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Human vision provides numerous opportunities for video data-compression. 

Human vision extends about 140 degree, but only about 2 degrees have sharp vision. A 

fascinating body of research exists in vision and psychology geared towards the 

understanding of the human visual perception system. This thesis presents a novel eye-

gaze enhanced media transcoding system for streaming video. This scheme includes a 

video server, a real-time performance capable media transcoder, a video player and an 

eye tracker. The system intakes live perceptual information related to a subject’s eye 

position. Eye and head movements are detected via an eye-tracker, and a magnetic head 

tracker. A unique challenge of this real time perceptual adaptation scheme is the 

incorporation of fast eye movement mechanisms into a complex MPEG-2 transcoding 

scheme. An important factor in this perceptually adaptive encoding method is the delay 

between the time an eye-gaze sample is taken and the time the coding response arrives on 

the screen. This delay is particularly critical if the video involves network transmission. 

The delay also usually increases when large format media is to be perceptually 

transformed due to the coding complexity. This thesis investigates this feedback delay 

compensation problem and proposes a novel gaze interaction based foveation windowing 

scheme to solve it. The proposed technique is able to contain 90% of the gazes within 20-
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25% window coverage area. The media transcoder developed on this scheme is one of the 

first eye-gaze based perceptual transcoders. It can be used between the server and the 

video player in a networked environment. The architecture of the transcoder is designed 

to allow transmission of both stored and live media. Though the architecture is 

independent of any media type, this system currently handles ISO/IEC 13818-2 MPEG-2 

standard.  
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CHAPTER 1  

Introduction 

Current visual data compression schemes are based on statistical redundancy analysis. 

This thesis researches a novel video compression scheme that attempts to explore the 

human perceptual characteristics. The human vision offers a tremendous scope of 

perceptual data compression. Only about 2 degrees in our 140 degree vision span have 

sharp vision. There are two kinds of photo-receptor cells in a human eye: rods and cones. 

They play a crucial role in our vision. Cones provide color information, and are effective 

only for daylight vision.  The rods are more sensitive to light than the cones; they 

function primarily during night vision. Cones provide fine-grained spatial resolvability of 

the visual system. These two photoreceptor cells are connected to the ganglion cells. 

Ganglion cells are the output cells of the retina, and their axons form the optical nerves. 

Photoreceptor cells are not uniformly distributed, but are concentrated in the central part 

of the retina (or fovea). Human acuity perception is related to the sampling density of the 

photo-receptors in the retina, and the mapping of the photo-receptors to the ganglion 

cells.  The density of cells falls off sharply outside the fovea.  The diameter of the highest 

acuity circular region subtends only 2 degrees, the parafovea (zone of high density) 

extends to about 4 to 5 degrees, and acuity drops off sharply beyond. At 5 degrees acuity 

is only 50% [19].   
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This thesis proposes a technique that considers tracking characteristics of the human 

eye. Most of the previous research in this area has used eye-trackers as a passive 

instrument with standalone image/video presentation systems to gain understanding of 

the visual acuity distribution. This work explores how an active media transmission 

scheme can be built with integrated eye gaze tracking. A particularly important factor in 

such integrated perceptual encoding scheme is the delay between the time an eye-gaze is 

tracked and the time the coding response arrives at the screen.  This delay is particularly 

significant in systems that involve network transmission. It is also substantial when large 

format media is to be perceptually encoded. In particular, this thesis addresses the 

problem of how this delay issue can be addressed by a novel dynamic window 

mechanism. 

1.1 Related Work 

A large number of studies have been performed which investigated various aspects of 

perceptual compression. The overall research problem can be divided into several 

research issues. This section summarizes important past research that is particularly 

relevant to this work.  

1.1.1 Contrast Sensitivity and Spatial Degradation Models for Image Encoding 

A Specific focus has been the study of contrast sensitivity and spatial degradation 

models around the foveation center and its impact on the perceived loss of quality by 

subjects [6, 8, 13, 14, 16].  These studies suggest a potential for significant bit-rate 

reduction from perceptual compression.  
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For example [12] presented 256x256x8 gray scale images to subjects, and gave them 

some visual task (such as reading, face detection/evaluation, clutter evaluation) to 

evaluate his system performance. The images he used covered roughly a 20-degree field 

of vision. The purpose of the experiment was to observe the visual sensitivity degradation 

in the para-foveal region. The researcher was able to achieve up to a 94.7% bandwidth 

reduction without any perceived loss in the subject’s ability to perform the visual tasks.  

 Niu [16] studied the potential of wavelet-based decomposition for creating dual 

resolution still image coding. One valuable aspect of Niu’s work was that he reported 

results that show a relationship between the foveal window size, allowable quality 

degradation, and corresponding ability of human eye to detect such degradation. He 

discovered that if periphery quality was degraded to a level 7, (only first seven bands of 

wavelet coefficients was retained), and the dual-resolution encoded image with ROI 

(region of interest or foveal window) size of 2 degree was presented for 150 ms to a 

subject, then the subject could detect degradation about 60% times. ROI window of size 5 

degrees reduces the detection level to less than 20% of the times. The foveal window size 

has a proportional relationship with the possible image compression. Niu estimated that if 

the ‘Zerotree’  quantization of wavelet coefficients is used for subsequent image coding 

then about 75-62% bit reduction is possible with the 2-degree window. Possible 

compression was reduces to approximately 44-31% with the 5-degree window.  

 Loschky and McConkie [14] repeated Niu’s experiment with multi-resolution display 

and higher resolution original images (768x512). They observed similar (60% with 2-

degree ROI window and 20% with 5-degree) results. However, giving the subject a 
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secondary task (searching for some object as opposed to simple detection of degradation) 

resulted in higher detection rate of artifacts. The concluding comments of this research 

indicated that the high-resolution window size has to increase in order to maintain the 

high level of performance. Also, this study noted whether the edge between the high and 

lower resolution areas of the image is sharp or softened made no difference in the 

detectability of the visual artifacts.  This observation conflicts with several other works. 

Overall this study suggests that a 4.1-degree foveal window is sufficient to achieve near-

normal visual performance, indicating that a subject was not able to detect perceptual 

compression if the coding system used foveal window of that size. However, the authors 

of this paper did not consider if the dimensions of the foveal window should change in 

the case that an additional observing task would be given to the subject. Several scientists 

reported that the foveal window size could have a reverse impact on the visual search 

process such as by reducing the eye saccade lengths [27], or by resulting in longer eye 

fixations [28].  

1.1.2 Perceptual Coding Techniques for Image Encoding 

A number of coding techniques suitable for varying the spatial resolution of the image 

plane has been suggested: Wavelet-based Spatial Coding [16, 24], Spatial Domain Multi-

resolution Coding [7]; Multi-resolution Medical Image Coding [11], Retinal Coding [13], 

Progressive Coding [17], etc.  

The author of [7] builds a sequence of reconstructed images from the original image. 

This sequence consists of the same images, except the pixel dimensions of each image 

differ. Several visual degradation functions such as linear, non-linear and human visual 
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system (HVS) acuity-matching are used to create a fovea compressed image from 

sequences of images as described above.  

The example of Retinal Coding would be the Retinal Reconstructed Images (RRI) 

coding [13]. Instead of uniform rectilinear spaced organization of image information, this 

work regards spatial organization and the density of ganglion cells in the human retina.  It 

considers the circular symmetry of the human eye and organizes the image bit 

distribution based on viewing distance, point of eye fixation, size of the input image and 

number of cells around the point of fixation.  In the decoding phase, the RRI organized 

samples are projected back on the image screen using B-spline based image 

reconstruction. The experiment reports nearly 2 times compression on image data. The 

coding/decoding complexity is inverted. The B-spline sampling has O(n2), complexity, 

but the surface reconstruction hs O(n2s2), where s is the number of samples per surface. 

