ∑×=
'

)(
c

i

is cxityFormCompleC α , and the Cc is defined as 

∑×=
N

i

ic MxityFormCompleC )(β . The α is a constant factor for sub-MTO channel 

construction, and the β is a constant factor for the MTO channel component construction. 

C’ is the MTO sub-channels, N is the number of channel components, and Mi is the i-th 

channel component in the MTO channel C. 
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The form complexity is determining how much overhead is in the channel 

construction, it has two factors: sub-MTO channel form overhead and its own channel 

components form overhead. In general case the constant α for sub-MTO channel form 

complexity is greater than the constant β for the channel’s component form complexity 

because sub-MTO channel form has to set up channel management information added to 

set up components in the sub-MTO channel. Also, in most cases the form complexity of 

each MTO channel’s component is very close because the building procedure is almost 

the same except for the restrictions of components and the size of channel component to 

deploy.  

 

ARC(A,F,E)

GC(F,E)

ARC(F,H,E)

CC(F,H)

ARC(F,G,H) ARC(F,J,H)

GC(A,E)

GC(F,H)

 

Figure 9 A MTO Channel Construction Tree 

 

As shown in the Figure 9, a MTO channel construction tree can be represented as a 

hierarchical tree.  
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Assume that ARC has I number of component, CC has J number of component, and 

GC has K number of component. Also, assume that the form complexity of each 

component is one and the form complexity of TCP is assumed zero because the TCP 

software is already in every nodes. The complexity of ARC(F,G,H), and ARC(F,J,H) is 

O(I). The complexity of CC(F,H) is O(J+I). The complexity of GC(F,H) is O(K+J+I). 

The complexity of ARC(F,H,E) is O(K+J+2I). The complexity of GC(F,E) is O(2K+J+2I) 

complexity. ARC(A,F,E) has O(2K+J+3I) complexity. GC(A,E) has O(3K+J+3I) 

complexity. Assume that N is a maximum number of I, J and K and D is the depth of the 

channel construction tree then the form complexity of the channel can represent O(DN). 

Therefore the channel form complexity is bounded by linear function complexity. In 

practical situation, the form complexity is dominated by the factor of the depth of channel 

construction tree because N is usually a fixed small number while the depth of a channel 

construction tree varies in case by case. 
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4.4.2 MTO Channel Assembly Time Complexity 

 

ARC(A,F,E)

GC(F,E)

ARC(F,H,E)

CC(F,H)

ARC(F,G,H) ARC(F,J,H)

GC(A,E)

GC(F,H)

se
q

u
en

ti
a

l

parallel

ARC(A,F,E)

GC(F,E)

ARC(F,H,E)

CC(F,H)

ARC(F,G,H) ARC(F,J,H)

GC(A,E)

GC(F,H)

se
q

u
en

ti
a

l

parallel
 

Figure 10 A MTO Channel Assembly Time Complexity 

 

Definition 8: MTO Channel Assembly Time Complexity 

The assembly time complexity of a MTO channel C, AssemblyComplexity(C), is 

defined as AssemblyComplexity(C) = T(f(Pc)) + MAX( MAX(AssemblyComplexity(C’)), 

MAX(AssemblyComplexity(Mc)) )+ γ. T(f(Pc)) is a time of planning function of a MTO 

channel C. γ is constant for load and activation time of the MTO channel C. 

 

The assembly complexity is a time complexity for constructing a MTO channel 

including its channel planning time and its sub-MTO channel construction time. 

Independent MTO channels such as ARC(F,G,H) and ARC(F,J,H) in Figure 10 are 
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constructed concurrently. But a sub-MTO channel has a dependency in its upper-level 

channel. So, sub-MTO channels are constructed sequentially. The planning time can be 

done in polynomial time or in exponential time based on its planning function as 

described in the beginning of section 4.4. A MTO channel returns a construction status 

message to its upper-level MTO channel after it constructs its components. The upper-

level MTO channel needs to wait until its sub-MTO channels are constructed before 

sending its own construction status message to its upper-level MTO channel. The 

assembly time includes loading and activation times for components too. The assembly 

time depends on the size of the component to load and the initiation time of the 

component. However, if the component size is not abnormally different, in a real 

environment, the loading and activating times does not vary too much. 

Each MTO channel can be constructed independently and concurrently except its 

own sub-MTO channels. A MTO channel assembly time takes the maximum time of its 

components that includes sub-MTO channels. Assume that the MTO channel component 

assembly complexity of ARC, CC, and GC are Ta, Tc, and Tg, and the channel planning 

time of ARC, CC, and GC are T(f(Pa)), T(f(Pc)), and T(f(Pg)).  The assembly complexity 

of ARC(F,G,H) and ARC(F,J,H) is O(Ta + T(f(Pa))). The assembly complexity of 

CC(F,H) is O(Ta + Tc + T(f(Pa)) + T(f(Pc))). The assembly complexity of GC(F,H) is 

O(Ta + Tc + Tg + T(f(Pa)) + T(f(Pc)) + T(f(Pg))). The assembly complexity of ARC(F,H,E) 

is O(2Ta + Tc + Tg + 2T(f(Pa)) + T(f(Pc)) + T(f(Pg))). The assembly complexity of 

GC(F,E) is O(2Ta + Tc + 2Tg + 2T(f(Pa)) + T(f(Pc)) + 2T(f(Pg))). The assembly 

complexity of ARC(A,F,E) is O(3Ta + Tc + 2Tg + 3T(f(Pa)) + T(f(Pc)) + 2T(f(Pg))). The 
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assembly complexity of GC(A,E) is O(3Ta + Tc + 3Tg + 3T(f(Pa)) + T(f(Pc)) + 3T(f(Pg))).  

The O(Ta), O(Tc), and O(Tg) is in polynomial time. The loading and activation time for 

each component is linear, and a MTO channel has linear number of components. So, The 

channel component’s assembly time complexity is O(N) where N is the number of 

channel components in the channel. So, the assembly complexity of GC(A,E) is O(N + 

T(f(P))) where P is the most complex planning function among the three channels. If the 

most complex planning function is a deterministic problem, then the assembly 

complexity is O(N+P). However, if the most complex planning function is a NP-

complete problem, then the channel’s construction is performed in non-polynomial time. 

In practical situation, the assembly time is dominated by the factor of the depth of 

channel construction tree because N is usually a fixed small number and the planning 

function is a computation oriented task using a network graph that has limited nodes and 

links while loading and activation time is an IO oriented task which is a relatively very 

slow task than computation oriented task. 

 

4.5 Optimization of MTO Channel Construction 

 

As seen in the previous MTO channel formation and assembly complexity 

calculations, the complexities of MTO channel construction are largely affected by the 

height of the MTO channel construction tree, i.e. the depth of recursive MTO channel 

construction. In this section, a MTO channel construction optimization method is 
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presented to reduce the MTO channel complexity by eliminating the unnecessary MTO 

channel components. 

 

Definition 9: Optimization of MTO Channel Construction 

Rule 1: If MTO channel A has all functions of sub-MTO channel B, remove MTO 

channel B. 

Rule 2: If MTO channel A doesn’t use any added function of sub-MTO channel B, 

remove MTO channel B. 

Rule 3: Perform optimization until no optimization is possible. 

 

Because the GC MTO channel does not have any added functionality in data 

transmission, and the ARC MTO channel has all the functions to combine two ARC 

MTO channels sequentially, the MTO channel construction tree of Figure 9 can be 

optimized further. 

 

ARC(A,F,H,E)

CC(F,H)

ARC(F,G,H) ARC(F,J,H)

GC(A,E)

ARC(A,F,H,E)

CC(F,H)

ARC(F,G,H) ARC(F,J,H)

GC(A,E)

 

Figure 11 An Optimized MTO Channel Construction Tree 
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Sequence of optimization of Figure 9 is shown below: 

• GC(F,E) and GC(F,H) are removed and reduce tree by Rule 2. 

• ARC(F,H,E) are removed and reduce tree by Rule 1. 

 

Figure 11 shows the optimized MTO channel construction tree. The optimized MTO 

channel construction reduces construction tree depth from 7 to 4. 
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Figure 12 A Final Planned MTO Channel Construction Map 

 

After optimizing the channel, the channel’s components are deployed as in Figure 12. 

It uses an ARC from A to E via F and H, a CC from F to H which uses two ARC MTO 

channels to connect from F to H concurrently.  
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4.6 Event Message Path Optimization Issue 

 

An event is generated during a MTO channel’s lifetime. An event will be handled by 

the MTO channel if it has the event handler. If the MTO channel does not have the event 

handler, then it will propagate the event to the upper MTO channel (super MTO channel 

which invokes the MTO channel) until the event handler is found or the node operating 

system will handle the event based on the default configuration. Without event path 

optimization, this event propagation follows the logical hierarchy of the MTO channel.  

The physical deployment of MTO channel components will depend on the 

component resource requirements, the run time environment, and the placement order 

requirement. A MTO channel component will be deployed where it is best fit. The 

physical MTO channel locations may be different from logical MTO channel locations. 

Therefore an event may be routed through a path which is not the best path to the event 

delivery. To optimize the event delivery path, the following formula is used to obtain the 

best path at a given time. 

 

Definition 10: Event Message Path 

Location of an event to deliver LE can be expressed LE = C.EventHandler(E) if the 

event is handled in the MTO channel C, or LE = SuperChannel(C).EventHandler(E) if the 

message is not handled in the MTO channel C. C.EventHandler(E) is a location of the E 

vent handler in MTO channel C. SuperChannel(C) is a upper level MTO channel of C. 
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The discovery of event handler’s location is constructed the bottom-up way in 

coordination with a MTO channel manager. If an event is handled by the MTO channel 

C’s components, the event handle location is set to the channel component location that 

handles the event. If it is not handled by itself, the event will propagate to its upper layer 

via its channel manager. So, the location of the event handler should be retrieved from 

the upper layer (i.e. super MTO channel.) 
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Figure 13 Logical and Physical Event Notification Flow 

 

Figure 13 (a) shows the event notification path of E1, and Figure 13 (b) shows the 

MTO channel hierarch. The C0 has two sub-MTO channels C1 and C2. In C1, it has two 

sub-MTO channels C11 and C12. The MTO channel C1 has MTO channel manager in POP 

B. The MTO channel C11 has MTO channel manager in POP D. Event E1 is produced in 

MTO channel C11’s POP H and the event E1 is handled in C1’s POP L. Without event 
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message optimization, the event E1 is notified to the MTO channel manager in POP D. 

The MTO channel manager of C11 then forwards the event E1 to its upper level MTO 

channel’s manager which is located in POP B because it does not have an event handler 

of E1. The C1’s MTO channel manager then forwards the E1 to the handler located in 

POP L. The pink line is the logical path of the Event E1 notification. It is following the 

MTO channel C11’s path and reported to the MTO channel C1 (POP B) and forwarded to 

the handler in POP L. However, after the event location discovery process, it redirects the 

event notification to POP L, where the E1 is handled. 

All events also have their default event handler location, the MTO channel 

manager’s location. When an event handler doesn’t respond because of link down, 

network congestion, unavailable system, and so on, the event will be delivered to the 

default event handler which is included in a network operating system. 

