
 iii

TABLE OF CONTENTS

ACKNOLEDGEMENT…………………………………………..………………viii

CHAPTER
1 Introduction ... 1

1.1 Related Works... 2
1.2 About this thesis.. 5

2 Impact Factors for Prefetching Performance... 8

 2.1 Reading Behaviors .. 8

2.2 Web Organizations .. 9

3 The Architecture of RHDOS... 17

3.1 Hypertext Transfer Protocol (HTTP) .. 17
3.2 HTTP Proxy .. 18
3.3 RHDOS Transaction... 23
3.4 Recording Time for Implement Event .. 26

4 Simulation Experiment .. 30

 4.1 Overview... 30

4.2 RHDOS implemen.. 31
4.3 Performance Results Analysis .. 32

 4.3.1 Chain....………………………………………………………….32
 4.3.2 Tree ... 37
 4.3.3 Fully Connected Graph………………………………………….50
 4.3.4 Tree with Core Graph……………………………………………58

5 Conclusions and Future Works ... 64

 5.1 Conclusions ... 64

5.2 Future Works... 65

References ... 67

 iv

Appendix A Lists of Some Examples for Web pages Organization..................... 70

 1

CHAPTER 1

Introduction

Internet is a global distributed, dynamic information repository that contains vast

amount of digitized information. Most Web pages not only contain a simple parent

HTML file with few embedded images, but also contains embedded entities such as

banners, Java applets, flash presentations, etc. with varying rendering constraints.

Although the core network speed is doubled every 9-12 months, the network traffic

is growing even faster. Because the growth in the last mile speed is slower and the

multimedia traffic such as audio, video, and images are also increased, the Web response

delay is still increasing.

There are two principal techniques for speeding up access, which include Web

caching and Web prefetching.

Over last 5 years the Web caching techniques have matured and been deployed.

This thesis will focus on how Web prefetching technique can be used effectively to

improve responsiveness of web systems. We define Web prefetching as follows:

While a user is looking at the current Web page, we try to predict what are the next

pages the user will most likely view and prefetch them.

However, simple prefetching seems to be limited because of excessive transfer of

unused bytes. In this thesis, we will compare some important factors, such as reading

habit, reading time, and prefetching sequence to see how they affect the performance of

 2

prefetching.

1.1 Related Works

A number of recent researches have anticipated that prefetching can significantly

enhance Web response just like it has accelerated hardware system.

In one of the pioneering studies, Kroeger et al. [KrLM97] used traces of Web proxy

activity to find out that the external latency between the proxy cache and the server

accounts for 77% of the total latency. Local proxy caching could reduce latency by at

most 26%. Prefetching could reduce latency by at most 57%. A combined caching and

prefetching proxy could provide at most a 60% latency reduction. Furthermore, they

found that how far in advance a prefetching algorithm was able to prefetch an object was

a significant factor in its ability to reduce latency. They observed that prefetching lead

time is an important factor in the performance of prefetching and prefetching can offer

more than twice the improvement of caching but is still limited in its ability to reduce

latency.

Prefetching technique was also applied in improving the performance of the World

Wide Web over wireless links [FlMD97]. Fleming developed a system that consists of a

proxy server and a modified client and used a new protocol called MHSP. The proxy

prefetches documents to the client, which improves performance over high bandwidth

links, enhances scheme substantially, reduces error rates by 40%, saves network

bandwidth by 13.18%, and increases byte hit rates by 8.1% for document availability

 3

when the connection is broken due to wireless effects. This system reduces document

load time by 32% to 37% when compared to HTTP.

Jacobson and Cao [JaCa98] proposed a prefetching method based on partial context

matching technique between low bandwidth clients and proxies. This work showed that

prefetching could reduce latency by less than 10% (predicting 12% of the requests, and

increasing traffic by 18%). A significant part of this reduction is attributed to the caching

effect of the prefetching buffer. Palpanas and Mendelzon [PaMe99] demonstrated that a

k-order Markov predictor scheme similar to those used in image compression can reduce

response time by a factor of up to 2. Both these methods used variants of partial matching

of context (past sequence of accessed references) for prediction of future Web reference.

These works suggested prefetching in order of highest likelihood of access.

Crovella and Bradford [CrBa98] studied another advantage of prefetching. A trace

driven simulation indicates that straightforward approaches to prefetching increase the

bursting of traffic. Instead, the authors propose a transport rate control mechanism. The

simulation denotes that rate-controlled prefetching significantly improves network

performance compared not only with the straightforward approach, but also with the non-

prefetching case, while delivering the requested documents on time.

Pitkow and Pirolli [PiPi99] investigated various methods that have evolved to

predict surfer's path from log traces such as session time, frequency of clicks,

Levenshtein Distance analyses and compared the accuracy of various construction

methods. This Markov model based study noted that although information is gained by

 4

studying longer paths, conditional probability estimate, given the surf path, is more stable

over time for shorter paths and can be estimated reliably with less data.

In related work, Duchamp [Duch99] discussed a method for clients and servers to

exchange information. Its features included: how information on access patterns is shared

by the server over clients; occurs in near-real time; is configurable by client; many

previously uncachable pages can be prefetched; both client and server can cap operations

to limit impact on overhead and bandwidth; and it operates as an HTTP extension. The

overall results were very positive: client latency improved greatly (slightly over 50%),

and less of the cache was wasted (about 60% of prefetched pages were eventually used).

Cohen and Kaplan [CoKa00] cited problems from bandwidth waste in prefetching,

and as opposed to document prefetching, they suggested pre-staging only the

communication session- such as pre-resolving DNS, pre-establishing of TCP connection

and pre-warming by sending dummy HTTP HEAD request. RealPlayer (release 8)

already pre-stages streaming connections linked from a page by pre-extracting and

readying individual coded information associated with each.

However, some experts suspect the advantage of using indiscriminate prefetching

technique [Davi01, Khan00, Khan99, KaPJ99].

Kaashoek [KaPJ99] traced Web server to find that, on average, 0.5 objects are

prefetched for each object explicitly fetched by the user. Among these prefetched objects,

only about 2% are actually used in the future. The others just waste bandwidth and

unnecessarily load servers.

 5

Khan [Khan99, Khan00] demonstrated that instead of simply ranking candidate

hyperlinks in order of transition probabilities – a ranking order that also considers the

loading time can yield much better performance with respect to larger prediction error.

Brian D. Davison [Davi01] argues that the current support for prefetching in

HTTP/1.1 is insufficient using HTTP GET. Existing prefetching implementations can

cause problems with undesirable side effects and server abuse, and the potential for these

problems may thwart additional prefetching development and deployment. They make

some suggestions for HTTP that would allow for safe prefetching, reduced server abuse,

and differentiated Web server quality of service.