 [10] presented pyramid coding and used a pointing device to identify focus. Their 

work includes a hierarchical stage-by-stage motion vector estimation technique, which 

fits with the original pyramid-scheme and enables predictive coding. Their work used a 

HVS model for the inclusion of spatial frequency data in coding.  It is based on a 

functional model that connects the threshold of contrast sensitivity of the human eye with 

the retinal eccentricity and spatial frequency. It then determines which spatial frequency 

component is visible to the human eye based on the distance. Accordingly, only the 

visible components are added in the code. It reported compression results on several 

image sequences, which reduced the frame size about 7 times. The method also used 

blending near the pyramid block boundaries. The method required low-level image 
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processing, which is extremely time consuming. It required full decompression of the 

image. In almost all practical situations, even the raw captured video requires 

compression. Complexities of the recognition filters/ algorithms are super-linear. Thus, 

the complexity of the procedures becomes intractable with high-fidelity large format 

video. Object model is not available for most situations. If the object model is available, 

even then the acuity distributions for various objects are needed to be determined case by 

case as well.  Thus computational complexity of video coding scheme is a formidable 

challenge.  

1.1.3 Perceptual Video Encoding 

Several investigations studied video encoding in particular [4, 10, 20, 22, 23, 25, 26 ].   

In [25] research, twenty-four observers viewed 15 forty-five-second clips of NTFS video 

while the direction of the gaze was monitored. Video frames where divided on clusters. 

The size of each one was 6% of the video frame. Dominant cluster contained between 

78% of subject gazes for the video samples with considerable motion, and 43% for the 

slow motion. This result shows that many people have a tendency to look at the same part 

of the image. [26] concluded that the benefits of eye-gazed compression are modest, and 

the high cost of implementation makes the gaze contingent processing not suitable for 

general purpose image processing. This paper used the same approach as in [25], but in 

these experiments they tried to encode image based on the area where subjects previously 

looked. This scheme didn’ t work as well as it was expected. Subjects were able to notice 

blurred areas on the image. The author notes that it might be due to the fact that subjects 

looked at the different areas each time they observed a video sequence. The conclusion is 
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that pre-encoding based on previous areas of attention is not as efficient as expected; as a 

subject may look at different areas of the image upon repeat viewing. 

Many of the early works have been inspired by the objective of designing a good 

display system [4, 14, 20]. For example, [4] used a live-eye tracker to determine the 

maximum frequency and spatial sensitivity suitable for human eye perception using 

HDTV displays with fixed observer distance. [20] experimented with two models of 

degradation. They used very low-resolution 8-second video clips. The video clips were 

gray scale, wavelet encoded and 16 frames per second. The size of the image was 

256x256 pixels. Both used stand alone presentation, fixed observer distance, and fixed 

sized acuity windows. Integration of live eye-tracker with video live encoding was 

problematic. Also in this work, the authors called to attention that there is no significant 

difference between linear and acuity matching resolution degradation.  

A particularly interesting work by [5] studied facial video. Instead of eye-gaze, it used 

image analysis to monitor the face image, and used its center as the point of focus. They 

suggested a contrast sensitivity function (CSF) to degrade the resolution from the 

detected face center before presenting it to the subject. This work reported almost 50% 

bit reduction using this technique. However, the geometric center of a known object, 

(such as the center of face is used here), was not necessarily the center of foveation.  

1.1.4 Latest Research 

Earlier experiments used a lower bit-rate, smaller formats. A short time ago, [23] 

presented a fast DCT based transcoding technique that can be used for variable spatial 

resolution coding. They focused on the frame prediction problem that arises in such 
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compressed domain transcoding. [22] investigated how to control the bit-rate for MPEG-

4/ H.263 stream for foveated encoding optimally. Their simulation used a set of given 

fixation point(s) and predicted about 8-52% bit-rate saving for I pictures and about 68% 

for P pictures for 352x288 video sequences.    

1.2 Thesis Overview  

1.2.1 Proposed Perceptual Video Encoding System 

This thesis describes a recently completed live foveation integrated media 

transmission scheme. That system integrates a real-time live media transcoder with a 

live-eye tracker. The system intakes live perceptual information related to a subject’s eye 

position and head-movement via an eye-tracker and a magnetic head tracker and 

correspondingly controls the spatio-temporal resolution of the presentation. The eye-

tracker tracks the eye-gaze with respect to the human head. The magnetic head tracker 

detects the movement of the head with respect to the scene plane, and together they 

determine the eye-movement with respect to the presentation.  

The Percept Media Transcoder (PMT) unit interfaces the perceptual information 

derived from the perceptual sensors, and applies it to the media specific perceptual 

encoding. The PMT architecture has been designed so that multiple media types and 

media specific perceptual transcoding modules can be plugged into it without requiring 

the reorganization of the overall media distribution systems networking. That architecture 

enables one to use any standard-based media server and presentation system. The 

perceptual compression scheme described in this thesis is incorporated into a full-logic 

MPEG-2 high-resolution region-based motion-vector reprocessing transcoder.  
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1.2.2 Challenges 

The perceptual encoding system approach approximately divides the problem into two 

challenges. The first (and more well studied problem) is how to associate the para-foveal 

degradation at the boundary of the eye containment zone with specific spatial resolution 

(quantization value, color) on the display based on the specific media type and modality. 

The second challenge is that the interaction delay manifests the challenge of how to 

predict and estimate the gaze containment so that the spatial resolution can be applied in 

the right place. 

Many of the previous research in eye acuity and sensitivity did address the first part. 

Almost no literature exists on the second issue. Most, previous studies used point-gaze(s) 

and placed emphasis on the spatial degradation from the point-gaze as a principle source 

of data reduction. However if the assumption of the availability of precise and 

instantaneous tracking is taken away, the size of this proximity would play a much more 

dominate role in bit-reduction (and probably also in perception) of video.  

The idea of certain forms of the containment window immerged in several previous 

research studies, such as object based perceptual compression. However, these were static 

and fixed size windows on the object (statically detected by scene analysis, or pointing 

device). Still these were (i) window of fixed size, and (ii) the impact of control loop delay 

was not considered. Such a delay is critical to consider in a feedback based perceptual 

video transcoding scheme. The delay is created between when the eye position is detected 

and the time a perceptually encoded frame is displayed. It is important to note that a 

network transmission not only imposes control loop delay, but also the delay is 
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dynamically varying. As it will be shown later, feedback delay seems to be playing a 

dominant role in the actual determination of fovea region. A typical network delay ranges 

from 20 msec to a few seconds. Saccades can move the eye position more than 10-100 

degrees in that time potentially wiping out the entire advantage of designing an accurate 

acuity window within the 2 degrees of foveation.  

1.2.3 Objectives 

The goal of the thesis is to investigate the feedback delay between the eye-tracking, 

coding, and displaying the encoded image and develop an approach that can operate with 

such dynamically varying delay inside of perceptual compression scheme.  

Instead of relying only on the acuity matching model, the integrated approach of gaze 

proximity prediction and containment is proposed. Previous research has found it 

extremely difficult to model the precise eye movements.  This is even more difficult in a 

moving scene. This thesis explores a method which instead of dealing directly with 

individual eye position based precise acuity, uses a gaze proximity zone or a foveation 

containment window, and approximate acuity. The main objective is to ensure that the 

majority of the eye-gazes remain within the window with a statistical guarantee. The 

advantage of this scheme is that it can compensate for the unpredictability and instability 

arising from fine grain foveation tracking and the delay inherent in media encode/decoder 

loop in any unicast/broadcast scenario.  

However, it should be clarified that this thesis does not attempt to propose any new 

video coding scheme.  The scope of this work has been confined to the industrial MPEG-

2 video stream. MPEG-2 standard provides crucial capabilities such as VCR control, 
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multiple program multiplexing, de-multiplexing, expandability and compatibility. It is 

interesting to note the original MPEG-2 TM-5 model does include static human visual 

systems (HVS) characteristics, including a crude control for dynamic perceptual 

considerations (macroblock activity factor).  

1.2.4 Thesis structure 

This thesis is organized in the following way.  

Section-2 describes human eye movement characteristics that play important role in 

the proposed gaze containment algorithm. That section contains the construction of the 

HVS acuity model, and the dynamic eye-movements tracking method. It shows how to 

combine these two topics to determine the dynamic gaze vicinity. The mechanism of 

predicting future eye movements is described further in the section-2. 

Section-3 provides the applied techniques for perceptual transcoding for an MPEG-2 

stream. 