 

4.7 Analogy with TCP connection 

 

A TCP connection is a traditional transporting object in between communication 

entities. A definition of a TCP channel can be defined CTCP = ( {TCP_stack }, {IP}, {IPsrc, 

IPdst}, {}, {closed, listen, syn_rcvd, syn_sent, established, FIN_WAIT_1, FIN_WAIT_2, 

closing, time_wait, close_wait, last_ack}). It uses IP protocol as its sub-MTO channel. 

One of the noticeable things in these definitions is an event set which is an empty set. 

TCP does not produce event. It handles all the generated events such as SYN, ACK, 
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DATA, and FIN by itself, and changes its status rather than produces events. Therefore, a 

library function checks the status variables to check if the event occurred. 

The TCP protocol stack is the only TCP connection’s component which is 

preinstalled at both communication entities. The TCP protocol stack performs manager 

and service roles. The TCP protocol stack works as an interface point to the upper layer 

or application (manager). It also handles actual data transmission as a service component. 

However, it does not need to gather network information actively like Scout in a MTO 

channel. 

The construction of a TCP connection is undertaken using IP protocols to send SYN 

and ACK to establish a connection. All required software components are preinstalled in 

both communication end points and intermediate nodes also have IP protocols to forward 

the packets. Because the required software is preinstalled in all involved nodes, the 

construction of a TCP connection does not required dynamic installation. It also does not 

require using path discovery phase to install a channel component. Destruction of a TCP 

connection simply releases connection information; it does not unload the protocol 

components after termination of the message exchange. 

TCP has two points as point of presence; source and destination.  It has one 

connection from source to destination with given ports. TCP also maintains its own states: 

closed, listen, syn_rcvd, syn_sent, established, FIN_WAIT_1, FIN_WAIT_2, closing, 

time_wait, close_wait, last_ack. 
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Table 24 Information Metric of TCP from A to E 

IP IP(A) IP(B) IP(E) 

Role S F R VEP 

Label A B E 

A *   * 
MROT 

E *   * 

A   10   
GBASE and MQON 

B 10     

 

The Information Metric of TCP is shown in Table 24. TCP has partial network 

metric because it only can have a next hop to the destination. The MROT is unknown 

because it is not a guaranteed service. It does not have DMAP and MQOS; all the required 

software components are already installed, and it cannot predict the quality-of-service. 
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CHAPTER 5  

Active MTO Channel System Architecture 

 

5.1 Overview of Active MTO Channel System 

5.1.1 Active MTO Channel System Model 
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Figure 14 An Active MTO Channel System Model 

 

Figure 14 depicts an active MTO channel system model. It consists of applications, 

active MTO channel system library (GRACE), network OS (ACME), service find 

server(s), service component server(s), and network information server(s). Applications 

use a special library called the general active channel constructor extension (GRACE) to 
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use a MTO channel. The GRACE is very close to the Berkeley socket library. Active 

channel management enforcer (ACME) is an added component in a network node 

operating system to support dynamic composition of the MTO channel in each active 

node as well as in application nodes. A service find server is used to bind the user’s 

requirement to a specific MTO channel service. A service component server is a 

repository of MTO channel’s components and serves for dynamic component loading. A 

network information server is an optional server to provide network wide information 

such as the network connection map and physical resources of the network/system in the 

network which might be needed by manager components to know about the network 

topology and capacity metric. 

 

5.1.2 Active MTO Channel System Node OS Service Layer Architecture 

 

The Active MTO Channel System Architecture is divided into three tiers: application 

subscriber layer, compose-able service layer, and enhanced network layer. Figure 15 

shows the layers. 
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Figure 15 The Three Tiers of System Architecture in Active MTO Channel System 

Formalism 

 

The first is the application subscriber layer. More specifically, the network 

independent part of the domain routines resides in this tier. The second is the 

composeable service layer. The components in this layer are programmable. However; 

they execute strictly under the control of the enhanced OS layer and help in the local 

state’s dependent application. The third is the enhanced network OS layer which houses 

the service components that are loaded and executed. It bridges between the services and 

applications.  

 

5.1.3 Application Subscriber Layer 

 

Many parties participate in the construction and maintenance of a dynamic service 

composition. The process is not a simple task but it does not mean to be complex to use. 
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The service construction needs to be easy for an application. Of the three layers, the 

application subscriber layer has the best knowledge about what are the applications/users 

requirements. The application should remain independent from the service layer, but it 

should have the means to reflect its requirements to a service and to access the status of 

the service. The supplemented MTO channel library, GRACE, supports uniform 

interfaces to the application and hides the complexity of the MTO channel construction 

from the application developer. 

Current Socket APIs are one of the most successful interfaces for network 

communication. Only a small set of APIs is necessary to set up and use a network service. 

The APIs are independent from the operating systems, physical hardware, and underlying 

protocols. All the management of a connection for the socket is hidden from the 

application. Because of their simplicity, application programmers love to use socket 

interfaces. When new protocols are developed, an augmented set of options are included 

in the socket APIs. These services options should be defined when a socket is created. In 

current socket API these services are static and the options are not flexible. The required 

functionality should pre-exist in the network layer before it can be used. Also, for some 

services, each communicating party involved in the transmission should support the 

option and underlying functionality. So, the available service is limited further from the 

function set given from the one entity. 

The active MTO channel system is supported by the new GRACE application user 

interface. It has been designed as the socket library. However, the underlying 

functionalities of the GRACE are quite different from the legacy socket library. It 
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borrows the simplicity and forms from the socket library. The GRACE supports dynamic 

MTO channel binding. Therefore, the GRACE’s role is quite different from that of the 

general socket library. 

The GRACE is used as an end point programming interface (EPPI) by applications 

to access MTO channels. The GRACE application user interfaces are shown in Table 25. 

Using GRACE, an application can launch any MTO channel. 

 

5.1.4 Compose-able Service Layer 

 

A compose-able service layer is a layer where the custom MTO channel resides. In 

this layer MTO channel components are loaded, bond, and are executed. A MTO channel 

may have more than one MTO channel component. When a MTO channel component(s) 

is required, a node operating system (ACME) loads the component and executes it in this 

MTO channel layer space. This layer is managed by the ACME.  ACME supports basic 

functionalities, i.e. load, execute, terminate, and unload components, and the scheduling 

and managing of system resources. The requests of MTO channel 

load/execute/terminate/unload are invoked by a MTO channel manager which is a 

representative component in a MTO channel, or an application library at initial MTO 

channel set up time. ACME may actively manage MTO channel layer, i.e. purging the 

unused MTO channel components, but a MTO channel manager takes responsibility for 

the management of its MTO channel components. Communication in between the MTO 

channel components is predefined by a MTO channel designer. However, a MTO channel 
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can use other MTO channels to perform or augment its function. The communication 

between a MTO channel and its sub-MTO channel takes place the same way that the 

application library calls a MTO channel. In this fashion, the MTO channel can construct 

complicated functions using the other MTO channels while maintaining the simplicity of 

its interfaces. 

 

5.1.5 Enhanced Network OS Layer 

 

The network layer should be augmented for the dynamic MTO channel load and 

execution. Legacy networks do not require load and execution because all the functions 

in such networks are pre-loaded when the operating system is loaded. Even though 

operating systems use dynamic libraries to load and unload a set of network components 

in run time, the function set which is available to the system remains the same. 

The basic functions of the enhanced network OS layer are load, unload, execute, and 

terminate with regard to a MTO channel component. However, for system integrity, the 

enhanced network OS layer should limit the usage of the system using policies. The 

enhanced network OS layer can limit the MTO channel components that can be executed 

in the node, as well as the usage of system resources, and can validate the authority of the 

requests, and so on. The network operating system (ACME) in this dissertation is used to 

indicate the enhanced network OS layer. 
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5.2 Application Programming Interfaces 
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Figure 16 Network Services Layers for Dynamic Service System Construction 

 

Programming Interface: Unlike classical channels, the network OS provide two 

interfaces. First is the end point programming interface (EPPI) to the application 

(source(s) and sink(s)) or to MTO channel to request and run a MTO channel. The other 

is the component programming interface (CPI) for MTO channel components to execute 

and co-ordinate their functions. The general active channel constructor extension 

(GRACE) supports EPPI. The active channel management enforcer (ACME) supports 

CPI. It is possible that a MTO channel component uses EPPI for managing its sub-MTO 

channel. An application may directly call ACME APIs also, but it is not recommended. 

Services: Below the interface, the following new network layer services are now 

required for a MTO channel: (a) MTO channel installation service (b) intra-channel-

component communication service, and (c) network state exchange service. All MTO 

channel components are categorized in three different component types. A manager, 
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which represents the MTO channel and takes responsibility of the MTO channel service 

usually located at the actuator end of the connection. The service components, which are 

deployed in the intermediate nodes, perform service on the contents and deliver them to 

the next point. Scout components are optional which are deployed and perform 

information gathering or processing before the MTO channel is fully installed. The figure 

above shows the service stacks in three positions. The junction nodes use EPPI, but no 

application component runs on them. However, since, the junction points can be a typical 

active router, instead of relying on general OS, an enhanced network layer is created on 

top of the router. The enhanced network layer identifies dynamic MTO channel 

communication from regular routing operation and when dynamic MTO channel data 

arrives, it diverts the dynamic MTO channel packet towards proper components. The 

enhanced network layer also allocates the CPU and memory resources among the 

competing MTO channel components and acts as a MTO channel component scheduler. 

To support a composite MTO channel, the active MTO channel system supports 

following groups of APIs. 

A MTO channel construction is initiated by an application by calling a GSocket 

library function. The general active channel constructor extension (GRACE) provides 

similar functionality to the socket library while it is hiding the internal differences of the 

MTO channel architecture. The application user interfaces for the construction of a MTO 

channel is shown in Figure 17. 
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Figure 17 Application Programming Interfaces for a MTO Channel Construction  

 

There are six entities participating in the service constructions. Table 25 shows 

ACME interfaces. ACME interfaces are used as CPI to service components. It supports 

load/unload/start/stop of a service, verification of privilege and a service component’s 

integrity as well as the retrieval of a service handler.  

 

Table 25 Active Channel Management Enforcer (ACME: Network OS) APIs 

Interface Description 

int LoadService(servicename) Load a service 

int UnloadService(servicename) Unload a service 

servicehandle StartService(servicename) Start a service 

int StopService(servicehandle) Stop a service 

servicehandle GetHandle(servicename, servicedescription) Get a handler a service by name 

int VerifyPrivilege(userid, operation, targetobject) 
Check and verify privilege of a 

user for the operation 

int VerifyServiceComponent(servicecomponentname) 
Check and verify a service 

component’s integrity 
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Table 26 Service Component APIs 

Interface Description 

status GetStatus() Retrieve status information of the service 

servicepropertylist GetServicePropertyList() Return a service property list 

int SetServiceProperty(serviceproperty, value) Assign a service property value 

int Send(databuffer, size) Send contents using the service 

int Receive(databuffer, size) Receive contents via the service 

 

The service components should support five APIs by defaults as shown in Table 26. 

These five application programming interfaces should be implemented in all service 

components. They have status information retrieval, property handling, and data 

communication functions. 