To reduce unnecessary prefetching, Khan and Tao [KhTa01] suggested a “partial

prefetching” mechanism for composite multimedia documents. Each composite

multimedia page and its components are optimally divided into two parts, the lead

segments and the stream segments. The system always loads two parallel streams. In

operation only the lead segment of candidate is prefetched, the stream segment of the

current document is fetched as necessary. Simulation results were presented based on

statistical models that project the scheme’s performance under varying conditions and

reported the maximum improvement in system responsiveness is about 3.6 times.

1.2 About this thesis

Prefetching has been a major focus of recent research in World Wide Web, since

the prefetching prediction model can reduce the access lag. However, most of the current

prefetching models also result in excess transfer of unused data. It seems more

 6

innovations are required before prefetching technology can reach a mature point. A study

of the recent works shows that most of the suggested prefetching techniques took a

statistical approach to the problem. Almost all of the suggested works concentrated on a

concept of “access frequency” as the principle guideline for the prefetching activities.

Many researchers come up with varying techniques for estimation and/or its prediction.

Interestingly these studies do not take into consideration two intriguing aspects.

From the very top level a web system is a conduit of communication between two

principle parties – the content developer and the content reader. The intermediate

components – the server, the browser and the proxy work as a facilitator in this

communication. It seems therefore almost natural that the prefetching performance

should be strongly dependent on the intent and behavior of the two principles. Roughly

speaking this points out that on one hand the nature and organization of the content, and

on the other hand, the reading and interaction style of the reader should have important

impact on the prefetching performance. The topic of readers’ behavior has been absent

from previous work. Also, the concept of “access frequency” does not sufficiently

capture the various patterns in the content organization. The intent of this thesis is to

shed some light in this void. The thesis is an attempt to study how content organization

and reading habit can affect the prefetching performance of a web system.

The next chapter presents the impact factors for prefetching performance. Chapter 3

focuses on the working scheme of HTTP proxy and the architecture of RHDOS. Chapter

4 is the main body of this thesis. The performance of prefetching is evaluated in details

 7

and followed by the analysis of performance results. The last chapter provides a summary

of this thesis including some thoughts about the future work.

 8

CHAPTER 2

Impact Factors for Prefetching Performance

2.1 Reading Behaviors

 The reason we need to analyze reading habits is to accurately predict the Web

contents readers want to move through. However, it is quite complex to model the

readers’ behavior. Different reader has different text reading speed. It also depends on the

content type. Also, various readers may have different psychological pattern guiding their

browsing habit. For example, in the case of reading an online e-book, different readers

view them in different reading sequence. After finishing reading the instruction for

chapter 1, some readers may continue reading section 1 of chapter 1, and other may skip

to the instruction for chapter 2. The question is which option should be prefetched? If we

prefetch both of them, which one should come first? Different answers will certainly

result in different performance results for prefetching. The detail modeling of the user

behavior is quite complex. However, the goal of this thesis is to capture the essence, and

limit the study on few but core parameters. We consider two parameters as below:

• Reading sequence

• Reading time as elements of user interaction habit

Reading time can be defined as the time a reader spends on a certain page. It is the

viewing duration or interaction time between the time users receive the first request and

 9

send out the second request. For the purpose of analyzing the prefetching performance,

we call it interaction interval. Usually, the more reading time readers spend on each Web

page, the more prefetched Web pages they could acquire.

This thesis demonstrated in detail that the difference in these two could have

significant impact on prefetching performance.

2.2 Web Organizations

Today Web pages are becoming more and more sophisticated. Web designers tend

to pay a lot of efforts to develop an appealing user interface. They often do not know that

through the implementation of prefetching technology, they can change the organization

of their Web pages to reduce user access time. In fact, the organization of Web structure

can have tremendous impact on prefetching performance. It decides how prefetching can

be implemented and how much data have to be involved.

The modeling of content organization is also not trivial. Current web contents come

in various complex organizations. However, an analysis of recent web documents seems

to suggest that although there is no concrete discipline, but few patterns do tend to

emerge. From Fig. 2.1 to Fig. 2.5, we display some Web documents. Each of them is

organized in a unique way. In our modeling process, we therefore selected few patterns,

which tend to emerge more frequently. These patterns do not appear in ideal format but in

the generalized graph a significant sub-graph tends to contain two major patterns tree,

and chain. However, more recent pages also show fully connected sub graph component.

Fig. 2.1 and Fig. 2.2 are an example for Web-based quizzes. Fig. 2.3 is a photo album.

 10

On each page we click Next to move on. The surfer seems to be moving though a form of

sequential chains. These Web pages have a chain structure.

The Web page in Fig.2.4 groups WWW knowledge into different categories. It uses

a tree structure, and each category is a node in tree. Fig. 2.5 shows an example for online

encyclopedia. Readers can easily move back and forth through any Web pages, no matter

what the current page is. Each Web page is connected with each other. We consider this

type of organization as a fully connected graph. Therefore, we provide the study on these

three document organizations. Some samples are shown in table 2.1 and Appendix A.

However, in a higher level, the patterns seem to be a combination of several of

these core patterns. One of the more prevalent forms of complex pattern is combination

of fully connected section and tree. This type of Web page usually relies on a frame set.

One component of the frameset is a menu that remains visible as links to other pages.

Therefore, we include a forth study on a complex pattern called a “tree with a fully

connected core”. In this experiment, according to the organization approach, we therefore

study the following impact of four organizations:

• Chain

• Tree

• Fully connected graph

• Tree with core graph

 11

Fig. 2.1 An Example of Chain in Web-based Quiz (1)

 12

Fig. 2.2 An Example of Chain in Web-based Quiz (2)

 13

 Fig. 2.3 An Example of Chain in Photo Album

 14

 Fig. 2.4 An Example of Tree in the Categories of Tutorial

 15

 Fig. 2.5 An Example of Fully Connected Graph in the Encyclopedia

 16

Contents Type URL

Quiz Chain http://www.w3schools.com/quiztest/quiztest.asp?qtest=HTML

Photo Album Chain http://www.cnn.com/2002/US/07/01/western.wildfires/index.html

Registration Chain http://www.ingenta.com/isis/register/RegisterPersonalUser/ingenta

Categories Tree http://www.cs.kent.edu

Tutorial Tree http://www-2.cs.cmu.edu/afs/cs/usr/mwm/www/tutorial/outline.html

Homepage Fully Connected http://www.kent.edu/academics/

Encyclopedia Fully Connected http://www.encyclopedia.com/browse/browse-Aa.asp

E-book Fully Connected http://safari.informit.com/?XmlId=0-13-084466-7

Categories Tree with Core http://www.cnn.com/SHOWBIZ/

Search Engine Tree with Core http://www.google.com

Table 2.1 Some Examples of Web pages Organization

 17

CHAPTER 3

The Architecture of RHDOS

The objective of any prefetching system is to reduce user waiting time, and the

potential cost factor is the amount of data is fetched which are never used. Therefore in

this thesis we study the impact on the two performance measures:

• Response time

• The amount of data transfer

In order to observe and analyze the different performance results of prefetching,

our own proxy system is called Reading Habit and Document Organization Sensitive

Proxy or RHDOS. It is a HTTP proxy system designed to reduce latency while allowing

the client to take advantage of available bandwidth.