Section-4 presents a series of experiments to show characteristics of this novel system. 

For this purpose a set of rigorous tests was defined and eye containment performance 

results are presented. 

Section-5 brings the discussion about the perceptual encoding limitations addressed by 

the proposed system. The future area of research is discussed at the end of the section.  
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CHAPTER 2   

Eye Focus Tracking by Reflex Windowing 

2.1 Visual Dynamics 

The proposed eye-containment system is intricately related to the movements of 

human eye. An overview of movement characteristics is presented below. 

Human beings ability to perceive information is affected by different kinds of eye 

movements. Each of these movements plays its role in the process of gaining 

information, and it is important to identify them for better understanding of our vision. 

Scientists have identified several elaborate types of eye movements, such as drift, 

saccades, fixation, smooth pursuit and involuntary saccades. 

Saccades: Saccades are the eye moments that occur between two points of fixations (to 

be explained shortly) are called saccades. They are accomplished by eye movements of a 

single type – identical and simultaneous very rapid rotations of the eyes. Amplitude of 

the saccade usually doesn’t exceed 20 degree. For angels less that 1 degree the duration 

of the saccade is 0.01-0.02 sec; for angles of 20 degrees it may reach 0.06-0.07 sec. The 

maximum velocity reached by the eye during a saccade of 20 degrees is 450degr/sec. 

Fixations: Several types of eye movements also take place when the object of 

perception is stationary relative to the observer’s head. Human’s eye moves in three way 

during fixation: by small involuntary saccades, equal for the two eyes, drift and by 
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tremor. During long fixation 97% of time is drift and only 3% small involuntary saccades 

[18]. 

Drift: A drift is an irregular and relatively slow movement of the axes of the eyes, in 

which the image of the fixation point for each eye remains inside fovea. Drift movements 

prevent the formation of the empty field. Drift is always accompanied by a tremor. The 

average duration of the drifts is from 0.3 to 0.8 sec in case when a subject is observing a 

stationary object. Drift speed varies chaotically from zero to approximately 30 minutes of 

angle per second. 

Tremor: A Tremor is an oscillatory movement of the eyes of high frequency but low 

amplitude. The amplitude of the tremor is 20-40 seconds of the angle. Frequency of the 

tremor movements is 70-90 oscillations per second. 

Involuntary saccades:  Small involuntary saccades usually arise when the duration of 

fixation on a particular point of a stationary object exceeds a certain length of time (0.3-

0.5 sec) or when, because of drifts, the image of the point of fixation becomes too far 

removed from the center of the fovea. 

This Thesis particularly concentrates two major types of eye movements: fixations and 

saccades. 

2.2 Perceptual Compression Scheme Overview 

To create a perceptually encoding scheme that works properly, two problems must be 

addressed: the human visual system (HVS) acuity matching and eye gaze tracking. The 

approach of this work is to first derive a para-foveal window based on acuity - eye 
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sensitivity function, then add corrections that take into account the reflex eye-movements 

between the time the eye is tracked, and the perceptually encoded frame is displayed.  

To address the eye acuity matching issue )(tWA
acuity window (AW) is constructed. 

AW presents bit distribution, which matches HVS during eye fixation. 

To predict future eye movements )(tWR
reflex window (RW) is built. RW represents a 

container for saccadic eye-movements. It represents the area, where AWs should be 

placed in the future.   

))(),(()( tWtWftW RA=  visual window (VW) is a combination of AWs and RW. VW 

provides imperceptible HVS enhanced video compression for the real time encoding 

scheme. 

Next three subsections correspondingly describe the design on these three windows.  

Subsection-2.6 describes the processing used to convert the individual eye tracker sample 

data stream into the model parameters, so the visual window is predicted dynamically as 

per the model.  

2.3 Eye Acuity Model 

As previously mentioned, the perception of image quality depends of the spatial 

distribution and mapping of cones, rods and ganglion cells, and the mapping of the visual 

fields across the visual context. A large number of functions have been suggested for 

contrast sensitivity function (CSF). Some of them are based on anatomical considerations 

and some are based of psycho visual empirical studies. In this work CSF presented by 

equation 2.3 is used, which has been modeled after the CSF function presented by [5]. 
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This equation reflects entropy losses of the visual system. Also, this function addresses 

the issue of cones, rods and ganglion cells distribution. It is supported by two sets of data 

provided by [1] and [2].  Fig 2.1 shows the acuity distribution in the visual plane, created 

by proposed CSF function.   

),(1

1
),(

yxk
yxS

EECC θ⋅+
=   (2.3.1) 

Here S is the visual sensitivity with respect to the frame coordinates (x,y) , ECCk  is a  

constant (in this model 24.0=ECCk ), and ),( yxEθ is the eccentricity in visual angle. 

Within any lossy video compression method, the acuity quantity S has to be mapped to 

the spatial degradation functions of the given encoding scheme.  

2.4 Reflex Window 

The reflex window’s objective is to contain the eye fixations by estimating the 

probable maximum possible eye velocity due to saccades. Given a set of past eye-

positions, the reflex window predicts a zone the eye will be at a certain point in future 

with target likelihood. Reflex window is modelled as an ellipse with focuses 

{ )(tVT xd ⋅ , )(tVT yd ⋅ }  where dT is feedback delay and )(tVx  and  
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Figure 2.1: Visual sensitivity function of the human eye. 
 

 

Figure 2.2: Reflex window covered by a set of acuity windows. 
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)(tVy  are containment assured eye velocity (CAV). Fig 2.2 shows the diagram 

representation of reflex window. 

2.5 Combining Acuity Window with Reflex Window 

Finally, the combined window that can take into account both the acuity distribution 

as well as the eye motion is modeled. The eye-velocity determines the reflex ellipse. The 

eye is expected to be anywhere within this region. The acuity window will be added to 

the boundary of the reflex window to create a visual window. Fig 2.2 explains the idea. 

The visual sensitivity is calculated as a function of eccentricity. We assume the subject’s 

eye will be directed anywhere within the RW with equal probability, the eccentricity is 

then measured as: 
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(2.5.1) 

In this equation x and y here are horizontal and vertical pixel positions on the video 

frame. VD is the viewing distance in the units of pixel spacing. Quantities Cx  and Cy are 

the coordinates of the center of the RW window, and )(tVTx xdR ⋅= and )(tVTy ydR ⋅=  

are the dimensions of the reflex window.  

Thus the prediction corrected sensitivity function is: 
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Figure 2.3: Visual sensitivity 3D map (704x480), RW size – (200x100), RW center  
-(352,240). 

 
 

Figure 2.4: Visual sensitivity 3D map (704x480), RW size – (100x200), RW center 
–(200,350). 
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(2.5.2) 

 

Visual sensitivity is calculated for each pixel using formulas   2.3.1 and 2.5.1. As a 

result we would have a perceptually encoded image with the given sensitivity resolution. 

Fig 2.3 shows Visual Window created by sensitivity function S(x,y), which is 

combined from AW and RW. RW center is at (352,240). RW dimensions are 200 pixels 

by 100 pixels.  Fig 2.4 shows combined VW, with RW center at (200,350). RW 

dimensions are 100 pixels by 200 pixels. 

 
 

2.6 Dynamic Reflex Window Construction  

The eye velocity prediction method is described in this section. Based, on the past 

positional variances future eye velocity components are estimated. These velocity 

components are used in formula 2.5.2 for a given prediction accuracy goal.  

In the proposed model, eye velocity was calculated as a path that the eye gaze traveled 

while the system was processing frame F(t). Having calculated the length of this path, it 

was possible to estimate eye velocity in pixels per frame. It should be noted that the 

number of eye samples that path was created from might be different for each particular 
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frame. Such factors as equipment sampling frequency, network delay and encoding time 

of a specific frame influence the amount of eye samples received at a given time.  

2.6.1 Running Average Eye Velocity 

Suppose there are n eye gazes detected during encoding of t-th frame. Each eye gaze 

Si(t) detected for the frame F(t) has (x,y) position (in units of pixels). The estimated 

horizontal and vertical components of the eye velocity for the frame F(t) are then 

calculated as:  

�
−

=
+ −−−=

1

1
1 |)()(|)(ˆ

n

i
didix TtxTtxtV  (2.5.3) 

�
−

=
+ −−−=

1

1
1 |)()(|)(ˆ

n

i
didiy TtyTtytV  (2.5.4) 

These values are called running average velocity (RAV). 