Table 27 General Active channel Constructor Extension (GRACE) APIs 

Interface Description 

sockethandle GSocket(service) Define a GRACE socket 

int Connect(sockethandle) Connect a service entity 

int Close(sockethandle) Close a service 

int Bind(sockethandle) Binding a GRACE socket 

int Listen(sockethandle) Listening a GRACE socket connection 

sockethandle Accept(sockethandle) Accepting  GRACE socket connection 

servicepropertylist 

GetServicePropertyList(sockethandle) 
Retrieve a service property list 

int SetServiceProperty(sockethandle, 

serviceproperty, value) 
Assign a service property 

int Send(sockethandle, buffer, size) Send contents using the GRACE socket 

int Receive(sockethandle, buffer, size) Receive contents via the GRACE socket 

 

GRACE application programming interfaces are used by applications and a MTO 

channel component to create a sub-MTO channel. Table 27 shows the interfaces. It is 

designed as close as the Berkeley Socket interface to easy migration of a socket 

programmer to the new MTO channel programming yet enough to support the 

exploration of a custom MTO channel service. 
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Table 28 Service and Network Information APIs 

Entity Interface Description 

servicename FindService(service) 
Retrieve a service 

name 
Service Find Server 

servicecomponentname 

FindServiceComponent(servicename) 

Retrieve a service 

component name 

Service Component 

Server 

int 

GetServiceComponent(servicecomponentname) 

Load a service 

component 

Network Information 

Server 

NetworkMap 

GetNetworkInfo(networkinfoname, buffer) 

Retrieve a network 

information 

 

The service find server, service component server, and network information server 

interfaces are shown in Table 28. The service find server interfaces are used by GRACE 

and service component to find a service that satisfies the specification as well as the 

functionalities. The service component server interfaces are used by GRACE and a MTO 

channel manager to load a service component. The network information server may be 

used optionally. The network information server sends network information as a return to 

the GetNetworkInfo() interface call. 

 

5.3 Single MTO Channel Construction 

 

The MTO channel construction sequence is explained with an example of a basic 

MTO channel service.  

A basic MTO channel is a simple forwarding MTO channel service. It consists of 

BC_MGR, BC_SRC, BC_CTR, and BC_DST. BC_MGR is a manager component of the 

MTO channel. It will charge for the rest of the MTO channel construction after it is 
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invoked by the system. BC_SRC and BC_DST are source and destination components 

which send and receive data from/to the application it connects. BC_CTR is a MTO 

channel component deployed in the path in between the applications. 
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Figure 18 A Single MTO Channel Construction Sequences 

 

Figure 18 describes a single MTO channel construction sequence using a basic MTO 

channel service. A client application requests a simple MTO channel service from a 

GRACE. The active channel system library, GRACE, contacts a service find server via 

findService(). A service find server returns a proper service name, i.e. basic MTO 

channel. The GRACE also requests to find service component using a 

findServiceComponent() function call. When the GRACE has the service component 

name, it requests load of a MTO channel component, BC_MGR, to the node operating 

system, ACME. The ACME checks its repository for the requested MTO channel 

component. If the ACME does not have the component, it contacts its service component 
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server to load the component. After the component is loaded, the GRACE invokes the 

component (a manager component) to initiate a MTO channel construction. The invoked 

MTO channel manager starts its predefined sequences with given information from the 

application, e.g. end points, required bandwidth, et cetera. The MTO channel manager 

uses the network information server or uses Scout components to discover the network 

map. With the network map, the MTO channel manager decides the proper locations for 

its other components, in this case BC_SRC, BC_CTR, and BC_DST. The MTO channel 

manager requests ACME(s) for loading other components and requests to invoke them. 

The other components start to connect other service components after they are initiated. 

The location information of other components is sent to a service component by a MTO 

channel manager. After all, the MTO channel components are connected, the manager 

signals to the application that the MTO channel construction is finished and ready to use. 

The application sends data to the MTO channel after it receives the ready signal from the 

MTO channel. 

 

5.4 Multi-level MTO Channel Construction 

 

A multi-level MTO channel construction is similar to a single MTO channel 

construction. It has an added sub-MTO channel construction phase and a MTO channel 

optimization phase when a sub-MTO channel is required for supporting the service 

requirements. A MTO channel manager requests a finding service from a service find 

server that is the same request as in the application does. A MTO channel manager uses 
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service MTO channel name returned from the service find server to invoke the sub-MTO 

channel. The MTO channel manager also sends parameters to construct sub-MTO 

channels. The invoked sub-MTO channel manager deploys and invokes its sub-MTO 

channels and components independently from upper level MTO channel construction 

with given parameters. However, when a sub-MTO channel manager encounters an error 

during its MTO channel construction, it generates an event and notifies the upper-level 

MTO channel manager to coordinate the error handling. The upper-level MTO channel 

manager re-organizes its sub-MTO channel or components, or it makes an error event and 

notifies the error to its upper-level MTO channel manager. 
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Figure 19 A Multi-level MTO Channel Construction Sequences 
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Figure 19 presents signaling among the MTO channel construction systems of a 

generic MTO channel from POP a to POP e which is shown in Figure 11. A client request 

for a GC from a to e initiates the construction. GSocket() requests to find the proper 

MTO channel service which has bandwidth indication features, in this case GC. Using 

the name returned from a service find server. GSocket() contacts ACME for loading and 

initiating the GC MTO channel service. The ACME loads the GC MTO channel manager 

(GC_mgr) and invokes it. GC_mgr requests network information from a network 

information server. After GC_mgr discovers the deployment plan using its planning 

algorithm, it requests to find a MTO channel service which has alternative path 

construction features. The name of the altered routing channel (ARC) is returned from the 

Service Find Server, and the GC_MRG uses this MTO channel name to request loading 

and initiating the MTO channel service manager (ARC_mgr) for a to f. It also uses the 

GC to construct a MTO channel for f to e. ARC(a,f) constructs itself by loading and 

initiating its other components (ARC_src, ARC_dst). GC(f,e) uses a concurrent MTO 

channel to fill up from f to h and uses a ARC(h,i,e). CC(f,h) finding altered routing 

service by query to a service find server and uses ARC(f,g,h) and ARC(f,j,h) as its sub-

MTO channels. The CC(f,h) also completes its construction by loading its own 

components, CC_mux/demux, in f and h then connects the ARC(f,g,h) and ARC(f,j,h)’s 

SEPs to its CC_mux/demux. After CC(f,h) and ARC(h,i,e) is constructed, the GC(f,e) 

connects those two sub-MTO channels. The GC(a,e) connects ARC(a,f) and GC(f,e) to 
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complete its construction. Finally, GC(a,e) notifies the application of of its readiness, and 

the application initiates communication. 

 

5.5 Meta Information Language 

5.5.1 Brief description of MIL 

 

A meta information description language (MIL) is required for language independent 

interface design in building network centric MTO channel system. MIL is used to 

describe MTO channel component interfaces, MTO channel component manuals, 

network information, computational information, and user requirements. With MIL, a 

MIL parser generates an automated manual for MTO channel component developers and 

end users.  

Some of the MILs, the one that describes network information for instance, should 

be interpreted in run-time. Therefore, the MIL should be a simple language to interpret in 

run-time. 

5.5.2 MIL Grammar 

 

The MIL grammar is shown in the following figures. 
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[api] = [function]+

[function] = <function> à
<name>string</name> à
(<desc>string</desc>) à
(<param>parameter</param>)* à
(<return>parameter</return>) à
</function>

[api] = [function]+

[function] = <function> à
<name>string</name> à
(<desc>string</desc>) à
(<param>parameter</param>)* à
(<return>parameter</return>) à
</function>

 

Figure 20 The MIL Grammar for API Description 

 

Figure 20 describes the MIL grammar for API description. API is composition of 

functions. Each function starts with a <function> tag and ends with </function>. In each 

function, the name of the function is a mandatory field while description, parameters, and 

return value are optional. 

[PMAP] = <pmap> à
<name>string</name> à
(<desc>string</desc>) à
<origin>[location]</origin> à
<topology>[topology]</topology> à
([component])+ à
<order><netorder>[orders]</netorder>
<exeroder>[orders]</exeorder></order> à
</pmap>

[location] = <url>string</url>

[topology] = tree | linier | star | ring | weighted graph

[component] = <component> à
<name>string</name> à
(<desc>string</desc>) à
<location>( * | [node] | on [component].set) </location> à
(<invoke>( * | [time] )</invoke> à
</component>

[orders] = ((<seq>(component)+</seq>) | (<concur>(component)+</concur>))+

[PMAP] = <pmap> à
<name>string</name> à
(<desc>string</desc>) à
<origin>[location]</origin> à
<topology>[topology]</topology> à
([component])+ à
<order><netorder>[orders]</netorder>
<exeroder>[orders]</exeorder></order> à
</pmap>

[location] = <url>string</url>

[topology] = tree | linier | star | ring | weighted graph

[component] = <component> à
<name>string</name> à
(<desc>string</desc>) à
<location>( * | [node] | on [component].set) </location> à
(<invoke>( * | [time] )</invoke> à
</component>

[orders] = ((<seq>(component)+</seq>) | (<concur>(component)+</concur>))+

 

Figure 21 A Placement Map MIL Grammar 
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A placement map MIL grammar is shown in Figure 21. This grammar is used by the 

MIL parser and generates MTO channel component placement information.  

5.5.3 MIL parsing and output generation 
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Figure 22 A MIL Parsing and Output Generation Architecture 

 

The MIL parser has two components, the front end parser and the back end parser. 

The front end parser generates a parse tree based on an input MIL text. The generated 

parse tree is an internal representation of the MIL description. The back end parser takes 

the generated parse tree and produces a proper output format indicated by generation 

options. Different language output requires only a different back end parser. 