3.1 Hypertext Transfer Protocol (HTTP)

HTTP [FMFM99] stands for Hypertext Transfer Protocol. It provides the

foundation for the Web. HTTP has been used by the Web global information initiative

since 1990. Initial version is HTTP /1.0. Its major drawback is it does not sufficiently

take into consideration the effects of hierarchical proxies, caching, the demand for

persistent connections, and virtual hosts.

Like other protocols, HTTP is constantly evolving. As of early 1997, the Web is

moving from HTTP 1.0 to HTTP 1.1. It's more efficient overall, since it has addressed

 18

new demands and overcome shortcomings of HTTP 1.0. In this thesis we refer to HTTP

1.1.

HTTP takes place through TCP/IP sockets. Like most network protocols, HTTP

uses the client-server model: an HTTP client, in most cases a Browser, opens a

connection and sends a request message to an HTTP server. HTTP defines the rules to

phrase the requests. The server returns a response message, usually containing the

resource that was requested. The rules of the response are also defined by HTTP.

Therefore the HTTP protocol is a request/response protocol. Although the default port for

HTTP servers to listen on is 80, they can use any port. After delivering the response, the

server closes the connection. Fig. 3.1 shows a normal HTTP transaction.

HTTP is also used as a generic protocol for communication between user agents

and proxies/gateways to other Internet systems, including those supported by SMTP,

NNTP, FTP, Gopher, and WAIS protocols. In this way, HTTP allows basic hypermedia

access to resources available from diverse applications.

3.2 HTTP Proxy

An HTTP proxy is a program that acts as an intermediary between a client and a

server. After receiving requests from clients, it first attempts to find data locally, and if

it's not there, fetches it from the remote server where the data resides permanently. The

responses pass back through it in the same way. Thus, a proxy combines functions of

both a client and a server.

 19

Request

Response

Client Server

HTTP/1.1 200 OK
Server: Netscape-FastTrack/3.02
Date: Wed, 01 May 2002 17:39:13 GMT
Content-type: text/html
Last-modified: Tue, 16 Apr 2002 20:03:01 GMT
Content-length: 101573
…the contents of test.html

GET /test.html HTTP/1.1
User-agent: Netscape
Accept: text/plain
Accept: text/html
Accept: image/*

Fig. 3.1 The HTTP transaction between a client and a server

 20

An HTTP proxy is an application-layer network service for caching Web objects.

Unlike browser caches, a typical proxy can accept connections from multiple clients

simultaneously and can connect to any sever. It is usually operated in the same way as

other network services (e-mail, Web servers, DNS).

Proxies are commonly used in firewalls, LAN-wide caches, and other situations.

This thesis will focus on the proxy, which involves caching. Fig. 3.2 shows how a

caching proxy works. When a client uses a proxy, it typically sends a request to the

proxy. The proxy connects to the HTTP server and the requested document is retrieved

from the HTTP server and stored locally in the caching proxy for future use.

In Fig. 3.3, if an up-to-date version of the requested document is found in the

cache, the caching proxy may be able to return it directly. No connection to the HTTP

server is necessary.

 A big problem with reusing copies of documents is keeping them up to date. If

and when the original document is changed, the cached copy becomes inconsistent with

the original and should not be used.

HTTP/1.1 uses the Age response-header to help convey age information between

caches. The Age header value is the sender's estimate of the amount of time since the

response was generated at the origin server.

In the case of a cached response that has been revalidated with the origin server, the

Age value is based on the time of revalidation, not of the original response.

 21

Proxy saves a
copy of test.html

Client ServerProxy
Request

Response

Client to proxy:

Get http://server.net/test.html http1.1

Web

test.html

Request

Response

Cache

Proxy to Server:

Get /test.html HTTP/1.1

 Fig.3.2 A Caching Proxy Transaction

 22

ServerProxy
Request

Response

test.html

Web

test.htmlCache

Client

Client to proxy:

Get http://server.net/test.html http1.1

Fig. 3.3 Cache Hit On the Proxy

 23

3.3 RHDOS Transaction

 The architecture for RHDOS is shown in Fig. 3.4. It is built upon an HTTP

thread, which communicates with clients and servers; a cache thread, which stores and

parses files; a prefetch thread, which retrieves Web documents in advance. RHDOS

system is programmed in Java due to its powerful feature of multiple threads.

RHDOS includes five function modules: Proxy Caching Manager, New Item

Request Manager, Document Analyzer, Priority Evaluator, and Loader. They are

introduced individually in the following text.

1. Proxy Caching Manager

Proxy Caching Manager is the core and controller of RHDOS, which coordinates

the other function modules. After initializing the proxy RHDOS system, a socket to listen

to requests from client was created. A client initiates a connection to TCP via port 8080

on RHDOS. The port number could eventually be changed to any number in the system

services range. Whenever the proxy RHDOS accepts a connection request, it starts a

thread to handle the connection. Meanwhile, if a directory called cache is not available,

RHDOS creates it and assigns its size. It also establishes a hash table for the cached files

and hyperlinks message. Cached files are displayed with name, size, type, and modified

time. Hyperlink message contains URL, the value of its frequency and estimated loading

time.

 After receiving a request from the client, Proxy Caching Manager parses the

 24

Web
Server 1

Proxy Caching
Manager

Listen

Parsing
Request Msg.

Evaluate
Consistency

Checking
Cache Loader

Web
Server n

Web
Server 2

Client 1

Client 2

Client n

.…..

Name Size Type Modified

Document
Analyzer

Priority
Evaluate

New Item Request
Manager

URL F T P

Fig. 3.4 Architecture of the RHDOS

 25

request message and checks whether the request has been cached. If the Web document is

already cached, it immediately hits cache and directly sends the document back to the

client. Otherwise it tells New Item Request Manager to implement fetching task.

Proxy Caching Manager is also responsible for deleting the most outdated cached

file until the proxy has enough space to cache newly received Web pages.