In a simpler explanation these velocity values represent eye movement during frame 

F(t). Notation x(ti-Td) and y(ti-Td) means that eye sample that system received at the 

moment “t”  had been detected by eye-tracker at the moment “t-Td” . This eye sample was 

processed Td msec  later after it was detected by eye tracker. Fig 2.5 presents the concept 

of different types of eye gazes.   In Fig 2.5 the number of delayed eye gazes is two (one 

eye delayed eye gaze is RW center). That means that “n”  in formulas 2.5.3 and 2.5.4 is 

equal to 2. In real implementation the center of reflex window is placed on the last 

available eye-gaze. The equations for RW center would be placed at: 

)( dn Ttx − and )( dn Tty − . Delayed eye gazes will be represented by: )( di Ttx − and,  
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Figure 2.5: Example of Reflex Window and its components. 
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where ni ≤≤1 , and n is number of eye detected eye while encoding frame )(tF . Real eye 

gazes coordinates would be those that will be detected while encoding frame F(t+Td):  

)( di Ttx +  and )( di Tty + , where ni ≤≤1  is number of detected eye samples for frame 

)( dTtF + .  

Values )(ˆ tVx
and )(ˆ tV y

are originally calculated as pixel values.  Given that L (inches) is 

the distance between subject eyes and the display,  phH (inches) is the horizontal image 

size, 
phW  (inches) is the vertical image size, H (pixels) is the horizontal image size, and 

W (pixels) is the vertical image size. )(ˆ tVx and )(ˆ tV y are converted to angular (degrees) 

values: 

)
*

)(ˆ*
arctan()(_ HL

tVH
tV xph

angularx =
 

(2.5.5) 

)
*

)(ˆ*
arctan()(_ WL

tVV
tV yph

angulary =  
(2.5.6) 

How fast can human eyes move? Fig 2.6, Fig 2.7, Fig 2.8 show a sample of RAV 

measurement of a subject for different frames. Here x-axis shows frame numbers and y-

axis shows the eye speed during each frame.  

2.6.2 Containment Assured Eye Velocity 

Knowing the point where the center of RW is placed and having eye velocity values 

collected, it is possible to derive the algorithm, which will calculate the size of RW. The  
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Figure 2.6: “ Car” . Running average angular eye velocity for every video frame. 
 
 

Figure 2.7: “ Shamu” . Running average angular  eye velocity for every video 
frame. 
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Figure 2.8: “ Airplanes” . Running average angular eye velocity for every video 
frame. 

 
 
 

 
Figure 2.9: Example of velocity counters update mechanism. 
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idea behind the algorithm is to take into consideration velocity values over some period 

of time. An analogy of the eye velocity histogram is built by a set of velocity counters. 

The formal description is provided bellow. 

There are two sets of counters.  Each counter is designed to increase its value once a 

particular eye velocity sample is received by the system. For each arriving eye-sample 

Ei(t) the x and y speed components are accounted separately. Eye velocity counters are 

presented by two sets: }0:,...,{ ,,0, ≥=
ixWxxX cccC and 

}0:,...,{ ,,0, ≥=
iyHyyY cccC .  Were W and H are width and height of the video 

image in pixels correspondingly. Each counter )(, tc ix  is associated with fixed RAV 

value )(ˆ tVx  (same goes for y component).  A RAV sample )(ˆ tVx  belongs to the )(, tc ix  

counter if itVx =)(ˆ  pixels per frame ( )(ˆ tVy  belongs to )(, tc jy  if jtVy =)(ˆ ). )(ˆ tVx and 

)(ˆ tVy are integer values. Each RAV sample )(ˆ tVx  and )(ˆ tVx updates corresponding 

counter. For each frame F(t) there is one horizontal )(ˆ tVx  and one vertical )(ˆ tVy  RAV 

sample coming. Depending on the RAV sample value the corresponding counter is 

incremented. In the case of itVx =)(ˆ  and jtVy =)(ˆ   

1,, += ixix cc  and 1,, += jyjy cc  
(2.5.7) 

RAVs history limit is taken into consideration, where any samples older than “k”  

frame units (this value is referenced as RAVs velocity values (VV) in the graphs) are 

discarded. That means that corresponding counters for the RAVs that system had for 
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frame F(t-k) are decreased by one. This is accomplished by setting up a circular queue 

and count update as following: assuming that RAVs values for frame F(t-k) were 

iktVx =− )(ˆ and  jktVy =− )(ˆ  then RAVs counter reduction will look like this:  

1,, −= ixix cc    and 1,, −= jyjy cc  
(2.5.8) 

 

ϖ is target gaze containment parameter. ϖ corresponds to the amount of the eye 

gazes to be contained within RW. ]1,..,0(∈ϖ . For example 8.0=ϖ  would mean 

that 80% of gases should be contained within the RW.  

To calculate required eye velocity following inequalities should be solved.  
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Then future horizontal eye velocity would be mtVx =)( .  

Similarly, 
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(2.5.10) 

Then ntVy =)( .  

)(tVx  and )(tVy  are called containment assured velocity (CAV).  A Reflex Window 

constructed by CAVs will assure target gaze containment for the future eye gazes. 
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Fig 2.9 illustrates the process with an example. Suppose the image size is W=64 and 

H=64. Let’s consider set Cx only. After RAV sample )(ˆ yVx arrives, 1,xc  is going to be 

increased by one if 1)(ˆ =tVx  pixel. 2X  is going to be increased by one if 2)(ˆ =tVx . 

Similarly 64X  is going to be increased by one if 64)(ˆ =tVx . Let’s say now 5 RAVs arrive 

with corresponding values of: 1, 1, 2, 1, 63 (pixels/frame). Let’s assume that the target 

containment is 80% ( 8.0=ϖ ). Then, maximum value for m, which can be derived 

from equation 2.5.9 would be equal to 2.  That means that next frame in the video stream 

is encoded with assumption that eye velocity is going to be 2 pixels per frame for 

duration of that frame. 
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CHAPTER 3   

Transcoder System: MPEG-2 Full Logic Transcoding  

Once the visual window is obtained, it is applied to the target media. In our MPEG-2 

example we have developed foveal rate controller transcoder that operates as a piecewise 

constant rate (PCR) controller similar to TM-5. It works in four modes. In normal mode it 

operates in PCR mode with a carryover.  In cases of extreme congestion, it can retract to 

GOP wise PCR. Also, its region-based perceptual encoding operation can be switched on 

and off.  Unlike compressed domain transcoding schemes, the described transcoder is a 

full logic transcoder with motion vector inference. Compressed domain transcoders are 

fast though they suffer from inter frame drift within GOP due to the accumulation of 

reference error in the predictions of “I”  frames. This is particularly problematic for region 

based encoding, as it deliberately takes some bits from “I”  references. In this thesis a full 

decoder and a transformation matching motion vector inferencing encoder is employed. 

The motion vector inferencing encoder avoids a very computation intensive motion 

vector (MV) estimation process. Instead of recalculating MVs, it reads the motion vector 

matrix from the incoming stream for each video frame. The original motion vectors 

however, cannot be used for the coding of the re-encoded frames. The nature of MV 

recalculation depends on the nature of frame transformation. Each transcoder 

transformation is thus designed as a pair-wise function/algorithm { TF(), and TMV()} , 

where  Fout=TF(Fin), and MVout=T
MV(MV in).  The inference MV matrix is used before the 
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prediction in the re-encoding stage. The predictions are freshly recalculated in the 

encoding stage, thereby avoiding any drift due to re-encoding. At the same time it avoids 

the costly MV search, allowing an increase in transcoding speed. 