5.5.4 Parsing tree structure 

 

The parsing tree consists of three properties, name, value and attributes. The name 

property contains the node name in a parsing tree. The value property has content value 
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for the name. The attribute property has an attribute of the name and value set. Each node 

may have child node(s). 
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Figure 23 A MIL Parsing Tree Structure 

 

Figure 23 represents an example of the MIL parsing tree structure for the GSocket 

function call described in Figure 24. 
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<function>

<name>GSocket</name>

<desc>overriding conventional socket interface</desc>
<param>

<int32>[domain]</int32>
</param>

<param>
<int32>[type]</int32>

</param>

<param>
<int32>[protocol]</int32>

</param>
<return>

<int32>errorcode<int32>
</return>

</function>

int GSocket(int domain, int type, int protocol) generate

<function>

<name>GSocket</name>

<desc>overriding conventional socket interface</desc>
<param>

<int32>[domain]</int32>
</param>

<param>
<int32>[type]</int32>

</param>

<param>
<int32>[protocol]</int32>

</param>
<return>

<int32>errorcode<int32>
</return>

</function>

<function>

<name>GSocket</name>

<desc>overriding conventional socket interface</desc>
<param>

<int32>[domain]</int32>
</param>

<param>
<int32>[type]</int32>

</param>

<param>
<int32>[protocol]</int32>

</param>
<return>

<int32>errorcode<int32>
</return>

</function>

int GSocket(int domain, int type, int protocol)int GSocket(int domain, int type, int protocol) generate

 

Figure 24 A MIL Description for a GSocket Function Call 

 

The MIL parser reads the description and generated an output as shown in Figure 24, 

in this case a back end parser is the C programming language parser. 
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<PMAP>
<name>Altered routing channel</name>
<desc>
<author>author</author>

</desc>
<origin>
<url>https://medianet.kent.edu/capsules/*.cap</url>

</origin>
<topology>[tree]</topology>
<component>
<name>altc</name>
<desc>ARC channel Manager</desc>
<location>*</location>
<invoke>*</invoke>

</component>
<component>

<name>altc_src</name>
<desc>ARC actuator</desc>
<location>Actuation End Point</location>

</component>

<component>
<name>altc_ctr</name>
<desc>ARC forwarder</desc>
<location><each><path></each></location>

</component>
<component>

<name>altc_dst</name>
<desc>ARC audience</desc>
<location>Audience End Point</location>

</component>
<order>

<netorder>
<seq>[altc][altc_src][altc_ctr][altc_dst]</seq>

</netorder>
<exeorder>
<seq>[altc][altc_src][altc_ctr][altc_dst]</seq>

</exeorder>
</order>

</PMAP>

<PMAP>
<name>Altered routing channel</name>
<desc>
<author>author</author>

</desc>
<origin>
<url>https://medianet.kent.edu/capsules/*.cap</url>

</origin>
<topology>[tree]</topology>
<component>
<name>altc</name>
<desc>ARC channel Manager</desc>
<location>*</location>
<invoke>*</invoke>

</component>
<component>

<name>altc_src</name>
<desc>ARC actuator</desc>
<location>Actuation End Point</location>

</component>

<component>
<name>altc_ctr</name>
<desc>ARC forwarder</desc>
<location><each><path></each></location>

</component>
<component>

<name>altc_dst</name>
<desc>ARC audience</desc>
<location>Audience End Point</location>

</component>
<order>

<netorder>
<seq>[altc][altc_src][altc_ctr][altc_dst]</seq>

</netorder>
<exeorder>
<seq>[altc][altc_src][altc_ctr][altc_dst]</seq>

</exeorder>
</order>

</PMAP>

 

Figure 25 A PMAP for Altered Routing Channel 

 

The PMAP for an altered routing MTO channel is described in Figure 25. This 

description also has enough information such as the number of software components and 

who ordered them. With this meta information, the run-time system determine which 

place a MTO channel component can be located. 
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CHAPTER 6  

System Visualization 

 

Though traditional networking research has ignored visualization, the monitoring 

and management of complex distributed systems is becoming critical for high-

performance distributed computing. However, monitoring an active distributed system 

such as Grid, the active application or the Internet content services have several serious 

obstacles to overcome. The first set of complexity evolves from the scale, dynamism and 

versatility requirements. An additional challenge arises from autonomous ownership of 

the Internet systems. It is further complicated by the hierarchical and multi-party nature 

of the netcentric systems development pathway. During run-time, a sound message 

management principle becomes very important otherwise, a potentially huge number of 

status messages can result in a serious performance drag. 

6.1 Related Researches on Visualization 

 

Recently, there have been few pioneering works in the area of Grid visualization. 

Tierney, et al. [4][5] suggested an agent based monitoring system to automate the 

execution of monitoring sensors and the collection of event data in a Grid environment. 

They use a direct connection between a producer and a consumer to reduce 

communication traffic. 
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Waheed, et al. [8] developed monitoring infrastructure to share monitored data using 

common APIs. The infrastructure is built on three basic components; sensors, actuators, 

and a Grid event service; at the top of those basic components, they built a layered 

monitoring system. Another layer-based visualization system was suggested by 

Bonnassieux, et al. [6]. They offered a flexible presentation layer in a huge and 

heterogeneous environment. It provides a simple, autonomous and extensible model that 

enables the visualization of any level of abstraction using a hierarchical view model of 

resources status, with propagation of monitoring status up to the top of the tree view. The 

gathered information for monitoring can also be used for system management. Reed, et al. 

[7] suggest using system monitoring results for adaptive control to improve system 

reliability. The system uses diskless check-pointing, which enables more frequent 

checkpoints by redundantly saving check-pointed data in memory, and low-cost 

mechanisms to capture data for failure prediction, which enables the creation of dynamic 

schemes for improved application resilience. 

 

6.2 Visualization Architecture Requirements 

 

One of the major challenges that differentiate netcentric systems from traditional 

modular distributed software is the fact that the concept of internet autonomous systems 

(that separate the network from the Internet) also extends to the software systems. This 

hierarchically dependent multiparty involvement extends to both the development 

process of compose-able services as well as to the runtime service ownership. Clearly, 
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these systems are not built as a one simple big program. Rather, they are built with 

several independent system components running on multiple computing systems. Each 

system component is also composed with several sub-components and distributed among 

multiple computing systems. Also unique is the fact that, quite often these are developed 

under multiple autonomous service authorships, and deployed and managed under 

multiple service ownerships. Because of such a nature, system monitoring and controlling 

get considerably more difficult and complex. In addition, the current trend whereby 

network based sub-systems and components have to go through frequent modification for 

the newly included or upgraded components makes the overall task even less manageable. 

As a result, the system management and monitoring software encounters difficulties to 

visualize the whole system across the participating computing systems and services, and 

sometimes the software is faced with disparity between system status reports and control 

messages and their representation in the system. However, the same complexity makes 

monitoring and visualization of the process nevertheless more critical. Therefore, there 

should be support for autonomous modular visualization.  

 

6.3 Other Features of Visualization 

 

The following architectural features are offered to overcome the challenges of the 

netcentric system’s visualization: 

• Controllability of message flow. 

• Adaptation of system viewer’s perspectives. 
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• Use of meta information for interpretation of current system information. 

 

As the system gets bigger, the generated system status messages also grow. Without 

controllability of a system message flow, a system is easily overwhelmed by the 

generated status messages and cannot deliver important information. 

The system status representation should be useful enough to produce multiple points 

of views. A user requires different perspective views depending on a user’s interests at a 

given moment. Representing the same system information in various ways will increase a 

user’s focus on his/her interests. 

The separation of system information data and its structures by using meta 

information makes it easy to upgrade system components while the system is running and 

verifying message information as well. Using the meta information also leverages the 

automation of system information representation. A system can generate various target 

representations by dynamically interpreting message data with its meta information. 

A visualization schema is built on the powerful process description language of Petri 

Net. A Petri Net is a graphical and mathematical modeling tool which consists of places, 

transitions, and arcs that connect them. [16] It is a powerful tool for modeling systems 

that are concurrent, asynchronous, distributed, parallel, nondeterministic, and stochastic. 

It is well suited to describe a system’s status and its transition. Recent proposal of Petri 

Net Markup Language (PNML) is pushing Petri Net language to a more interchangeable 

format for system modeling. [15]. 
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The proposed framework is particularly suitable for monitoring the lifecycle of 

loosely coupled and scalable complex multiparty active systems. The developed 

formalism allows the sub-system to maintain its own status and control messages within 

it. A sub-system, when used as a part of a high level composed system, can further report 

its status and control messages to its upper level system. Furthermore, each level supports 

several reporting and message propagation modes to allow performance tuning. The time, 

type, and content of messages are decided initially by the system designer. However, 

these default behaviors can be overridden by a system operator or an administrator at run-

time. A privileged user can freely control and monitor the system status using a flexibly 

configurable multi-view visualization system from any authorized terminal. 

 

6.4 Visualization of Architecture 
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Figure 26 The Visualization System Architecture 
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Figure 26 describes the symbolic representation of the visualization system 

architecture. The monitoring components of a service are run on ACME. They are 

deployed and executed on ACME as a part of a service construction. A status monitor 

(SM) processes the status message of a sub-system. A SM stores status message structure 

descriptions and delivers or saves status messages of the sub-system. A control monitor 

(CM) handles control messages. A CM is added in a sub-system when the sub-system 

supports a control mechanism from outside of the system. Initiation and execution of a 

monitor is coordinated by sub-system management software. 

 

6.5 Dynamic Message Binding and Interpretation 

 

Based on the service design considerations, the visualization system should support 1) 

dynamic interpretation of the system status messages, 2) seamless navigation through 

layer abstraction and the visualization of the given layer of a system, 3) uniform method 

of visualization at all levels. The meaning of a status message is represented in a well 

formed status structure description language and is gathered by a status monitoring 

system. When a new system component is developed, the descriptions of its status 

message structures and the descriptions of its state diagram are supplied by the developer 

together with the component. As per this template, a status monitoring system and a 

visualization system dynamically bind and interpret the meaning of a status message with 

the given description.  
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Figure 27 A Status Message Structure and a Status Message 

 

The visualizer integrates with a code server-based hierarchical service deployment 

framework. Each system can have isomorphic sub-systems and/or code components. 

Each time a system is installed (i.e. all of its sub-systems are launched), a hypothetical 

state monitor is assumed to be concurrently instantiated. A set of messages is generated 

towards this state monitor in the sub-system’s leader component. A visualization system 

can use a subset of the messages to present various perspectives on the system. The key 

challenge here is that these messages should carry enough information to identify itself 

with respect to the various perspective frameworks within which an active service 

operates along with the actual status information. Figure 27 shows an example of status 

message structure and a status message. Below a tri-partite identifier system is provided. 

This message system encodes the fields in its messages (i) system identifier, (ii) 
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subsystem component identifier, (iii) system state identifier, (iv) state execution count, (v) 

system status, (vi) service instance identifier, (vii) service subsystem instance identifier, 

(viii) service instance status, (ix) service location instance identifier, (x) platform 

identifier, and (xi) platform status. The primary state identifier (set i-iii) is assigned by 

the programmer who has coded the active components. This identifier set has to be 

hierarchically unique within a specific version of specific software. The identifier set (vi-

vii) is to be assigned by the active service administration system (such as EEs/ ANETDs) 

while installing and initializing instances of the service at each instantiating of loaded 

components. Again, these identifier sets have to be hierarchically unique within the 

service administration domain.  The last identifier x is to be supplied by the active node 

owner. It is assigned when a node joins an active network domain. The status information 

iv and v is computed by the code components at run time and thus its value is designed 

by the programmer. The service instance status information viii, if any, is passed on to 

the monitor messaging agents by the service administration local agent (such as node EE). 

The status information xi, if any, is set by the local node administrator during the period 

the service is running. The monitor messaging system collects and composes the 

messages prior to generating the messages. Messages can contain control flags to control 

the mode of reporting and even to filter the content to tune performance. The system 

allows three reporting modes (i) REAL-TIME, (ii) BATCH, (iii) TRACE-ONLY. In real-

time mode the monitor messages are generated and sent when the code executes through 

the state points. In BATCH-ONLY mode the messages are generated in real-time but 

forwarded periodically in batch. The period is decided by a PERIOD field. The mode 
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feature only modifies the time of sending the monitor messages but do not affect their 

content. Three flags are further used to negotiate filtering the three status fields in the 

messages. In every message sent by the monitor messaging agent, the flags are set 

according to the current value of these flags. A set of control messages can be potentially 

sent in reverse direction to request change in these flags (and the PERIOD field). The 

transition among the modes is shown in Figure 28. 
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Figure 28 The Monitoring Point Status Transition Diagram 

 

6.6 Visualization of Concurrent MTO Channel 

 

The description of the concurrent MTO channel (CC) was given in section 5.4. In 

this section, the additional materials for visualization information of the CC are described. 
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A concurrent MTO channel (CC) is a simple but powerful MTO channel which is 

not available in current TCP/IP communication networks. The concurrent MTO channel 

(CC) is using a sub-MTO channel altered routing channel (ARC) to guarantee that the 

established MTO channel does not have an overlapped path from source to destination.  