2. New Item Request Manager

If a cached file does not exist, New Item Request Manager needs to rebuild a

request to send to the Web server. If the file does not exist, a “Not Found” message will

be sent to the client. It also accepts some new HTTP requests, which come from the

parsing result of Document Analyzer to implement prefetching tasks. The parsed

hyperlinks message including URLs, the value of frequency and estimated loading time

are stored in a hash table.

3. Document Analyzer

While Proxy Caching Manager sends a response back to the client, Document

Analyzer parses and extracts all hyperlinks from the requested document. The parsed

information is sent to New Item Request Manager to implement prefetching tasks.

4. Priority Evaluator

Priority Evaluator is responsible for calculating all URL priorities (Pi) according to

formula 3.1. Fi means frequency and Ti the estimated loading time. They come from

 26

Document Analyzer and have been stored in the hash table. The value of Pi will be

provided to Loader as prefetching sequence.

Pi = Fi / Ti …3.1

5. Loader

The job of Loader function is to fetch Web pages from Web server. Web pages

consist of the newly requested document and the prefetched documents based on the

value of prefetching priority determined by Priority Evaluator. All prefetched Web pages

are cached in the cache directory through Proxy Caching Manager.

3.4 Recording Time for Implement Event

Prefetching advantage could be implemented by displaying the results of

calculation of round trip time (RTT). In Fig. 3.5, we keep track of the recording time for

all events happening among client, proxy, and server. We assume that a user wants to

view Web page N1, which contains two hyperlinks to Web page N11 and N12. After

finishing reading N1, it goes through N11, which has a hyperlink to Web page N111.

Ci represents recording time on client side, Pi represents recording time on proxy

side, and Si is recording time on server side. After the proxy receives a request from the

client (P1), it parses the request message for document N1 (P2). It checks the cache

directory and finds that there is no cached file for N1, so it establishes a connection to the

server (P3). After getting response back from the server (P4), it sends N1 back to the

client (P5). Meanwhile, the proxy extracts two hyperlinks to document N11 and N12 and

 27

prefetches them (P6)(P7) according to their priorities. The proxy receives the server’s

reply (P8)(P9).

At C2, the client gets N1 and begins to view it. At C3, the client sends the second

request to the proxy. The difference between value of C2 and C3 is the interaction

interval. On the proxy side, we call the difference between value of P5 and P10 as

interaction interval.

After the proxy receives the second request from the client (P10), N11 is parsed

(P11). By checking the cache directory, it realizes that document N11 has already been

prefetched (P11). We call that fast prefetching (In Fig. 3.6 it is associated with slow

prefetching, document N11 has not been prefetched). N11 can be immediately returned to

the client (P12). Then the proxy continues to extract the hyperlink N111, which is

embedded in document N11, and prefetches it from the server.

 28

Client Proxy Server

N1

N1

P1

N1

N12

P2
P3

N1

N11

T
i
m
e

P8

P7

P6
P5
P4 S2

S1

C4

C3

C2

C1

P9

P11

S7

S6
S5
S4
S3

N111

N11

N11

N11

N12

P12

P10

P13

C1, C3: The client sends a request
C2, C4: The client gets a response
P1, P10: The proxy receives a client’s request
P2, P11: The proxy parses the request message
P3: If requested file does not exit in cache,

send request to the server
P4, P8, P9: The proxy gets the server ‘s reply
P5, P12: The proxy sends the reply to the client

P6, P13: The proxy extracts the first hyperlink and
sends a request to the server

P7: The proxy extracts the second hyperlink and
sends a request to the server

S1, S3, S5, S7:
The server receives a proxy’s request

S2, S4, S6: The server sends a reply to the proxy

Parsing Time = P2 – P1 = P11 – P10
Cache Look up Time = P3 – P2 = P11 – P10
Response Time = P5 – P1 = P12 – P10
Extracting Time = P6 – P5 = P13 – P12
Interaction Interval = C3 – C2
Reading and fetching Time = S2 – S1

 Fig. 3.5 Events Definitions and Time Distribution for Fast Prefetching

 29

Client Proxy Server

N1

N1

P1

N1

N12

P2
P3

N1

N11

T
i
m
e

P8
P7

P6

P5
P4 S2

S1

C4

C3
C2

C1

P10

P12

P9

S7

S6

S5
S4

S3

N111

N11
N11

N11

N12

P13

P11

C1, C3: The client sends a request
C2, C4: The client gets a response
P1, P8: The proxy receives a client’s request
P2, P9: The proxy parses the request message
P3: If requested file does not exit in cache,

send request to the server
P4, P10, P13: The proxy gets the server ‘s reply
P5, P11: The proxy sends the reply to the client
P6, P12: The proxy extracts the first hyperlink and

sends a request to the server
P7: The proxy extracts the second hyperlink and

sends a request to the server
S1, S3, S5, S7: The server receives a proxy’s request
S2, S4, S6: The server sends a reply to the proxy

Parsing Time = P2 – P1 = P9 – P8
Cache Look up Time = P3 – P2 = P10 – P9
Response Time = P5 – P1 = P11 – P8
Extracting Time = P6 – P5 = P12 – P11
Interaction Interval = C3 – C2
Reading and fetching Time = S2 – S1

 Fig. 3.6 Events Definitions and Time Distribution for Slow Prefetching

 30

CHAPTER 4

Simulation Experiment

4.1 Overview

Three machines were used in the simulation experiment. A 533-MHz Pentium PC

with 128 MB of memory running Windows 98 was used as the proxy RHDOS. A 933-

MHz Pentium PC with 128 MB of memory running Windows 98 was used as the client.

Both machines connect to network with Ethernet cards.

We adopt Netscape 6 as a client browser. It should be first configured to connect to

the proxy IP address. The client's cache also accepts files that the proxy prefetches. To

avoid the impact of client’s cache, we always clear memory cache and disk cache from

Netscape before starting any test.

We created some Web pages and put them on a Web server. Each file has a size of

100 KB. Web documents are organized into four different categories. An embedded

hyperlink consists of URL, the loading frequency (F), and the estimated loading time(T).

It is formatted as T * F * URL.

 For each experiment, we separately recorded RHDOS’s response time based on

the different interaction interval. We chose 5 seconds, 10 seconds, 15 seconds, 20

seconds, and 25 seconds as five different groups of interaction interval. For the different

experiments, reading sequences are based on our design.

 31

4.2 RHDOS implement

 Run RHDOS and initialize. It will display the following information on screen:

 Initializing...
 Creating Caching Manager...
 Current Free Space: 180000
 The server: qtao: 8080
 Proxy is running....

If there is no cache directory available on proxy machine, a new directory will

automatically be created. When it is full, the oldest file can be deleted to create space for

new Web pages.