3.1 MPEG-2 Bit Rate Control Mechanism  

MPEG-2 employs a complex double feedback based transcoder rate control 

mechanism for rate control. An MPEG-spatial fidelity control scheme that is fully 

compatible with the widely used TM-5 model was developed as a result of this work. It 

can generate the piecewise constant bit-rate (CBR). Our enhancement enables it to 

perform additional spatial bit-allocation. However, the overall bit-rate still maintains the 

CBR per GOP basis. The generated bit-stream remains fully MPEG-2 conformant. Thus 

any off-the-shelf MPEG-2/MPEG-4 player can decode and play it.   

Due to the variable length coding (VLC), it is not possible to predict the exact amount 

of bits needed to encode a macro-block for a given choice of coding parameters. 

Secondly, the perceptual content and activity in a particular region of the video frame 

dictates the inherent amount of bits that may be required to encode a macroblock. Also, 

the bit requirements per macro-block depend on the picture type (I, B or P) as well other 

subjective factors. The proposed scheme is a double-loop feedback control mechanism 

where the output bit-rate is continually sensed to determine overall piecewise constant 

rate, with appropriate accounting for variations in frame/picture type like TM-5. A 

second internal feedback loop further tracks the effectiveness of key conversion 

factors/constants for additional stability. The output bit-rate is controlled by the 
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quantization-step given by ISO/IEC 13818-2 tables [21] estimated on basis of static 

human visual sensitivity (HVS) analysis.  

3.2 MPEG-2 Quantization Mechanism 

The rate controller system has two modes of operation: normal mode and frugal mode. 

In normal mode, the objective for a feedback system is to maintain the output bit rate at 

piece-wise per GOP (group-of-picture). In frugal mode, it moves into a variable-rate 

encoding mode with proper proportioning for frame types, and the macro-block activity, 

without any carryover. The saving earned during the frugal mode, however, is stored and 

can be (optionally) carried over to the point where normal mode is resumed to attain 

overall target rate. The control mechanism maintains three virtual buffers for separate 

tracking of bits consumed by the I, B, and P frames. To encode a frame of type x, for 

each macroblock, first a quantity called buffer fullness dj
x  is determined. Then it is used 

to determine the modulation factor Qj. 

�
�
	




�
�
�

 ×
=

r

ex
j31

Qj
 where, �

	

�
�
�

�
+×= 5.0

_

)(2
r

rateframe

tc  
(3.2.1) 

Here, r is called reaction parameter and is estimated from the current overall bit rate 

goal c(t). The quantity ej
x  is the effective buffer fullness and is computed from virtual 

buffer fullness dj
x. The notation refers to the jth macroblock inside of x type frame. These 

quantities are determined as following: 

 



31 

 

)(0 tSdde xx
j

x
j ⋅−= , and  

countmb

tTj
Bdd

x

j
xx

j _

)()1(
10

⋅−−+= −
 

(3.2.2) 

In normal mode the effective buffer fullness is given by the virtual buffer fullness, but 

during frugal mode, it is decoupled from initial buffer fullness, and is only estimated 

based on the frugal state target bit rate. A value of 1 to the state function S(t) moves the 

system to the frugal state, and zero to normal state. In the frugal mode, the bit generation 

temporarily reduces. However, the virtual buffer fullness quantity is continually updated. 

This enables the carryover of the savings made during frugal mode operation when the 

system returns to normal mode.  

Virtual buffer fullness is determined from three quantities: (i) the number of bits 

generated so far by encoding previous j-1 macroblocks inside this frame (Bj-1), (ii) the 

initial fullness of buffer before beginning the encoding of this frame (dj
0), and (iii) the 

target bits allocated to this frame (Tx).  The initial values for the buffer fullness are 

computed at the beginning of encoding a frame. For the encoding of first frame of a GOP 

these are given by: I
B

BI
P

PI dkdanddkd
r

d 00000 ,,
31

10 ⋅=⋅=×= . Here kB and kP are 

universal constants. They depend on the quantization matrices. For standard MPEG-2 

quantization matrix their values are kP =1.0 and kB =1.4. For subsequent frames the final 

fullness of the previous frame is passed on as the initial fullness of the next frame buffers.  

During the frame encoding process, the number of bits required for each macroblock 

is measured immediately after the macroblock was encoded. Once the DCT is done, all 
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subsequent coding procedures for current macroblock including VLC have to be 

completed before the next macroblock can be quantized. 

3.3 Target Bit-Rate Calculation for Different Frame Types:  

To calculate the target bit allocation for each frame, first a rough bit allocation for the 

entire GOP is done at the beginning of each GOP. This estimation is done from the 

stream target bit rate, the frame rate, and the total number of frames in the GOP. Each 

GOP initially has one “I”  and nB and nP of “B” , and “P” frames respectively. 
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To account for the variations in the frame types complexities, a TM-5 like adjustment 

is made. This is performed with the quantities called global complexity measures [XI: XP: 

XB]. These are computed by averaging the actual quantization values used during the 

encoding of all the macroblocks including the skipped ones) and the actual number of bits 

generated SX, where 
XXX QSX ⋅= . These averages are maintained for each frame type (x=I, 

P, and B) and updated at the end of the encoding of the each frame. Finally, the actual 

target bit-rate for each frame type is computed using the following usual TM-5 models 

(where k’s is a pre-defined constants): 

�
�
�
�

	

�

�
�
�
�

�

�

+

⋅
⋅+

⋅
⋅+

= 5.0
1

)(
)(

IB

BB

IP

PP

I

Xk

Xn

Xk

Xn
tR

tT
 

(3.3.2) 



33 

 

�
�
�
�

	

�

�
�
�
�

�

�

+

⋅
⋅⋅+

= 5.0
)(

)(

PB

BPB
P

P

Xk

Xkn
n

tR
tT

 
(3.3.3) 

�
�
�
�

	

�

�
�
�
�

�

�

+

⋅
⋅⋅+

= 5.0
)(

)(

BP

PBP
B

B

Xk

Xkn
n

tR
tT

 
(3.3.4) 

Once each frame is encoded the number of bits used is measured and the encoded 

frame is subtracted from the initial GOP size ( Xnew SRR −= ) to estimate the remaining 

available bits. Also, the number of frames nB or nP gradually decreases. The target size for 

subsequent frames in the GOP, which are either type P or B, are estimated from the 

remaining bits R, and the remaining number of frames. Finally  [ ]1
j 31Q −⋅×= rd x

j  is 

computed by dividing the buffer-fullness by the TM-5 reaction parameter. When the 

system is in the normal mode, the rate control mechanism does not need to sense the 

target bit rate at every frame. However, when system moves into frugal mode it senses 

the current target-rate on per-frame basis. 

3.4 Eye Acuity to Bit-Rate Mapping 

At the top level, finally the quantization factor mquant for each macroblock is 

calculated as a product of two primary factors (a) the buffer fullness and (b) the 

macroblock activity. The mquant for the jth frame is computed as a product of two 

parameters: jjj aQmquant ×= . The final value of mquantj is coded either in the slice or 

in the macroblock header [21]. In the original MPEG TM-5 design, the motivation behind 
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the activity factor (aj) was that human visual perception is less sensitive to distortions in 

noisier textured areas and more sensitive to distortion in image areas with uniform 

texture. Each macroblock uses the sensitivity function as an inverse proportional modifier 

to the activity factor. In the first step, based on the foveal analysis we determine the 

sensitivity factor si for each macroblock and reduce macroblock activity level in inverse 

proportion. The first stage keeps the foveal bit-allocation at a normal value, but then 

proportionally reduces the parafoveal bit-allocation. That way it reduces the overall bit-

rate decreasing per-frame bit-allocation. However, to bring the per-frame bit-allocation to 

the target level, in the second stage the overall dividend gained from para-foveal 

reduction is uniformly distributed to elevate all the macro-blocks, including the para-

foveal macro blocks. The above equation shows the activity function.   
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(3.4.1) 

The remaining scheme works similar to TM-5. There are 31 quantization levels to 

control the amount of bits allocated for each macroblock. These 31 levels will be 

distributed accordingly to stimulation in the acuity model represented above. Highest 

quantization level is used for highest acuity point, the lowest level is used the lowest 

acuity point. Remaining levels are distributed between the highest and lowest ones 

according to a pre- defined acuity function. This scheme provides the greatest amount of 

bits possible for the most sensitive acuity area and the smallest amount of bits for the area 

which does not need high visual quality. 
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CHAPTER 4   

Experiment 

4.1 System Setup 

The proposed system was implemented with an integrated Applied Science 

Laboratories High speed Eye tracker Model 501 [3]. The system had the following 

characteristics: the eye position video capturing camera had working sampling frequency 

of 120 samples per second. It had a rated precision of 0.5 degree. Its accuracy (spatial 

error between true eye position and computed measurement) was 1 degree. Errors could 

increase to less than 2 degrees in the periphery of the visual field. Its allowable eye 

movement along the horizontal axis was 50 degrees or more and along the vertical axis, is 

35 degrees or more depending on optic placement and eyelids. The field was generally 

oval in shape). The eye position data output was averaged over 10 eye position fields. An 

eye fixation was defined as a mean of X and Y eye position coordinates measured over a 

minimum period of time, during which the eye did not move more than some minimum 

displacement. For this experiment it was assumed the minimum time period was 

100msec, and the minimum displacement was about 1 degree per second.  