When the concurrent MTO channel system is running, the channel components 

generate status information. Because of the ARCs are used by the CC, the components in 

ARCs are also generate status information. This status information is delivered to the 

visualization system and displayed in proper format that was chosen by a channel 

monitor/user. The visualization system should support different views of similar 

messages based on the user’s convenience. Each service component status transition is 

shown in Figure 29. 
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Figure 29 The MTO Channel Component Service Status Diagram 
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Figure 30 is a snapshot of MTO channel control center program for MTO channel 

control and status report. The MTO channel control center program is a central control 

program for a MTO channel construction system. It sends initial configurations to a MTO 

channel construction system and monitors each MTO channel control system node’s 

status and events. 

 

 

Figure 30 A Color Coded MTO Channel Control Center Control & Status Window 

 

Hierarchical view of the same system status view is shown in Figure 31. The 

component colors represent their current status. 



 

 

98 

 

Concurrent

Channel

Alternate
Channel (2)

Concurrent
Channel Manager

Alternate

Channel Manager

Forwarder 1 Forwarder 2 Forwarder 3

MUX/DEMUX 1 MUX/DEMUX 2

MUX/DEMUX (2)

Alternate
Channel 1

Forwarder (3)
Alternate

Channel Manager

Forwarder 1 Forwarder 2 Forwarder 3

Alternate
Channel 2

Forwarder (3)

SUB_SETUPED

N/A

LOADED

ACTIVATED

INITIALIZED

ESTABLISHED

SUSPENDED

DEACTIVATED

UNLOADED

 

Figure 31 A MTO Channel System Hierarchical Process View 

 

Each system component has its own status, for examples: loading, activation, 

initialization, established, unloaded, and so on. The status change information of the 

system is stored and replayed any time later for detailed investigation. The review 

interface shown in Figure 30 consists of simple forward and backward buttons but the 

value of the function cannot be ignored. 
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CHAPTER 7  

An Additional Example of Service Transport MTO Channel 

7.1 SONET MTO Channel 

 

Adaptation is a fundamental phenomenon in natural systems. It seems that 

engineering of any large and complex system intrinsically requires the inbuilt ability of 

its components to adapt. Internet has already grown into a mega net with global reach. 

Now, with the emerging need of advanced applications, it is poised to evolve into a 

complex system of systems. With its expansion, the asymmetry of the Internet is also 

increasing. Historically, the initial Internet architecture had been conceived to cope with 

the heterogeneity of network standards. [40] Before the problem had been solved, it now 

appears that a second era is underway of in progress. It seems that the next generation of 

the Internet will have to deal with more intrinsic (and perhaps harder to overcome) 

heterogeneity— the asymmetry of hard network resources such as bandwidth, or 

switching capacity. [41] This asymmetry can evolve from the fundamental physical 

limitations at the fringe of extreme technology such as the power crunch in an 

intergalactic network element, or from something as mundane and insurmountable as 

socioeconomic disparity,- i.e. the digital divide. 

In this section, a MTO channel that concentrates on creative adaptation is presented. 

There are quite a few works tending adaptive systems—particularly in the areas of 

scalable video communication, web caching, and very recently in mobile information 
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systems. This section presents a MPEG-2 rate transcoding MTO channel, which 

addresses the issue of adaptation from two levels. It adapts with respect to two critical 

network resources— bandwidth and the processing resource at the junction nodes. While 

the link bandwidth adaptation has been addressed up to some extent in a few of the recent 

research studies little attention has been paid to the node capacity adaptation. The 

transcoder senses local asymmetry in link capacities at various junction points of a 

network. Based on that, it accordingly adapts the video stream rate. On the second level, 

the transcoder MTO channel also senses the local computation power to execute its rate 

adaptation task. And thus, based on the network computational power, it demonstrates 

self-organization behavior. In each of these adaptive behaviors, it employs a number of 

techniques. For rate adaptation in the first stage it uses full re-quantization-based 

transcoding. For extreme rate scalability, it further employs a focal object based region 

discriminating encoding. To adjust with the processing power problem, it first can shift 

back to a low computation mode of transcoding using motion vector computation bypass. 

However, when a single node becomes insufficient, it dynamically migrates computations 

to neighboring nodes in search of increased processing power. The available bandwidth 

and computation resources are subject to change during the run time, and the 

measurement methods of the resources are can be enhanced. In this paper, however, 

shows one possible implementation for a video transcoding MTO channel that can deploy 

its components in network based on the available resources and can adapt computation 

and bandwidth change. The implemented MTO channel is called Self-Organizing 
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Network Embedded Transcoder (SONET). This section provides an architectural 

overview of this MTO channel system. 

 

7.1.1 SONET MTO Channel Architecture 

 

SONET is a full video transcoding MTO channel. It transcodes a video stream to 

adapt to the user’s requirements, and the available computing and network resources. It 

deploys its components based on the computing and network resources. The MTO 

channel’s components are SONET_mgr, SONET_enc, and SONET_mux. Depending on 

the component’s needs, the SONET MTO channel deploys as many SONET_encs as 

possible to fulfill the user required transcoding rates. The MTO channel connection and 

its components are shown in Figure 32. 
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Figure 32 The SONET MTO Channel Architecture 
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SONET_mgr is a manager component and it will be located in a SEP. The 

SONET_mgr decodes the video stream and multiplexes the decoded video stream to 

SONET_enc. The video stream is processed in a video segment unit. The SONET_mgr 

includes a scheduler to distribute video segment units among available SONET_encs. 

The SONET_mgr also works as an event handler which is generated by SONET_mux for 

reporting transcoding rate information to adapt network and computing environment 

where the MTO channel runs. 

SONET_enc is a video encoding component and located in ICP. In SONET MTO 

channel, SONET_enc is performing transcoding work as well as forwarding the 

transcoded contents to the SONET_mux. SONET_enc is receiving video segment units to 

transcode from SONET_mgr, which is a manager of the SONET MTO channel. Besides 

the video segment unit to transcode, SONET_enc also receives parameters from the 

SONET_mgr which are used to transform the input video segment unit to output video 

contents. The parameters are configured to adapt current network and computing 

environment which is of course coordinated by the MTO channel manager, SONET_mgr. 

SONET_mux is a multiplexing component in a SONET MTO channel and is 

deployed in a SEP. It sends transcoded video segment units in sequence. It generates 

events which report current transcoding rates in each encoding path. The events are 

handled in the manager component, SONET_mgr. The events will trigger actions in 

SONET_mgr to schedule encoding paths, change number of encoders to use, and 

generates parameters for SONET_encs to adapt the run time environment change. 
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7.1.2 Visualization of SONET MTO Channel System 

 

The application deployment map is shown in Figure 33. 

 

 

Figure 33 A SONET MTO Channel’s Application Deployment Map 

 

The SONET MTO channel’s application deployment map shows where the 

components are located and how they are connected to each other. 
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Figure 34 The SONET Service Status Transition 

 

Figure 34 shows the whole system status window. The whole system status 

information is received by SONET’s control center program as the system runs. It 

initiates service construction when it receives a SONET service request from an 

application. During its deployment phase, it uses a network connection diagram and 

generates a deployment map. The system deploys its components according to the 

deployment map. When the system is faced with environment changes, it reconfigures the 

deployment map and changes the system configuration during run time. Status messages 

are generated during the system’s lifetime and the structure descriptions are loaded when 

the visual system is initiated. When the visual system receives a system status message, 
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the visual management system interprets the value with given system status message 

description.  

 

Figure 35 A Component Status Transition Diagram View of SONET System 

 

The map displays computing systems with components on them and their 

connections. With component status descriptions, the status representation can be more 

intuitive as shown in Figure 35. 

 

Figure 36 A System Wide Controls and Status Representation Window 

 

The control and status management system should also support whole system 

controls and other system wide status. Figure 36 represents system wide control and 

status information. The performance meter is a control slide for the system performance. 

System performance value changes initiate the generation of control messages. The 
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generated control messages are delivered to the effected components. The performance of 

the system, in this case current frame rates, will have a new status as a result. 

 

Figure 37 A System Configuration Window 

 

Detailed status messages and control messages are available in the status window. 

Figure 37 shows the status window at the left bottom and the system configuration 

window at the middle left. 

7.2 Jitter Controlled SONET MTO Channel 

 

In the dynamic service composition MTO channel, a computation may not receive 

the same resource on all its runs or it may change even when a computation is underway. 

The computation can happen in chunks involving multiple locations. In between the data, 

pipes will transit streams of data from one computational unit to another. A key challenge 

in this vision of harnessing network technology for a giant computing MTO channel is 
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the complex and synchronized management of data streams between these computing 

entities.  

The temporal characteristics of the information flow among the computational units 

make serious impacts on the time when the service end receives the processed 

information. This problem is quite different from its counterparts in classical networks. 

Delay-jitter management will be a central concern irrespective of the framework of 

networked computing. This will be a major and central concern for conventional time 

sensitive application processing such as media streaming. Interestingly, many other 

application processes, which are not normally known to be time sensitive, may become 

so. The new variability introduced by uncertain computation resources available over a 

loosely federated resource pool can seriously destabilize synchronization, load balancing, 

and the utilization efficiency of known distributed solutions. 

A MTO channel development sometimes does not need to reuse an entire MTO 

channel; rather, it may customize an existing MTO channel component. The presented 

Jitter controlled SONET MTO channel is a video transcoding MTO channel as shown in 

section 7.1 with application-data-unit-level jitter and delay controls. Component reuse 

can be applied in this augmentation where it only needs to customize the scheduling 

component, SONET_mgr, and reuses the other components in the SONET MTO channel. 
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7.2.1 Related Works for Delay and Jitter Controls 

 

The recent schemes proposed for jitter and delay control can be roughly categorized 

based on the traffic modeling (statistical vs. observation based adaptation), and the action 

level (end-to-end vs. network layer techniques). [27][28][29]Argiriou and Georgiadis 

suggested a technique for adapting the transmission rate of an application while 

maintaining the perceived quality at the receiver at acceptable levels. [30] When a new 

connection arrives in the system it renegotiates rates for all running applications. Khan, 

Yang, and Gu proposed the rate symbiosis technique between application and network 

transport, using an interactive generalization of TCP sending end-point. [9] It does not 

require any expensive end-to-end measurement. Zhang and Ferrari presented the rate 

control static priority (RCSP) scheme, which can provide multi-objective queuing 

including jitter optimization for Poisson like traffic distribution. [29] In this scheme, a 

component called regulator is assumed on each stream for traffic shaping based on its 

optimization objective. A component called scheduler was assumed on switches to 

resolve the priority for the multiplexed flow. Boorstyn, et al. has presented an algorithm 

for providing statistical assurance which they call “effective envelope” for traffic 

scheduling and demonstrated it for optimizing jitter at an intermediate node where 

multiple video connections between multiple sender and receivers intersect. [27] The 

method assumes continuous-time fluid-flow traffic. Each intermediate node has one input 

regulator for each stream, and a scheduler. The regulators and the scheduler work jointly. 
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Bennett, et al. used special features, called Expedited Forwarding
1
 (EF), to guarantee 

delay jitter bound in Differentiated Services architecture. [31] The packet forwarding at a 

specific rate is guaranteed if (i) a connection is admitted at connection time in EF PHB, 

and if (ii) the traffic obeys the assumed idealized statistical distribution.  