When a user enter a specific URL, for example,

http://bristi.facnet.mcs.kent.edu/~qtao/cache2/N5.html. RHDOS first checks if this Web

page is already stored in cache. If yes, it hits cache and directly loads this page and

returns it to the user.

Proxy thread 1
reqUrl--http://bristi.facnet.mcs.kent.edu/~qtao/cache2/N5.html
Getting from cache...

If no, RHDOS establishes a new connection to Web server and requests it again.

Proxy thread 1
reqUrl--http://bristi.facnet.mcs.kent.edu/~qtao/cache2/N5.html
Connection:Socket[addr=bristi.facnet.mcs.kent.edu/131.123.46.203,port=80
,localport=2003]

The Web server replies to RHDOS. Meanwhile, RHDOS reads the loaded page and

parses the hyperlinks. There are three hyperlinks involved in N5.html. They are listed in

the order of priority below:

100*1000*http://bristi.facnet.mcs.kent.edu/~qtao/cache2/N9.html
100*2000*http://bristi.facnet.mcs.kent.edu/~qtao/cache2/N8.html

 32

150*500*http://bristi.facnet.mcs.kent.edu/~qtao/cache2/N6.html

RHDOS prefetches them according to their priorities and stores them in cache.

According to formula 3.1, document N8.html should be first prefetched, then N8.html

and the last is N6.html.

Current Free Space: 180000
reqUrl**--http://bristi.facnet.mcs.kent.edu/~qtao/cache2/N8.html
Caching the reply...
reqUrl**--http://bristi.facnet.mcs.kent.edu/~qtao/cache2/N9.html
Caching the reply...
reqUrl**--http://bristi.facnet.mcs.kent.edu/~qtao/cache2/N6.html
Caching the reply...

RHDOS records the total time spent on loading pages. Upon completion, RHDOS

waits for the next request from the client.

4.3 Performance Results Analysis

The objective of the following experiment is to observe three performance impact

factors: interaction interval, prefetching sequence, and reading habit. Reading habit is the

actual reading sequence. HTML documents were given in fixed sizes and users walk

through each probable chain of anchors during the same period of time. The performance

is evaluated by the responsiveness (a ratio of cumulative lag time experienced with active

prefetching to that without any prefetching) and the data volume with active prefetching.

We generate a few groups of nodes. Each node stands for one Web page. They are

organized in the following four different types of connection:

4.3.1 Chain

Some Web-based quizzes, slides show, and application form are examples of this

 33

type of connection. One of its features is that one Web page only includes one hyperlink.

Only one Web document needs to be prefetched each time.

In Fig. 4.1, 6 nodes are connected in a chain. N1 is the first view object. We

conducted two experiments. In the first experiment, we only read N1, N2, and N3; in the

second, we went through N1, N2, N3, N4, N5, and N6.

1. Response Time Analysis:

The performance for response time in chain is shown in Fig. 4.2. When the reading

sequence is N1, N2, and N3, the maximum improvement in RHDOS responsiveness we

observed is about 1.86 times. If we view all 6 documents, its responsiveness could be

improved about 4.56 times. Actually, the more documents we view, the more

improvement of responsiveness performance we can acquire, since we can view all

documents as prefetched except for N1. In addition, the responsiveness is not affected by

interaction interval. The minimum interaction interval can guarantee that one Web

document could be prefetched.

2. Data Volume Analysis:

 The performance for data volume in chain is shown in Fig. 4.3. When the reading

sequence is N1, N2, and N3, the maximum amount of data is 4 units. Compared to the

data volume without prefetching, only one extra unit data volume was increased. If we

view all 6 documents, 6 units of data volume will be transferred and no extra amount of

data is produced. So, whatever the reading sequence is, the maximum extra data volume

is one unit.

 34

N 1 N 3N 2 N 4 N 5 N 6

 Fig. 4.1 A Chain

 35

Fig. 4.2 Performance for Response Time in Chain

0

0.1
0.2

0.3
0.4

0.5

0.6
0.7

3 5 10 15 20 25

Interaction Interval

R
es

p
o

n
si

ve
n

es
s

Node = 3
Node = 6

 36

0

1
2

3
4

5
6

7

3 5 10 15 20 25

Interaction Interval

D
at

a
vo

lu
m

e
(u

ni
t)

Node = 3
Node = 6

 Fig. 4.3 Performance for Data Volume in Chain

 37

4.3.2 Tree

Some items are summarized into different categories on a Web page. We consider

it as a tree organization. Each Web page includes its own hyperlinks or child pages.

Meanwhile, it is either a direct or indirect child page of the main page. The tree

organization is characterized by the fact that each page could have many child pages, but

only one parent page. In the following text we will analyze both organization situations: a

full tree and a path in a tree.

4.3.2.1 A Full Tree

In Fig. 4.4, 31 nodes are organized into a tree with three levels (height equals 3).

Each of N0, N1, N2, N3, N4, and N5 contains five hyperlinks. The branch factor equals

5. In Fig. 4.5, height also equals 3, but branch factor is only 3, since each of N0, N1, N22,

and N3 contains three hyperlinks. Their prefetching sequences are classified into two

different types in table 4.1. Reading sequences are classified into three different types in

table 4.2.

 38

N0

N2 N3

N33N21

N4

N42N41N35N34N25N23 N24N22N14N13N12 N32N31N15

N5N1

N43 N44 N45 N51 N53N52 N54N11 N55

 Fig. 4.4 A Full Tree [H = 3, BF = 5]

 39

N0

N1 N2

N22N12

N3

N33N23N13N11 N21 N31 N32

Fig. 4.5 A Full Tree [H = 3, BF = 3]