The subject was accustomed to all the videos before the eye data was gathered and 

processed by the proposed algorithm. All three videos were 720x480 pixels and were 

captured with a Sony TRV20 digital camera at high resolution, (and more than 500 lines 

at a frame rate of 30 frames per second). The number of frames per GOP was 15. Number 
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of “B”  frames between any given two “P” frames was two. Each video was projected on 

the wide-screen in the dark room. The physical dimensions of the image were: width 60 

inches, height 50 inches. The distance between the subject’s eyes and the surface of the 

screen was 100 inches. 

A particularly challenging aspect of experimentation with perceptual system is the 

difficulty of modeling the subjective aspects of the human interaction. There is no agreed 

method. In this experiment, a set of objective parameters was designed as an attempt to 

provide such measurement: containment factor, goodness of containment, perceptual 

coverage. To understand the impact of subjective characteristics of human perception 

system the experiments on a three carefully selected test videos, each offering various 

subjective challenges were performed.  

4.2 Gaze Containment 

The first experiment conducted was to determine how effectively eye gazes are 

contained within the reflex window. To show that, the quantity called gaze containment 

was defined. E(t) represents the set of real eye gazes for the frame F(t).  According to the 

proposed encoding scheme RW(t) is constructed using  E(t-Td-k), …. ,E(t-Td). Constant 

“k”  represents the number of the latest RAV samples that the algorithm uses for RW(t) 

construction. )()( tEtEW ⊆ is the eye gazes subset contained within RW(t).  

Gaze containment is the fraction of eye gazes successfully contained within the reflex 

window: 
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(4.2.1) 

In the experiment, the subject was watching the video while the eye-tracker was 

colleting the eye information. After that, the eye gaze log file was supplied to the 

analyzing software that calculated the reflex window for different feedback delay values.  

In this experiment, the target gaze containment parameter was set to � =0.9 (90%). 

To plot the results of this experiment gaze containment was averaged over every thirty 

frames. That presented a more general picture of the system’s performance. The formula 

for plotting was derived from equation 4.2.1:  

�
=

=
30

1

)(
30
1

)( 
i

AV ik ξξ  
(4.2.2) 

)(kAVξ is averaged gaze containment over one second. Where )(iξ  is a gaze  

containment for frame F(i). F(i) represents frame number “ i”  for the second “k” .   

 Fig 4.1, Fig 4.2, Fig 4.3 and Fig 4.4, Fig 4.5, Fig 4.6 plot the results for )(kAVξ . As 

evident in most of the graphs, reflex window algorithm was able to contain 100% in 

many cases. The containment results for two feedback delays of 166 msec and 1000 msec 

and two cases for number of RAV samples were considered. In the graphs the x axis 

represents encoding time line and y axis represents the amount of eye gazed contained 

within RW during presentation time. It should be noted that the number of eye gazes 

detected for each second of play time might  
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Figure 4.1: “ Car” .  Percentage of the eye gazes contained for 166 msec delay 
scenario and two different schemes, where 20 RAV samples and 2000 RAV samples 

are considered. 
 

Figure 4.2: “ Shamu” .  Percentage of the eye gazes contained for 166 msec delay 
scenario and two different schemes, where 20 RAV samples and 2000 RAV samples 

are considered. 
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Airplanes - RW gaze containment. Td=166 msec. 
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Figure 4.3: “ Airplanes” .  Percentage of the eye gazes contained for 166 msec 
delay scenario and two different schemes, where 20 RAV samples and 2000 RAV 

samples are considered. 

Figure 4.4: “ Car” .  Percentage of the eye gazes contained for 1000 msec delay 
scenario and two different schemes, where 20 RAV samples and 2000 RAV samples 

are considered. 
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Figure 4.5: “ Shamu” .  Percentage of the eye gazes contained for 1000 msec delay 
scenario and two different schemes, where 20 RAV samples and 2000 RAV samples 

are considered. 
 

Figure 4.6: “ Airplanes” .  Percentage of the eye gazes contained for 100 msec 
delay scenario and two different schemes, where 20 RAV samples and 2000 RAV 

samples are considered. 
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be different. This number depends on the capturing mode of the video camera, delay in 

the equipment and the network. It is possible to see from the graphs that proposed system 

performed very well showing 90% gaze containment on average. A lot of times gaze 

containment was 100% and it rarely dropped bellow 60%. 

4.3 Eye Deviation for Reflex Window  

While Fig 4.1, Fig 4.2, Fig 4.3 and Fig 4.4, Fig 4.5, Fig 4.6 show the hit and misses, it 

was further necessary to see the ‘goodness’ of RW construction algorithm, or how close 

were the hits or how far-off were the misses of the eye gazes in regard to RW. To 

measure that quantity called deviation was defined. For each eye sample E(ti), proposed 

method draws a line from E(ti) to the RW(t) center mRW(t). p(ti)  is a point  created by 

intersection of the line (E(ti), mRW(t)) with RW(t) boundary. The signed distance d(p(ti), 

E(ti)) between p(ti) and E(ti) is the deviation. The concept is explained in Fig-4.8. 

�
�
�

−
=

   ;))(),((

  ;))(),((
 

)( RWinside is S(t) if

)( RWoutside is S(t) if

tii

tii

tptEd

tptEd
δ

 

(4.3.1) 

If deviation is negative, than the gaze sample is inside the RW. If deviation is positive 

than the eye gaze sample is outside the RW. The magnitude identifies how far an eye 

gaze fell from the border. Fig 4.9, Fig 4.10, Fig 4.11 and Fig 4.12, Fig 4.13, Fig 4.14   

plot the deviation variation for the test video set. As it is possible to see on these figures 

most of the time the eye gazes fell very close to the RW border. Throughout the 

experiment, the deviation remained very close to the zero line.  As expected the smaller  
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Figure 4.7: Example of deviation calculation. 
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Figure 4.9: “ Car” . RW deviation variation for Td=166 msec and two different 
testing schemes, where 20 vs.  2000 RAV samples are considered correspondingly. 

 
 

Figure 4.10: “ Shamu” . RW deviation variation for Td=166 msec and two 
different testing schemes, where 20 vs.  2000 RAV samples are considered 

correspondingly. 
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Figure 4.11: “ Airplanes” . RW deviation variation for Td=166 msec and two 
different testing schemes, where 20 vs.  2000 RAV samples are considered 

correspondingly. 
 
 

Figure 4.12: “ Car” . RW deviation variation for Td=1000 msec and two different 
testing schemes, where 20 vs.  2000 RAV samples are considered correspondingly. 
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Figure 4.13: “ Shamu” . RW deviation variation for Td=1000 msec and two 
different testing schemes, where 20 vs.  2000 RAV samples are considered 

correspondingly. 
 
 

Figure 4.14: “ Airplanes” . RW deviation variation for Td=1000 msec and two 
different testing schemes, where 20 vs.  2000 RAV samples are considered 

correspondingly. 
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delay case with 166 msec feedback delay, gives good stability to the system - the RW 

border was on average within 20 pixels from the eye sample. It is possible to see, looking 

at the graphs that the proposed RW construction algorithm provides almost optimal 

solution for eye gaze prediction - any smaller RW could have resulted in larger number 

of misses. 