The observation-based controls monitor traffic in each node, rather than relying on 

any static traffic model. The monitored information is fed to a scheduler at switch. 

Rexford, et al. argue that knowledge of a traffic pattern is not easy to obtain, or is limited, 

as in the case of live video conferencing. [28] They show a Hopping-Window smoothing. 

Stone and Jeffay described a policy called queue monitoring, which observes delay jitter 

and dynamically adjusts display latency for low latency conference calls. [32] By 

monitoring display queue, it retrieves changing end-to-end delay and corrects jitters 

without time synchronization. Mansour and Patt-Shamir also suggest jitter control 

algorithms by monitoring buffer fill rates. [33] 

Compared to the previous works, this paper addresses the problem with respect to 

joint communication and computation delay. This is unique to the Internet based 

computing environment. Dynamic path resource estimation is used in the suggested 

sytem. Information stream centric computing adds a number of new challenges. Even in a 

real network environment, it is difficult to obtain the source traffic model. In the active 

paradigm, network computation adds an additional set of complex variability. All 

network nodes do not have the same processing capability. The processing time can vary 

for different contents and for the degree of customization. The initial data can 

                                                 
1 RFC 3246 defines the Expedited Forwarding Per-Hop Behavior (PHB) with the intent to provide a building block for low delay, low 

jitter and low loss service by ensuring that the EF aggregate is served at a certain configured rate. 



 

 

110 

 

dramatically alter in size and time spacing at each stage of servicing. The capsule data 

unit can be of unequal size. All packets are not uniformly needed by the service capsules. 

Also, there is an effect of non sequential access. Some of the packets should be used at 

the same time by the service component, while some others may not be accessed at all. In 

this paper, a joint buffering and scheduling based algorithm are demonstrated which 

corrects both computation and transmission difference to reduce the jitter variations to get 

jitter free play of a video stream. 

 

7.2.2 Multi-path Jitter Model 
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Figure 38 The Multi-path Jitter Model 
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In this section, a jitter analysis framework for a multi-path computation MTO 

channel is provided first. 

In any computing service, the delay (and jitter) can occur not only in the network 

pathway during the transmission, but also in the processing capable nodes during their 

processing. Therefore, overall delay contains computation delays as well as transmission 

delays. The model will include both. 

The notation will be explained first. The notation is rather complex because of the 

three-level mapping required between the flow, processing and the network. For denoting 

the delays, the following two-level notations are used. Subscripts are used to refer to the 

ADU’s sequence number (g) and the path number (p). Each ADU is processed by a set of 

sub-task components (M). There can be multiple instances of a component in a network. 

First each sub-path should have a copy of each component. Also, for some type of 

services (such as tree-computing in a multicast distribution scenario shown in Figure 38) 

an information stream on its way can encounter multiple services with recurrence of the 

whole set of transformations. Components are also ordered and have a stage index. 

Therefore, in the superscript, each component’s M is also identified with its stage index 

(i), service number (s) and the sub-path number (sp) within this service. These three 

appear as an argument of the stage name. Thus, let g, p, sp, m, s denotes respectively the 

g-th ADU, path number, sub-path number, component name, and the delay stages in a 

service. Then the delay experienced by an ADU along a path p can be expressed as: 

( )∑=
M

m

sspim

pgpg dD
),,(

,,  (1a) 
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For example the computing service is defined by a set of sub-task processing stages: 

},,{ XEDA ⊆   

Where, D, E, X respectively represent the computation delays in the computing unit 

D, E, and X units. Their orders are 1, 2 and 3 respectively. Thus the total delay stages 

include the communication delays as well: 

},,,,{ XexEdeDM ⊆   

Here, de and ex represent the communication delays in the first and second stages 

respectively. 

Thus the objective of the proposed algorithm is to reduce the variation in inter-

departure time from the joint defined by (1b):  

∑ −−=
Stream

g

pgpg DDJ ,1,

 
(1b) 

Each component has a computation delay. This computation delay can be shown as 

in (2). 

ii

c

isspia

pg Bred /
),,(

, ×=  (2) 

Here, e
i
 is the input ADU size in bits, r

i
c is a computation needed for the component 

in flops per input bits. Bi is the processing power on the node running the component (or 

cycles allocated to the service) in units of flops. After the stream flows via a processing 

capable component, its size can change. The output stream size is represented by a stage 

expansion factor. The stream size after the i-th stage is thus expressed as in (3). 

∏
=

×=
i

j

ji
rFf

0

 (3) 
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Let f
i
 is an output stream size while F is an initial input stream size and r

i
 is a stage 

expansion factor or output bits per input bits of a stage i. The relation of f
i
, e

i
 and r

i
 is 

shown in (4) 

iii fer =×  (4) 

The delay in a link is shown in (5). 

ijisspiij

pg Bfd /),,(

, =  (5) 

Here, f
i
 is an output stream size as seen in (3) while B

ij
 is a bandwidth of link i. 

7.2.3 Algorithm 

 

Following is the structure of the control algorithm. The logical components 

dynamically estimate the incoming link bandwidths and computation rates experienced 

by the ADUs. Following the same flow path the estimates then flow downstream into the 

joint component. The joint node then sends the aggregate feedback back to the fork point 

that dynamically schedules the newly arriving ADUs along the sub-paths to reduce the 

overall jitter and timely processing of the ADUs.  

Proper sub-path selection for a given ADU in a stream is critical to reduce delay 

jitter in a stream having several processing stages. Selection of proper sub-path is based 

on the delays measured along the competing paths. 
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7.2.4 Scheduling  

 

Given the streaming rate (R), the algorithm estimates a relative target arrival time 

(Tg) at the destination for each ADU. A quantity maximum allowed delay is estimated for 

each ADU based on this deadline. 

The algorithm chooses a least weighted time path (to be explained shortly) among 

the paths which have predicted delay less than the maximum allowed delay.  

When there are multiple conforming sub-paths, the weighted time is a time based on 

the average delay time and the delay variation of the sub-path. If no sub-path could 

process a given ADU within the deadline for it, then the least delay time sub-path is 

chosen without considering the variations. 

The algorithm starts optimistically. At the start of the flow, the average delay is 

initialized to the lowest possible delay of the path and the delay variation is initialized to 

zero. During the run time, the average time and delay variations are adjusted by 

measurement on each sub-path. The joint gathers individual delays and delay variations 

from each sub-path and informs the values to the scheduler in fork. So, even if the initial 

values are not correct, the algorithm improves the estimates as processing progresses. 

7.2.5 Delay Estimation 

 

An expected sub-path delay is the sum of (i) expected delay of transmission from 

fork to the first sub-path processor, (ii) sub-path processing time, and (iii) transmission 
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time from last sub-path processor to the joint. The following equation is used for deriving 

expected delays along each sub-path: 

),,1(

,
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,
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,
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++ ++=  (6) 

 

Links Capacity Estimation: As seen in (5), ),,(

,

~ sspide

pgd and ),,1(

,

~ sspiex

pgd
+ can be predicted 

based on f
i
 and B

ij
, but f

i
 and B

ij
 may vary for several reasons. The actual compression on 

each ADU can vary from the ideal compression ratio. The network activities on a link 

may cause different B
ij
 values from time to time. So, each of the nodes in a sub-flow 

including the joint estimates the average values based on previous measurements: 
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pg Bed =  (7) 

The bandwidth for each incoming link is approximated by each receiving node, 

including the fork node, using the method shown in (8). 
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Here, k is the number of ADUs which arrived at the receiver node or arrived at the 

joint using sub-path sp. The g(k) is a k-th ADU number which passed through the sub-

path sp. The join estimates the quantity separately for each incoming flow. If the path has 

no history then the last known or initially known bandwidth is used.  Please note that the 

right hand side quantities of the equation are observed bandwidth at the joint, not a 

prediction. 
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Processing Capacity Estimate: Similar to the transmission delay, the component 

delay can also be different from the ideal expected value.  Thus, averages are estimated 

here as well. 
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Equation (9) is for delay of a component a (a⊆A). It is derived from the average 

delay per bit observed on the previous ADU’s on the sub-path sp and the current input 

ADU size, e
i
. Also, in each component, it has a queuing delay ),,(

,

sspia

pgQ . In computing 

service all the components do not operate in identical speed. Each processing component 

thus maintains an incoming queue of unprocessed ADUs. There is negligible queuing 

delay on the component D. It is relatively fast though compared with the encoding speed. 

The encoder’s queuing delay is given to equation (10). 
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The delay variations of sub-paths are used to select a proper sub-path for a given 

ADU. Its use provides the worst expected delay time in each path and thus can help in 

selecting reliable path. Equations (11) and (12) are used to track delay variation. 
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7.2.6 Buffering 

 

To absorb the jitter, the joint maintains an optimum jitter buffer. The queuing delay 

in joint, dg,p
x(i,sp,s)

, do as not need to be considered in selecting a sub-path because the 

joint absorbs it. The joint buffer also absorbs the jitter in the multi-path flow. The joint 

tries to send the ADUs at a smooth rate to the source. In the joint, the buffer size is 

occasionally dynamically estimated to provide the jitter absorption while keeping the 

delay at a minimum. The delay variation and maximum delay is used to get proper buffer 

size. The following equations are used to get buffer size at the joint. First, the maximum 

probable path delay is estimated in equation (13) for each path. Then, the worst path 

delay is estimated in equation (14). In a similar way, the estimation of the worst observed 

path delay variance is calculated using equations (15) & (16). The buffer size is 

dynamically adjusted to accommodate the maximum expected delay including the worst 

possible overshoot indicated by the delay variance. 
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Where 
α

=1 is typically used. 
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7.2.7 Scheduling Algorithm 

 

A sub-path is selected for processing each ADU, a part of the information stream. 

The selection is based on the processing delay of the sub-path. First, it selects available 

sub-paths satisfying targeted delay of the ADU of the information stream. Among the 

available sub-paths satisfying the minimum delay constraints, it chooses the sub-path 

with the lowest variability. On the other hand, if there is no sub-path satisfying the 

targeted delay, then it chooses the lowest delay sub-path without considering the 

variability. 