 40

Prefetching Sequence

Tree Type

Node Left First Right First

N0 N1,N2,N3,N4,N5 N5,N4,N3,N2,N1

N1 N11,N12,N13,N14,N15 N15,N14,N13,N12,N11

H =3, BF = 5 N2 N21,N22,N23,N24,N25 N25,N24,N23,N22,N21

 N3 N31,N32,N33,N34,N35 N35,N34,N33,N32,N31

N4 N41,N42,N43,N44,N45 N45,N44,N43,N42,N41

N5 N51,N52,N53,N54,N55 N55,N54,N53,N52,N51

N0 N1,N2,N3 N3,N2,N1

N1 N11,N12,N13 N13,N12,N11

H =3, BF = 3 N2 N21,N22,N23 N23,N22,N21

 N3 N31,N32,N33 N33,N32,N31

 Table 4.1 Lists of Prefetching Sequences in a Full Tree

 41

Reading Sequence

Tree Type Depth First Breadth First Random

 H = 3

 BF = 5

 N0, N1, N11, N12,

N13, N14, N15, N2,

N21, N22, N23,

N24, N25, N3, N31,

N32, N33, N34,

N35, N4, N41, N42,

N43, N44, N45, N5,

N51, N52, N53,

N54, N55

 N0, N1, N2, N3, N4,

N5, N11, N12, N13,

N14, N15, N21,

N22, N23, N24,

N25, N31, N32,

N33, N34, N35,

N41, N42, N43,

N44, N45, N51,

N52, N53, N54, N55

 N0, N4, N41, N42,

N2, N21, N22, N23,

N24, N25, N3, N33,

N31, N32, N34,

N35, N1, N5, N52,

N53, N54, N55,

N51, N43, N44,

N45, N11, N12,

N13, N14, N15

 H = 3

 BF = 3

 N0, N1, N11, N12,

N13, N2, N21,

N22, N23, N3, N31,

N32, N33

 N0, N1, N2, N3,

N11, N12, N13,

N21, N22, N23,

N31, N32, N33

 N0, N1, N2, N3,

N11, N12, N13,

N21, N22, N23,

N31, N32, N33

Table 4.2 Lists of Reading Sequences in a Full Tree

 42

1. Response Time Analysis:

The performance for response time in a full tree with Left First and Right First as

prefetching sequence are shown in Fig. 4.6 and Fig. 4.7 respectively.

We observe that the prefetching sequence and reading sequence affect the

performance for response time. The improvement in RHDOS responsiveness is the best

when we compare reading Web documents in Depth First with in Breadth First and

Random. In Fig. 4.6, when prefetching sequence is Left First, The responsiveness with

Random and Breadth First is up to 2.4 and 3.7 times less than that with Depth First

respectively. In Fig. 4.7, when prefetching sequence is Right First, the responsiveness

with Random and Breadth First is up to 0.6 and 0.7 times less than that with Depth First

respectively.

No matter what the prefetching sequence is, with the number of branching factor

increasing, the impact of prefetching performance always increases. In addition, with

growing interaction interval, the value of responsiveness decreases gradually. The reason

is the more interaction interval there is, the more efficiently prefetching is implemented.

So more improvements of performance are acquired.

2. Data Volume Analysis:

 The performance for data volume in a full tree is shown in Fig. 4.8. Whatever the

branching factor is, data volume is not affected by prefetching sequence and reading

sequence. Interaction interval even does not affect its performance for data volume. The

total amount of transferring data is the same as without prefetching. When the branching

 43

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

5 10 15 20 25

Interaction Interval

R
es

p
o

n
si

ve
n

es
s

H =3, BF =5
Depth First
H =3, BF =5
Breadth First
H =3, BF =5
Random
H =3, BF =3
Depth First
H =3, BF =3
Breadth First
H =3, BF =3
Random

 Fig. 4.6 Performance for Response Time in Tree with Left First

 44

Fig. 4.7 Performance for Response Time in Tree with Right First

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

5 10 15 20 25

Interaction Interval

R
es

p
o

n
si

ve
n

es
s

H =3, BF =5
Depth First
H =3, BF =5
Breadth First
H =3, BF =5
Random
H =3, BF =3
Depth First
H =3, BF =3
Breadth First
H =3, BF =3
Random

 45

0
5

10
15

20
25

30
35

5 10 15 20 25

Interaction Interval

D
at

a
vo

lu
m

e
(u

ni
t)

[H=3, BF =3]
[H=3, BF =5]

Fig. 4.8 Performance for Data Volume in A Full Tree

 46

factor is 5, data volume is 31 units; when the branching factor is 3, data volume is 13

units.

4.3.2.2 A Path in a Tree

In Fig. 4.9, we only went though some of Web documents. We chose three parts of

nodes to view separately. In path 1, we moved through N0, N1, N11, N111, and N1111 in

order; in path 2, the reading sequence is N0, N1, N12, N122, and N1221; Path 3 is N0,

N2, N22, N222, and N2222.

Experiment is based on two different prefetching sequences: Left First and Right

First. We adopt the same implementation methods as in the experiment with a full tree.

1. Response Time Analysis:

The performance for response time in one path in a tree reading is shown in Fig.

4.10. We observe that path 1’s responsiveness with Left First prefetching sequence is the

same as path 3’s one with Right First prefetching sequence.

We can also find that part 3’s responsiveness with Left First prefetching sequence

is the same as part 1’s one with Right First prefetching sequence. If interaction interval is

5 seconds, the response time with prefetching is the same as that without prefetching,

since the next page we will move through is not a prefetched document.

However, whatever prefetching sequence is, either Left First or Right First, part 2

always has the same change for the responsiveness value.

When prefetching sequence is Left First, the prefetching performance in path 1 is

 47

N0

N1 N2

N212

N22N21

N12

N11

N2212N2211N2122N2121N2112N1222 N2111N1212N1211N1122N112N1111

N221N122N121N112N111 N211 N222

N1121 N1221 N2222N2221

Path 1

Path 2

Path 3

Fig. 4.9 Paths in a Tree

 48

0.00

0.20

0.40

0.60

0.80

1.00

1.20

3 5 10 15 20 25

Interaction Interval

R
es

p
o

n
si

ve
n

es
s

Part 1(LF) &
Part 3 (RF)

Part 2 (LF & RF)

Part 1(RF) &
Part 3 (LF)

 Fig. 4.10 Performance for Response Time in Paths of a Tree

 49

0.00

2.00

4.00

6.00

8.00

10.00

3 5 10 15 20 25

Interaction Interval

D
at

a
vo

lu
m

e
(u

ni
t)

Part 1(LF) &
Part 3(RF)
Part 2(LF & RF)

Part 1(RF) &
Part 3(LF)

 Fig. 4.11 Performance for Data Volume in Paths of a Tree

 50

better than that in path 2 and path 3. The responsiveness with path 2 and path 3 is up to 2

and 4 times less than that with part 1 respectively.

With growing interaction interval, the system responsiveness always increases in a

gradual fashion for path 1, path2, and path 3.

2. Data Volume Analysis:

The performance for data volume in one path in a tree reading is shown in Fig.

4.11. If interaction interval is 5 seconds, path 1’s data volume with Left First prefetching

sequence is 5 units, same as the path 3’s one with Right First prefetching sequence. The

path 3’s data volume with Left First prefetching sequence is 9 units, same as the part 1’s

one with Right First prefetching sequence. No matter what prefetching sequence path 2

uses, its data volume is 7 units. With Left First prefetching sequence, the amount of

unnecessary data in path 2 and path 3 is up to 40% and 80% more than that in path 1

respectively.

Once it reaches 10 seconds, the performance for data volume in part 1, part 2, and

part 3 are the same. They are all 9 units no matter what their prefetching sequences are.