4.4 Reflex Window Coverage Efficiency 

As evident, a large window is always expected to generate better containment. For 

example, if a window covers the entire visual area, then all eye gazes are certainly be 

contained however this situation is not a desirable one as there will not be any perceptual 

redundancy to extract. To measure the coverage efficiency, a second performance 

parameter called “perceptual coverage”  is defined.  

Perceptual coverage is percentage of the image which requires coding at highest 

resolution. 

))((

))()((
100)( 

tF

tFtRW
t

∆
∩∆

=χ
 

(4.4.1) 

F(t) is the total viewing frame, and RW(t) is the predicted  reflex window using  E(t-

Td-k), …. ,E(t-Td) eye gazes, where “k”  is number of latest RAV samples that the 

algorithm uses for RW(t) construction. )(tχ  is perceptual coverage. The intersection of 

the reflex window and the video frame towards the coverage is calculated to receive a 

more accurate result. 
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Fig 4.15, Fig 4.16, Fig 4.17 and Fig 4.18, Fig 4.19, Fig 4.20 respectively show the 

perceptual coverage for the cases corresponding for three test video set.  Fig 4.15, Fig 

4.16, Fig 4.17   graph show the difference between RW coverage of video frame by the 

algorithm, which considers 20 RAV samples vs. 2000 RAVs with 166 msec feedback 

delay in the system. As we can see the RW has the size of only 40% of the frame (Fig 

4.18, Fig 4.19, Fig 4.20) in the case of 1000 msec delay. A system operating with about 

166 ms delay would require only 5-20% of the video frame to be encoded with high 

resolution. 

As was indicated before, a determining factor of the reflex window in the proposed 

algorithm is the containment assured velocity (CAV). It is interesting to see the CAV 

velocities estimated by the algorithm. Fig 4.21, Fig 4.22, Fig 4.23 and Fig 4.24, Fig 4.25, 

Fig 4.26 respectively plot the recorded CAV’s for these cases in units of angular eye 

velocity. While, the smooth pursuit velocity was recorded in the range of .5-1.2 

degree/sec, there were occasional fluctuations when the velocity shot up to 1 degree/sec 

and in some cases beyond 3 degrees/seconds. The larger fluctuations are believed to be 

caused by the eye-blinks of the subject during the viewing of the video. Two finer 

observations can be made. In both Td=166 msec and Td=1000 msec, we can see that 

CAV looks like an averaged quantity on the first graph for RAVs=2000 velocity values, 

but for 20 RAVs it fluctuates significantly. We can also notice that for Td =1000 msec 

RAVs=2000 case CAV is less than in the case of Td = 166 msec and RAV= 2000. 
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Figure 4.15: “ Car” . Video frame coverage by RW for Td=166 msec scenario and 
two different schemes, where 20 and  2000 RAV samples are considered. 

 
 

Figure 4.16: “ Shamu” . Video frame coverage by RW for Td=166 msec scenario 
and two different schemes, where 20 and  2000 RAV samples are considered. 
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Figure 4.17: “ Airplanes” . Video frame coverage by RW for Td=166 msec 
scenario and two different schemes, where 20 and  2000 RAV samples are 

considered. 
 
 

Figure 4.18: “ Car” . Video frame coverage by RW for Td=1000 msec scenario and 
two different schemes, where 20 and 2000 RAV samples are considered. 
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Figure 4.19: “ Shamu” . Video frame coverage by RW for Td=1000 msec scenario 
and two different schemes, where 20 and 2000 RAV samples are considered. 

 
 

Figure 4.20: “ Airplanes” . Video frame coverage by RW for Td=1000 msec 
scenario and two different schemes, where 20 and 2000 RAV samples are 

considered. 
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Figure 4.21: “ Car” . Containment Assured Velocity for Td=166 msec scenario and 
two different schemes, where 20 and 2000 RAV samples are considered. 

 
 

Figure 4.22: “ Shamu” . Containment Assured Velocity for Td=166 msec scenario 
and two different schemes, where 20 and 2000 RAV samples are considered. 
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Figure 4.23: “ Airplanes” . Containment Assured Velocity for Td=166 msec 
scenario and two different schemes, where 20 and 2000 RAV samples are 

considered. 
 
 

Figure 4.24: “ Car” . Containment Assured Velocity for Td=1000 msec scenario 
and two different schemes, where 20 and 2000 RAV samples are considered. 
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Figure 4.25: “ Shamu” . Containment Assured Velocity for Td=1000 msec scenario 
and two different schemes, where 20 and 2000 RAV samples are considered. 

 
 

Figure 4.26:  “ Airplanes” . Containment Assured Velocity for Td=1000 msec 
scenario and two different schemes, where 20 and 2000 RAV samples are 

considered. 
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4.5 Subjective Content Complexity and the Performance 

Human eye movement is highly dependent on the video content. Inherently, some 

types of scenes offer more opportunity for compression and some offer less. A perfect 

compression algorithm should continuously analyze the complexity of a scene and 

provide the best performance possible. Unfortunately, there is no easy or established 

means to measure the complexity of the content. With the presence of subjective impact a 

gross average performance is generally not meaningful. Three test videos were carefully 

chosen for this work. Each of them represents different visual complexity class. Below a 

complexity description for each test video is written: 

Car: This is a video of a moving car on a parking lot taken from a security camera 

point of view in one of Kent State University’s parking lots. The visible size of the car is 

approximately one fifth of the screen. Car moves slowly, letting subject to develop 

smooth pursuit movement. Nothing on the background of this video distracts subject 

attention. Video duration is 1min 10sec. 

Shamu: This video captures an evening performance of Shamu at Sea World, Ohio, 

during under a tracking spotlight. This video consists of several moving objects: shamu, 

trainer, and the crowd. Each of them is moving at a different speed during various periods 

of time.  The interesting aspect of this video is that a subject can concentrate on a 

different objects and it would result in variety of eye-moments: fixations, saccades, 

pursuit. Such environment suits the goal of challenging RW construction algorithm with 

different types of eye movements. The fact that the video is taken during night time 
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provides an interesting aspect of the video perception by the subject. Video duration is 2 

mins. 

Airplanes:  This video depicts formation flying of supersonic planes – performed by 

Blue Angels on Lake Erie, rapidly changing their flying speeds. The number of planes 

varies from one to five for duration of the video. Also, the camera action involves rapid 

zoom and panning. This video provides a challenge for the reflex construction algorithm 

to build a compact window to contain rapid eye-movements of the saccades and pursuit. 

Sometimes camera could not focus very well on the planes while capturing this video and 

subject has to search for the object. This aspect brings additional complication to the 

general pattern of eye movements for this video. This video duration is 1: min and 9 sec. 

4.5.1 RAVs Impact on System Performance 

The originals and various perceptually encoded versions of these videos are available 

from the website [15] for direct visual comparison. Fig 4.27 plots the RW coverage 

obtained by the proposed algorithm. It is possible to see that, with this algorithm the 

reflex window was tightest on the “Car”  video due to the smooth moving nature of the 

object inside the video. In the case when the algorithm used last 20 RAVs for RW 

construction (RAVs=20), the RW on the average was about only 15% of the video frame. 

The performance of “Shamu” video with more rapid and complicated object movements 

was next best 17%. “Airplanes” as expected gave worst performance of 30% due to the 

rapid supersonic airplanes movements inside the video and focusing problems what 

subject experienced while looking at the videos. Interestingly, the number of RAV  
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Figure 4.27: Video frame coverage for three videos. Td=166 msec. Axis “ x”  shows 
how many RAV samples where taking into consideration for RW construction. 
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samples considered seems to have effect on the RW coverage. Longer memory with 

larger number of RAVs seems to have considerable effect in improving the coverage 

efficiency. In the case when RAVs was equal to 2000 VV the perceptual coverage was 

reduced to 7%, 13% and 17% for the three videos respectively. Looking at the Fig 4.27 it 

is possible to see that perceptual coverage was almost the same for RAVs=500 and 

RAVs=2000. This result can be interpreted as there is a threshold in number of RAVs 

that should be considered for computing the most efficient RW. After collecting a certain 

amount of RAV samples system is able to predict the CAV velocity very well. It is also 

possible to assume that considering more than some number of RAVs (probably more 

than 2000) would lead to degradation in system performance. 