SelectSubPath(AllowedDelay)

if subPathListSize > 0

return selSubPath

GetAvailSubPathList

(AllowDelay)

Select lowest

delay sub-path

Select lowest

weight sub-path

Y

N

ComputingTime(sp)

return weightTime

weightTime =

Delay(sp) + Var(sp)

GetAvailSubPathList(AllowDelay)

for (p<MAX_AVAIL_SUBPATH)

if Delay(p) < AllowDelay

add subPath sp to

AvailSubPathList

Return

AvailSubPathList

Y

N

Y

N

SelLowestWeightSubPath

for (p<SubPathListSize)

if ComputingTime(p) <

ComputingTime(selSubPath)

selSubPath = p
Return

selSubPath

N

Y

N

Y

SelLowestDelaySubPath

for (p<MAX_AVAIL_SUBPATH)

if Delay(p) <

Delay(selSubPath)

selSubPath = sp

Return

selSubPath

N

Y

N

Y

(a)
(b)

(c) (d)

(e)

SelectSubPath(AllowedDelay)

if subPathListSize > 0

return selSubPath

GetAvailSubPathList

(AllowDelay)

Select lowest

delay sub-path

Select lowest

weight sub-path

Y

N

SelectSubPath(AllowedDelay)

if subPathListSize > 0

return selSubPath

GetAvailSubPathList

(AllowDelay)

Select lowest

delay sub-path

Select lowest

weight sub-path

Y

N

ComputingTime(sp)

return weightTime

weightTime =

Delay(sp) + Var(sp)

ComputingTime(sp)

return weightTime

weightTime =

Delay(sp) + Var(sp)

GetAvailSubPathList(AllowDelay)

for (p<MAX_AVAIL_SUBPATH)

if Delay(p) < AllowDelay

add subPath sp to

AvailSubPathList

Return

AvailSubPathList

Y

N

Y

N

GetAvailSubPathList(AllowDelay)

for (p<MAX_AVAIL_SUBPATH)

if Delay(p) < AllowDelay

add subPath sp to

AvailSubPathList

Return

AvailSubPathList

Y

N

Y

N

SelLowestWeightSubPath

for (p<SubPathListSize)

if ComputingTime(p) <

ComputingTime(selSubPath)

selSubPath = p
Return

selSubPath

N

Y

N

Y

SelLowestWeightSubPath

for (p<SubPathListSize)

if ComputingTime(p) <

ComputingTime(selSubPath)

selSubPath = p
Return

selSubPath

N

Y

N

Y

SelLowestDelaySubPath

for (p<MAX_AVAIL_SUBPATH)

if Delay(p) <

Delay(selSubPath)

selSubPath = sp

Return

selSubPath

N

Y

N

Y

SelLowestDelaySubPath

for (p<MAX_AVAIL_SUBPATH)

if Delay(p) <

Delay(selSubPath)

selSubPath = sp

Return

selSubPath

N

Y

N

Y

(a)
(b)

(c) (d)

(e)

 

Figure 39 Sub-Path Selection Algorithms 
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7.2.8 Complexity of the Path Selection 

 

The flowchart of the path selection algorithm is given in Figure 39. The time 

complexity of GetAvailSubPathList(), SelLowestDelaySubPath(), and 

SelLowestWeightSubPath() take O(sp). The time of ComputingTime() take O(1). The 

time of SelectSubPath() =O(sp)+{O(sp) or O(sp)}. Therefore, the SelectSubPath() takes 

O(sp) while sp is the number of sub-path. Generally the number of sub-paths is relatively 

small. So, the algorithm is reasonably fast. 
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CHAPTER 8  

Performance Analysis 

8.1 Test bed 

8.1.1 ABONE 

 

The suggested active MTO channel system (AMCS) does not need to have a specific 

hardware platform or software infrastructure. However, the experiments of the AMCS 

have been conducted on ABONE, launched under the DARPA ANI Initiative. [25] 

ABONE is an operational network and provides an Internet wide network of routing as 

well as processing capable nodes. Providers can contribute a confederation of computing 

capable nodes. Independent application involving multiple trust domains can be securely 

launched and executed.  ABONE currently has about 100 nodes. The nodes are available 

from Europe, Asia and North America. DARPA’s goal is to achieve about 1000 nodes. 

Resources in individual nodes are contributed and managed locally and independently by 

the contributing site administrators. However, the administrators do not have to manage 

the remote users. Authenticated remote applications can install and execute programmed 

components on any collection of these nodes via the ABONE backbone management and 

control backplane being a part of a centralized user pool. The codes are distributed via an 

enlisted set of Trusted Code Servers  (TCS), which help authenticating them prior to 

distribution. The security domains are handled by the backplane control system. The 

backplane is being maintained by the ABONE Coordination Center (ABOCC) at ISI at 
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the University of Southern California. ABONE status can be monitored live from the 

ABOCC web site. [15] Technical information about ABONE is available from ABOCC. 

However, in this section a brief elaboration of its architecture and security relevant to our 

experiment is provided. 

8.1.2 ABONE Software Architecture 

 

The software structure of ABONE node involves a native Node Operating System 

(NOS) and Execution Environments (EEs). Current ABONE nodes are running on a 

variety of underlying NOS including Linux, Solaris and FreeBSD. Each EE acts like a 

remote shell providing a programming construct to a processing capable component. 

Nodes can support multiple EEs. Each EE can run multiple applications from multiple 

user domains concurrently. A number of EEs have been developed. Currently ABOCC 

permanently supports ASP, ANTS, and PLAN. [14][26]  The management & control of 

ABONE nodes is provided by the ANETD system.  [15] The ANETD allows users to 

obtain secured and controlled access to the ABONE resources. Its central function is to 

provide a safe execution environment for programmable components from multiple trust 

domains under the supported EEs. It itself has been designed as a special EE (account 

ABOCC) to support its own management, such as starting, stopping, monitoring and 

upgrading of the ANETD. At the core of ANETD is a robust access control and security 

model that enables users, codes, and nodes to be authenticated without individual node 

administrators to worry about them. 

 



 

 

122 

 

8.1.3 ABONE Security & Authentication Model 

 

ANETD uses 512 bit public key cryptography to authenticate control commands. 

Each control command sent to an ANETD is digitally signed to ensure that ANETD 

access control policies are soundly enforced. ANETD enforces access control by 

enforcing two overlapping security domains. (a) It allows execution, deployment and 

control commands only originating from a set of known pairs, which is maintained by a 

list called the access control list (ACL). (b) It downloads and executes code only from a 

set of trusted servers (HTTP servers or local files/directories) specified in trusted code-

server list (TCL). There are two categories of ACL and TCL: master and local. If 

ANETD is running as ABONE node, than it first reads all master ACL/TCL files, which 

are maintained and fetched from an ABOCC server, followed by all available local 

ACL/TCL files, which are maintained by local ABONE node administrators. If a node is 

configured as standalone, ANETD applies all local ACL/TCL files. The access control 

list (ACL) contains client node list. Each list has client ID, public key of the client which 

is a 512-bit public key, and optional parameters. The trusted code-server list contains a 

list of servers represented by a URL form, which specifies a single file or the root 

directory of permissible download codes.  

 

8.1.4 Concurrent MTO Channel Experimental Environment 

 

In the test bed environment, Linux boxes in a gigabit Ethernet connection are used. 

A concurrent MTO channel and altered routing channels are used for performance 
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measurement of the MTO channel construction. Figure 40 shows the test bed. The 

network nodes run RedHat 9.0 and uses AMD Athlon XP 1800+ or 1700+ with 256MB 

Memory. 
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Figure 40 The MTO Channel Construction Test Bed 

 

Table 29 shows the tested MTO channel’s types and sizes. The concurrent MTO 

channel and the altered routing MTO channel are written in the Java programming 

language. They are compiled and executed in JDK 1.4.2. 

 

Table 29 The Tested MTO Channel’s Types and Sizes 

Channel Component Name Component Type 
Component Size 

(byte) 

CC_mgr Channel Manager 24531 

CC_src Service Server 20133 
Concurrent MTO 

Channel 
CC_dst Service Server 18049 

ALTC_mgr Channel Manager 16461 

ALTC_src Service Server 14898 

ALTC_ctr Service Server 14896 

Altered Routing 

MTO Channel 

ALTC_dst Service Server 14890 
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8.1.5 SONET MTO Channel Experimental Environment 

 

In SONET test environment, a total of five ABONE nodes are used, each machine 

runs RedHat Linux 7.1. They include three AMD Athlon 1.4GHz machines, one AMD 

Athlon XP 1700+ machine, and one dual Pentium III 450Mhz machine. Three encoders 

were used in the simulation.  The nodes receive authenticated transcoding service 

components from a code server located at KSU Medianet Lab. Those are run on Athlon 

1.4GHz, Athlon XP 1700+, and dual Pentium III 450MHz machines. The deployment, 

management and monitoring process was automatic and adaptive. 

Selected nodes had different computation powers to make sure that paths have 

different delay variations in transcoding a video stream. The selected source video 

streams had identical contents but were initially encoded with different frame and ADU 

size (GOP size).  The node and link capacities also had dynamic variations. There were 

other activities on the processing capable nodes as they were running on open ABONE. 

The SONET MTO channel manager had a full graphical interface running on a local 

machine, and it provided the one point graphical visualization to the run time state of the 

entire component system. In the SONET MTO channel system, the system monitoring is 

built-in and thus the statistic information is gathered without any other modification. The 

status monitoring costs are already included in the signaling costs. 
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Table 30 The SONET MTO Channel’s Types and Sizes 

Channel Component Name Component Type 
Component Size 

(byte) 

SONET_mgr Channel Manager 93127 

SONET_enc Service Server 87881 
SONET MTO 

Channel 
SONET_dec Service Server 25351 

 

Table 30 shows the SONET MTO channel’s components, types, and sizes. The 

SONET MTO channel is written in the C programming language and compiled by GCC 

2.96. 

 

8.2 Experiment Results 

 

8.2.1 MTO Channel Deployment Overhead 

8.2.1.1 MTO Channel Optimization 

 

The optimization is done before actual MTO channel deployment. The optimization 

is done when the channel deployment planning time. Figure 41 shows number of used 

channel components for GC(a,e) in section 4.5. 
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Figure 41 The Number of Used MTO Channel Component in GC(a,e) 

 

GC has one component in the MTO channel, and CC has three channel components 

to deploy. The number of deploying channel components for the ARC MTO channel is 

three plus the number of intermediate computing points (ICPs) for ARC_ctr components. 

The number of MTO channel components for GC(a,e) is 47 (unoptimized) and 20 

(optimized). 
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Figure 42 A CC MTO Channel Assembly Time 

 

Figure 42 shows the MTO channel assembly complexity. If a MTO channel were 

constructed sequentially, it would take 3022 ms. However, when the MTO channel is 

constructed in parallel, as it normally is, it only take 1333 ms. 

 

8.2.1.2 Concurrent MTO Channel 

 

The following figures show the measurement result of MTO channel construction 

overhead. 
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Figure 43 A Loading Overhead for CC MTO Channel Construction 

 

Figure 43 is a graph for the loading overhead of the concurrent MTO channel 

construction. The differences of each component size mainly cause the loading time 

differences. The loading time is relatively small compared to the service time of a MTO 

channel. 
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Figure 44 An Activation Overhead for CC MTO Channel Construction 
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Figure 44 shows the activation overhead of the MTO channel construction system. 

An activation time is a time period needed to activate a MTO channel component from 

the time of a specific MTO channel component invocation request to the time of 

notification reception from the invoked component. The time overheads are relatively 

larger than the other overheads because of the efficiency of the Java virtual machine. The 

MTO channel construction system was programmed in java language for its portability. 