4.3.3 Fully Connected graph

Most online encyclopedia and e-books fall into this category of organization. The

hyperlinks for chapters and sections of each e-book are usually fully connected. We

organized two different situations with 6 and 10 nodes separately. In Fig. 4.12, each node

contains 5 hyperlinks. In Fig. 4.13, each node contains 9 hyperlinks. They are fully

connected with each other. In table 4.3, we suppose the prefetching sequence is in

 51

clockwise. In table 4.4, reading sequences are divided into three different types such as

Clockwise, Counter clockwise, and Random.

1. Response Time Analysis:

The performance for response time in fully connected graph is shown in Fig. 4.14.

No matter how many nodes they have, the prefetching performance in clockwise reading

direction is always better than that in counter clockwise. The prefetching performance in

random reading direction is in between clockwise and in counter clockwise directions.

The responsiveness with Random and Counter Clockwise is up to 5.3 and 10.3 times less

than that with CW respectively. With growing number of nodes, the impact of

prefetching performance increases. With growing interaction interval, the system

responsiveness increases in a gradual fashion.

2. Data Volume Analysis:

The performance for data volume in fully connected graph is shown in Fig. 4.15.

Different reading sequences result in different performance of data volume. The amount

of data in clockwise reading direction is always less than that in counter clockwise.

Basically data volume for any reading order always increases gradually when interaction

interval increases gradually. All of them produce a lot of extra amount of data compared

to amount of transferred data without prefetching. The more nodes we move through, the

more extra amount of data is produced.

 52

N 1

N2

N3N5

N6

N4

 Fig. 4.12 A Fully connected Graph with 6 Nodes

 53

N 1
N2

N3

N7

N8

N6

N4

N5

N9

N10

 Fig. 4.13 A Fully connected Graph with 10 Nodes

 54

Prefetching Sequence

Total Nodes

Node Clockwise

 N1 N2,N3,N4,N5,N6

 N2 N3,N4,N5,N6,N1

6 N3 N4,N5,N6,N1,N2

N4 N5,N6,N1,N2,N3

N5 N6,N1,N2,N3,N4

N6 N1,N2,N3,N4,N5

N1 N2,N3,N4,N5,N6,N7,N8,N9,N10

N2 N3,N4,N5,N6,N7,N8,N9,N10,N1

N3 N4,N5,N6,N7,N8,N9,N10,N1,N2

N4 N5,N6,N7,N8,N9,N10,N1,N2,N3

N5 N6,N7,N8,N9,N10,N1,N2,N3,N4

N6 N7,N8,N9,N10,N1,N2,N3,N4,N5

N7 N8,N9,N10,N1,N2,N3,N4,N5,N6

N8 N9,N10,N1,N2,N3,N4,N5,N6,N7

10

N9 N10,N1,N2,N3,N4,N5,N6,N7,N8

 N10 N1,N2,N3,N4,N5,N6,N7,N8,N9

 Table 4.3 Lists of Prefetching Sequences in a Fully Connected Graph

 55

Reading Sequence Total

Nodes Clockwise Counter Clockwis e Random

6 N1,N2,N3,N4,N5,N6 N1,N6,N5,N4,N3,N2 N1,N4,N6,N2,N5,N3

10

N1,N2,N3,N4,N5,N6

,N7,N8,N9,N10

N1,N10,N9,N8,N7,N6,

N5,N4,N3,N2

N1,N6,N3,N5,N9,N7,N2,

N8,N4,N10

 Table 4.4 Lists of Reading Sequences in a Fully Connected Graph

 56

0

0.2

0.4

0.6

0.8

1

3 5 10 15 20 25

Interaction Interval

R
es

p
o

n
si

ve
n

es
s

CW (6)
CCW (6)
Random(6)

CW(10)
CCW(10)
Random(10)

 Fig. 4.14 Performance for Response Time in Fully Connected Graph

 57

0

10

20

30

40

50

3 5 10 15 20 25

Interaction Interval

D
at

a
vo

lu
m

e
(u

ni
t)

CW(6)
CCW(6)

Random(6)

CW(10)
CCW(10)

Random(10)

 Fig. 4.15 Performance for Data Volume in Fully Connected Graph

 58

4.3.4 Tree with Core Graph

This type of organization is quite popular for Web pages. If there is a menu on a

Web page and the page is created using frameset, it is often this type of organization.

In Fig. 4.16, there are two cores. One core is consisted of N0, N1, N2, and N3, we

refer to it as core 1. Another core is consisted of N4, N5, and N6, we refer to it as core 2.

Each node is a parent in the core. It has its own children. For instance, N0 is a member of

core 1. Meanwhile, it is the parent of three children, N4, N5, and N6, which are members

of core 2.

Core Set means all members of the core are fully connected. Child Set is a tree

structure. Two types of prefetching sequences are selected. We call them Core Set First

and Child Set First. See table 4.5.

1. Response Time Analysis:

The performance for response time in Tree with Core is shown in Fig. 4.17.

With interaction interval increased, the value of responsiveness decreases gradually

for both Core Set First and Child Set First. However, if we use Child Set First as

prefetching sequence, its performance improvement for responsiveness is better than

Core Set First. That means Child Set First closely matches the Depth First reading

sequence. The responsiveness with Core Set First is up to 2 times less than that with

Child Set First.

 59

N2

N 0
N 32

N 1

N 3

N 31

N 52

N 51

N 22N 21N 12N 11

N 6

N 5
N 4

N 62 N 61

N 41N 42

 Fig. 4.16 A Tree with Core

 60

Prefetching Sequence

Node Child Set First Core Set First

Reading Sequence

(Depth First)

N0 N1,N2,N3,N5,N4,N6 N1,N2,N3,N5,N4,N6

N1 N11,N12,N2,N3,N0 N2,N3,N0,N11,N12

N2 N21,N22,N3,N0,N1 N3,N0,N1,N21,N22

N3 N31,N32,N0,N1,N2 N0,N1,N2,N31,N32

N4 N41,N42,N0,N5,N6 N5,N6,N41,N42,N0

N5 N51,N52,N0,N6,N4 N6,N4,N51,N52,N0

N6 N61,N62,N0,N4,N5 N4,N5,N61,N62,N0

 N0,N4,N41,N42,N6,N61,

N62,N5,N51,N52,N1,N11,

N12,N2,N21,N22,N3,N31, N32

Table 4.5 Lists of Sequences in a Tree with Core Graph

 61

 Fig. 4.17 Performance for Response Time in a Tree with Core Graph

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

5 10 15 20 25

Interaction Interval

R
es

p
o

n
si

ve
n

es
s

ChildSet First

CoreSet First

 62

2. Data Volume Analysis:

The performance for response time in Tree with Core is shown in Fig. 4.18. If

Child Set First is selected as prefetching sequence, its performance improvement for data

volume is better than Core Set First. The amount of unnecessary data with Core Set First

is up to 43% more than that with Child Set First.