4.5.2 Background Compression Factor 

In this section describes the estimation for possible bit rate reduction for a simple bit-

rate reduction scheme. This method assumes that the area of RW is encoded with highest 

possible quality and the rest of the video frame is encoded with a fraction of the RW 

quality.  

�
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ρ

ψ  
(4.5.1) 

ψ  is overall possible compression. F(i) represents video frame. RW(i) is predicted  

reflex window using  E(i-Td-k), …. ,E(i-Td) eye gazes, where “k”  is number of latest 

RAV samples that the algorithm uses for RW(i) construction. ρ  is background  
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Figure 4.28: Video frame coverage for three test videos. Td=166 msec. Axis “ x”  
shows how many RAVs were taking into consideration for dynamic RW 

construction algorithm. 
 
 

Figure 4.29: Video frame coverage for three test videos. Td=1000 msec. Axis “ x”  
shows how many RAVs were taking into consideration for dynamic RW 

construction algorithm. 
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compression factor and it is a positive integer. It is assumed that RW(i) area is encoded 

with quality equal to “1” .   

Fig 4.28 and Fig. 4.29 plot ψ  for different ρ . In the case of RAVs=2000, Td=166 

msec and 01.0=ρ it is possible to achieve compression of 14 comparing to original bit 

rate.  It should be noted here that this compression does not take into consideration eye 

sensitivity function. That means that a subject would probably be able to see compression 

artifacts.  

 
4.6 Perceptual Compression Efficiency 

In this section, the overall compression factor is estimated in case when equation 2.5.2 

is used. As it was mentioned before that the use of such function would provide 

perceptually undetectable compression. For this experiment the viewing distance used in 

the equation 2.5.2 was chosen to be VD=2*H. H here is the height of the image in inches. 

For this thesis experiments: H=50 inches, VD=100 inches. 

Let C to define intrinsic compressibility, which presents perceptual compression 

efficiency. N is the number of frames in the video sequence. ),( yxSi – sensitivity 

function from equation 2.5.2, which defines visual window for the frame i. 
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(4.6.1) 

Fig 4.30 shows the compression level that is possible to achieve using CSF function 

and accounting for the feedback delay in the system. Right y-axis of Fig 4.30 shows the  
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Figure 4.30: Compression estimation and perceptual coverage results for 
different test videos, Td values and RAVs. 
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overall compression level achieved by the system. Left y-axis of Fig 4.30 shows average 

perceptual coverage provided by the Reflex Window. X-axis shows video names, 

feedback delay values and number of RAV samples considered for RW construction. 

“Airplanes” video gave worst performance providing 1.7 times compression in the case 

of feedback delay of 166 msec, RAVs=2000. Compression level for the same video was a 

even lower in the case of feedback delay of 1000 msec. It was around 1.4. “Shamu” video 

clip had second best performance result – close to 2 times compression. “Car”  video clip 

had the highest level of compression of 2.3 times in the case of 166 msec delay and 

RAVs=2000. In the case of feedback delay of 1 sec the compression was reduced to 1.4 

times. 
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CHAPTER 5   

Conclusions and Future Work 

5.1 Conclusions 

This thesis investigated a method of perceptual video compression based on 

interaction between real time video transcoding mechanism and an eye tracker.  The 

purpose of the thesis was to study the impact of feedback delay created by the fact that a 

video transcoder is deployed in the network, presumably Internet. Depending on how far 

is the distance between eye tracker equipment and the transcoder the data transfer time 

between these two points might vary.  In its current implementation the created system 

can accept and serve live or stored MPEG-2 ISO-13818-2 content over a network taking 

direct perceptual interaction with human eye. The feedback delay is value that should be 

provided to the system prior to the encoding process. 

The current mainstream in eye-tracking based perceptual communication research has 

heavy concentration on the design of CSF. The experiment that is described in this Thesis 

with a live system strongly suggests that CSF plays less dominant role in overall video 

streaming encoding than it was previously assumed. The feedback delay in control loop 

(in network, in media encoding, or even the delay within the eye-tracker) creates a 

perceptual window several times larger than the para-fovea area previously proposed by 

CSF researchers. Considering this a simpler approximation of CSF will probably be as 

good as a detailed acuity model as far as the overall system performance is concerned. 
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Due to the need to predict future eye moments within some bounded area, there is no 

need to encode the area outside such boundary using extremely accurate acuity function. 

Much more gain can be achieved by reducing the reflex window size. It could be done by 

taking into consideration the duration of eye moments and prediction of what eye 

movement type is going to happen next. Video quality degradation around the reflex 

window has to be designed with the avoidance of encoding artifacts such as blocking 

effects to ensure best system performance. The appearance of such artifacts can reduce 

system performance more than a bad choice of a CSF function. 

This Thesis presented the algorithm for the reflex window estimation. It showed that 

more than 90% of the gazes can be contained within 20-25% of the video frame. 

Compression of up to 2.3 times was achieved with consideration of eye sensitivity 

function and the feedback delay.  

In concept this reflex window can be applied to perceptually encode any visual media 

type. The actual perceptual quality of the presentation will depend on the specific 

encoding technique used to map the visual window (which is mainly built from reflex 

window) on the specific media type. Once, the visual window is obtained there are 

numerous ways in which the region discriminating encoding can be performed with 

various computational-effort/quality/rate trade-off efficiency. Though this thesis provides 

the actual description of visual window bit-rate mapping in MPEG-2 standard, the main 

contribution of this work is how to succeed in keeping the eye gazes contained within the 

reflex window. The technique proposed in this system can be applied to the visual media 

of any type and it is coding standard independent. 
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Perceptual engineering based data compression scheme is applicable not only for 

video but for almost all visual presentations. This is particularly attractive for large field 

of view projection systems. The mainstream data compression technology has matured 

over the last two decades. These rely mostly on extraction of statistical redundancy 

(particularly spatial, temporal, and frequency domain redundancy). It is interesting to 

note that reported improvement in compression factor from newer methods has 

diminished in recent years. Is it possible that the statistical methods have reached a form 

of theoretical limit based on the pixel entropy of the content? Perceptual engineering may 

offer the next big wave of improvement. The field is still in its infancy. The potentials are 

enormous. More techniques, which can exploit intricate characteristics of our vision 

system such as directional eye velocity, interaction with the content, peripheral vision, 

can provide novel clues to push the compression limit further.  

5.2 Limitations and Future Work 

One of the major contributions of this thesis is that it studies a critical problem 

towards bringing eye-gaze based perceptual transcoding one step closer to reality. 

However, there are several other hurdles to be solved before such a system can be fully 

functional. 

The issue of target gaze containment needs to be examined more. In this work the 

target gaze containment was set to 0.9, meaning that on average 90% of the gazes were 

contained within RW. There is significant potential that the coverage area can be further 

reduced by using additional scene analysis.  
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Another potential improvement is that the feedback delay Td can be also dynamically 

adapted to the network changes. The topology of the Internet is constantly changing. It 

might lead to different data transfer times, during different period of times, which can 

influence the value of Td. Making the transcoder capable of estimating the feedback delay 

dynamically and adjusting Td value accordingly might significantly improve system 

performance.  

This thesis proposes a way of predicting the velocity of future eye moments, by 

calculating CAV. This algorithm might be further enhanced, by careful consideration of 

eye movement types. Saccades for example have fixed duration. After saccade is over a 

fixation should take place. If system is capable of detecting a saccade, then knowing its 

duration and the fact that it is doable to reduce visual quality without subject noticing it 

during saccade movement, it is possible to reduce video bit rate without perceptually 

detecting it.  

In this Thesis the shape of proposed RW is ellipse. The elliptic shape is built under 

assumption that eye can move in any direction from the center of RW with equal 

probability. Elliptic shape can be modified to something else, if RW construction 

algorithm takes into consideration the course of the eye gaze points over time. If the RW 

shape is modified in this way then there might be a possibility of RW size reduction, 

while maintaining same level of gaze containment. 
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