 

8.2.1.3 SONET MTO Channel 
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Figure 45 SONET MTO Channel Test Network Configurations 
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Figure 45 shows the network test bed for performance measurements. The system 

was tested in three test bed scenarios. In the first scenario, (shown in Figure 45(a)) the 

application as well as the SONET MTO channel components-- all were deployed in a 

single autonomous system’s LAN. In the second scenario the application end points 

(server and players) were in different networks but SONET MTO channel computation 

was performed in a single network (shown in Figure 45(b)).  
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Figure 46 A SONET MTO Channel Component Deployment Time 

 

In the third setup, the application as well as each SONET MTO channel component, 

was in distinct networks (shown in Figure 45(c)). The corresponding component 

deployment time of each test bed is shown in Figure 46. The component deployment time 

is averaged over 10 trials in each test bed. As shown in this figure, the first test bed takes 

more while the second and third test beds take approximately the same amount of time. 
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The stacks show how much time is taken by individual components of the system. In all 

three scenarios the total component deployment took about 1.2 seconds. It includes 

authentication, automatic component transfer and their activation in each processing 

capable node. 
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Figure 47 An Activation Overhead for SONET MTO Channel Construction 

 

Figure 47 shows an activation time for SONET MTO channel. The SONET MTO 

channel is written in the C programming language. The activation time is faster than the 

time of concurrent channel, which is written in the Java programming language. 
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8.2.2 Signaling Overhead 

 

8.2.2.1 Concurrent MTO Channel 
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Figure 48 A Signaling Overhead for MTO Channel Construction 

 

The signaling overhead for MTO channel construction is shown in Figure 48. The 

required signal is measured in byte size. The size of the signal is very small considering 

the size of actual communication data quantity. 

 

8.2.2.2 SONET MTO Channel 

 

The entire synchronization was performed by inter components signals. Clearly, a 

concern was how much communication resource was consumed by this. Therefore, the 

signaling overhead is logged in each component. The signal overhead is plotted in Figure 
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49. It plots individual SONET MTO channel components in scenario. For comparison, 

the second bar also shows the actual ADU data volume. This is a log plot. As shown in 

Figure 49, relatively small network resources are used for achieving coordination and 

control among the components. 

1

10

100

1000

10000

100000

T
im

e
 (

m
s
)

Control

Signals

Data Control

Signals

Data Control

Signals

Data

Test bed 1 Test bed 2 Test bed 3

Control signal vs. Data transfer time

SONET_mux

SONET_enc

SONET_mgr

573

75921

345

62819

380

63103

 

Figure 49 Control Signals vs. Data Transfer Time on Different Networks 

 

It uses the same video. Thus, the transcoding time and control signals remain the 

same. Test bed 1 takes approximately 12 seconds more on transferring data than test bed 

2 or 3. This indicates network resources are bottleneck in test bed. 
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8.2.3 Concurrent Channel’s Transmission Speed 
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Figure 50 A Concurrent Channel’s Data Transmission Time 

 

A concurrent channel’s data transmission time is shown in Figure 50. The 

experimented concurrent channel is used one and two transmission paths. The concurrent 

channel has performance benefit over single path transmission. Over the all data 

transmission size, the double path channel has advantage over single path channel. 

However, it receives less promotion when the transmission data size is small to fill its 

buffer than more data ready. The double path concurrent channel also consumes 

significant time on handling transmission data when the data is larger than it normally 

can process. 
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8.2.4 SONET MTO Channel’s Cold Start Adaptation for Video Sizes 
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Figure 51 A Performance Comparisons among Different Frame Size and Computation 

 

Figure 51 shows the frame-rate observed in their sample run on a small uncontrolled 

(with background computational and communication load) processing capable network 

consisting of 5 processing capable routers (with capacity ranging from 400 MHz ~ 1.5 

GHz P4 processors, and the interconnections were 10/100 Ethernets with uncontrolled 

cross traffic). The system is deployed by itself and finds optimum mapping. Figure 51 

plots the frame/ second statistics recorded at the GOP-MUX unit. It plots the performance 

for both 320x240 and 704x480 frame sizes streams at three different ADU (GOP) sizes. 

The computation load heavily depends on the number of macro-blocks and frame size. 

Based on the frame size the frame transcoding rate varied from 5-30 frames/second. 
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The adaptive behavior is noticeable at the step-like increments at the very beginning. 

Initially, the MTO channel used only one processing capable node. The single node was 

unable to sustain the target rate. Soon, it auto-deploys additional nodes. For example, for 

704x480 video the second and the third nodes were deployed some time before the 20th 

and 60th seconds respectively. These delays represent the full feedback and effectuation 

delays. They include (i) the time to detect insufficiency, (ii) the time for stream auto 

deployment, and (iii) the time it takes the new results to appear at the MUX. As evident 

from the jumps, only three processing capable paths were available. This is dependent on 

the underlying network configuration. 

The above results have been obtained from a transcoder running in full motion 

computation (FMC) mode [17]. While a general purpose transcoder supporting arbitrary 

video processing will require full encoding and decoding (used here), more special 

purpose processing can be performed by domain specific optimized computation. For 

example, further acceleration is achievable if motion vector computation bypass (MCB) 

mode is selected. However, the actual speedup is quite complex by the very nature of the 

paradigm. It will depend on the cost of full motion search which is also configurable, and 

the ability of computational paths (not only the computing power but also the required 

bandwidth). 
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8.2.5 SONET MTO Channel’s Adaptation for Compute Power  
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Figure 52 A FPS Adaptation Reaction Time 

 

The SONET MTO channel system offers two forms of adaptation. The first is the 

change in the availability of the processing-capable nodes and the other is the change in 

their computing powers. In this experiment, incremental allocation of additional CPU 

power is emulated in the processing-capable nodes into the system in three steps (events 

T1, T2 and T3) by changing the target frame rate of the SONET MTO channel system. 

The corresponding change in SONET_mux buffers throughput frame rate (FPS) 

observed in the SONET_mux unit is shown in Figure 52. As shown in this figure, the 

reaction starts 1.5 to 2.2 seconds while the completion of reaction takes 9.8 to 10.7 

seconds. Whenever there is a change in the network condition/ capacity the adaptive 
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system responds.  It also shows the reaction time. More computation power gave more 

performance boost as expected. However, the first impacts of the events on the 

throughput were reflected in about 1.5 to 2.2 seconds. It took a little more time before the 

full effects took place. 

8.2.6 SONET MTO Channel’s Adaptation for Output Data Rate Change 
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Figure 53 A Rate Adaptation Reaction Time 

 

The other adaptation ability of the system is to adapt with respect to the change in 

communication capacity. The adaptability is emulated by changing SONET_mux’s 

outgoing link bandwidth allocation from the transcoding system. This change 

automatically triggered the increase in the transcoding ratio of the SONET MTO channel 

system. In Figure 53, the corresponding rate adaptation trigger points and the reaction 
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time is shown. As shown in this figure, the reaction starts 0.4 to 0.8 seconds while the 

completion of the reaction takes 1.4 to 1.7 seconds. 

Compared to the FPS adaptation, the rate adaptation’s reaction time is faster, because 

SONET_enc can generate a rate adapted data output immediately in the middle of the 

transcoding, while the FPS adaptation is only shown after a whole ADU is carried and 

transcoded throughout the SONET MTO channel system. 

 

8.2.7 Jitter Controlled SONET MTO Channel’s Jitter & Delay Reduction  

 

Figure 54 and Figure 55 show the simulation results. Figure 54 plots the jitter 

performance both with and without applying the technique. It shows the result for frame 

size 320x240. The x-axis is the GOP number (ADU number) in the video stream and the 

y-axis is delay jitter in seconds. Figure 55 shows the result of frame size 704x480. 

As seen in Figure 54 and Figure 55, delay jitters are reduced dramatically with a 

delay jitter control scheduling. The first few ADUs have more delay jitter variations 

because the scheduler doesn’t know proper initial delays of each path. After some time, 

however, the scheduler adapts in a running environment.  
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Figure 54 A 320x240 Video Stream Jitter Measurement 
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Figure 55 A 704x480 Video Stream Jitter Measurement 

 

A larger-sized ADU video stream has more delay jitter variations than a smaller-

sized ADU. This is due to the transcoding method. The encoders start encoding after all 

needed decoded video data arrives. Hence, the larger ADU size requires more time spent 
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waiting. Also, a bigger ADU stream needs more transcoding time than a small-sized 

ADU video stream. It increases the delay jitter variation. So, a larger-sized ADU video 

stream has larger delay jitter variations. If the encoder can start before all needed video 

data is transferred to them, it will reduce delay jitter more. Also, the results show that the 

larger frame video stream creates similar larger delay jitter variations. This is also for the 

same reasons – bigger frames need more transfer time and more transcoding time. 
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CHAPTER 9  

Conclusion 

 

Many anticipated advanced applications request transport speed that current network 

infrastructure can handle. However, until now, to support applications’ requirements, 

each application has developed its own network control components at the ends of the 

communication entities. This covers some requirements, but has limited solutions. The 

programmable network extends the range and the power of network control by allowing 

programmability inside the pathway, as opposed to only the end-to-end control. However, 

current research has yet to provide any framework that supports systematical netcentric 

system composition formalism that offers language and platform independent code 

usability and the development scalability that follows from it. The suggested framework 

for a complex composition of a netcentric system is one of the first proposals towards this 

goal. The advantages of developed framework are shown below. 

Layered service: Currently developed active network architecture is a flat layer 

architecture. All the active network connection is work independently from other active 

connection. An active network connection cannot use other active network connections to 

enhance its programmability on its traffic. Each connection is separate and could not 

work cooperatively. The suggested framework support uniform way to use other MTO 

channel to enhance or add the channels feature by cooperating with its sub-channels 

which are independently developed from the upper-level channel. The introduced 
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recursive channel construction hierarchical channel construction by recursively 

constructing its sub-channels. With the recursive channel construction, the framework 

maintains simplicity of channel construction but powerful enough to create complex 

channel construction. 

Application service development: The framework includes the library which 

supports similar interfaces to current socket library that makes the transition from a 

conventional network program to a new MTO channel network program easier. Further 

the framework is giving uniform interfaces to a channel designer to develop their custom 

processing service by using other MTO channels which was developed by other channel 

designer. The framework opens a way to a 3rd party channel designer to develop more 

sophisticated and extensible channel to market, and application developers and other 

channel designers can more concentrate on their service by using the developed channel. 

Limitation of the framework: The framework is created on the assumption that 

communication link for the channel control signal is available. The framework use lower 

level communication link functions to send and receive control signals and 

loading/unloading channel components during its channel construction and its service 

time. If the communication link is not available, a MTO channel could not deploy its 

channel components in network and could not construct the custom communication 

service. 

The framework for netcentric MTO channel system requires little overhead yet is 

powerful enough to provide a construction for complex custom MTO channels. Using the 

recursive netcentric system construction methods, a MTO channel construction remains 
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simple and consistent, and the application can use its custom MTO channel as easily as 

the current socket library. The framework also provides a way of an 3rd party channel 

developer develops a channel and other channel developers use the channel to create their 

own channels like the development of current software object components. To be used in 

practical system, it needs to have fundamental channel service implementations such as a 

secure channel, a store-and-forwarding channel, and an error resilience channel. MTO 

channel depository and deployment architecture will leverage the MTO channel 

framework to more practical system to the public. 

This work has been funded by the DARPA Research Grant F30602-99-1-0515 under 

its active network initiative. 
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