 With interaction interval increased, the data volume increases gradually for both

of them, and the extra amount of data also increase gradually.

 63

0

10

20

30

40

50

5 10 15 20 25

Interaction Interval

D
at

a
vo

lu
m

e
(u

ni
t)

ChildSet First
CoreSet First

 Fig. 4.18 Performance for Data Volume in a Tree with Core Graph

 64

CHAPTER 5

Conclusions and Future Works

5.1 Conclusions

The effectiveness of prefetching is particularly significant for Internet reference.

The prefetching prediction model reduces access lag for new references. With the current

research level, any prefetching is a kind of gambling. The primary difficulty in all

prefetching mechanisms is to be able to accurately predict which pages will be needed

next, to minimize mistakes that result in wasted bandwidth and increased server loads.

A HTTP proxy system is developed that simulates the performance of the

prefetching technique. Experiment is based on four different types of Web documents

organization such as chain, tree, fully connected graph, and complex tree with core.

Three performance impact factors we selected include interaction interval, prefetching

sequence, and reading sequence.

Analysis results show that, compared to a matched system, the response time of a

random system can take 1.6 - 6.3 times larger and bring in 1.8 - 2.0 times more

unnecessary data. In the worst case, a completely mismatched system’s response time can

be about 1.7 - 11.3 times larger and result in 1.3 - 1.4 times more unnecessary data than a

matched system. Smarter prefetching techniques can be developed if we take the

 65

structure of webspace and user reading behavior into consideration. This study may also

help content developer organize the webspace so that it can be navigated faster.

5.2 Future Works

As of further research work, we think the following directions are very interesting:

RHDOS is only experiment system. The result indicates that for effective prefetch

more knowledge about the user reading behavior and document organization can be

beneficial. Future work should be to design mechanism to obtain these information. For

example, we need to continue solving the problem how the proxy gets real frequency and

estimated loading time for the Web pages requested by a client.

Currently there is no technique to acquire a hyperspace pattern. The pattern

information is distributed into multiple pages. HTTP and other existing mechanism

cannot help with discovering or expressing the hidden pattern. More research is required

on such mechanism. Perhaps an XML extension or HTTP can be an interesting topic for

future study.

In order to further investigate reader habit, we should try to track some Web

servers. It will be useful to track which Web pages were requested from different persons

in a given time period.

To further do research on whether the user-agent device including the Web server,

the caching proxy, and the browser can impact on the interaction time.

Study the impact of proxy cache size, media component classification, and

discarding policies. We suspect reading time will show high correlation with media type

 66

and even content. Additional study can be performed to determine the extents.

 67

References

[CoKa00] E. Cohen and H. Kaplan. Prefetching the Means for Document Transfer: A

New Approach for Reducing Web Latency. Proc. of the IEEE INFOCOM 2000, Tel-

Aviv, Israel, March 2000.

[CrBa98] M. Crovella, P. Barford, The Network Effects of prefetching, Proc. Of IEEE

INFOCOM 1998, San Francisco, USA, 1998.

[Davi01] Brian D. Davison. Assertion: Prefetching With GET Is Not Good. Proc. Of the

6th International Workshop on Web Caching and Content Distribution, June 20-22, 2001.

[Duch99] D. Duchamp. Prefetching Hyperlinks. Proceedings of the USENIX Symposium

on Internet Technologies and Systems, Colorado, USA, October 1999.

[Http://www.usenix.org/events/usits99].

[FMFM99] R. Fielding, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee

Hypertesxt Transfer Protocal-HTTP/1.1. Tech. Rep. RFC 2616 (June), IETF. 1999.

[http://www.ietf.org/rfc/rfc2616.txt]

[FlMD97] Todd B. Fleming, Scott F. Midkiff, and Nathaniel J. Davis, IV. Improving the

Performance of the World Wide Web over Wireless Networks. Globecom'97.

[Retrievedfrom: http://www.cs.columbia.edu/~hgs/InternetTC/GlobalInternet97/

Flem9711_Improving.pdf]

[JaCa98] Q. Jacobson, Pei Cao, Potential and Limits of Web Prefetching Between Low-

Bandwidth Clients and Proxies, 3rd International WWW Caching Workshop,

 68

Manchester, England, June 15-17 1998.

[Khan99] Javed I. Khan, Ordering Prefetch in Trees, Sequences and Graphs, Technical

Report 1999-12-03, Kent State University, [available at URL http://medianet.kent.

edu/technicalreports.html, also mirrored at http://bristi.facnet.mcs.kent.edu/~javed/

medianet.

[Khan00] Javed I. Khan, Active Streaming in Transport Delay Minimization, Workshop

on Scalable Web Services, Toronto, pp95-102, August 2000.

[KhTa01] Javed I. Khan, Qingping Tao, Partial Prefetch for Faster Surfing in Composite

Hypermedia, the 3rd USENIX Symposium on Internet Technologies USITS’01,

San Francisco, pp13-24, March 2001.

[KhTa01] Javed I. Khan, Qingping Tao, Prefetch scheduling for composite hypermedia,

Proceedings of IEEE International Conference on Communications (ICC2001),

Finland, pp 768-773, June 2001.

[KaPJ99] M. Frans Kaashoek, Tom Pinckney, and Joshua A. Tauber, Dynamic

Documents: Extensibility and Adaptability in the WWW,

http://www.pdos.lcs.mit.edu/papers/www94.html.

[KrLM97] T. Kroeger, D. D. E. Long & J. Mogul, Exploring the Bounds of Web Latency

Reduction from Caching and Prefetching, Proc. of USENIX Symposium on Internet

Technology and Systems, Monterey, December 1997, pp-319-328.

[PaMe99] T. Palpanas and A. Mendelzon, Web Prefetching Using Partial Match

Prediction, WWW Caching Workshop, San Diego, CA, March 1999.

 69

[PiPi99] P. Pirolli and J. E. Pitkow, Distributions of surfers' paths through the World

Wide Web: Empirical characterizations, Jounral of World Wide Web, v.1-2, pp29-45,

1999.

 70

Appendix

Lists of Some Examples for Web pages Organization

http://www.ingenta.com/isis/register/RegisterPersonalUser/ingenta

 71

http://www.cs.kent.edu

 72

http://www.kent.edu/academics/

 73

http://safari.informit.com/?XmlId=0-13-084466-7

 74

http://www.cnn.com/SHOWBIZ/

 75

http://www.google.com

