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ABSTRACT 

Self-replicating malicious codes (worms) are striking the 

Internet vigorously. A particularly interesting trend is the emergence of 

mutually agnostic virus. In this work we study such combating virus system. 

Like other virus models, we also present an adapted version of Lotka-Volterra 

equation model to show the interaction dynamics of mutually antagonistic self-

spreading codes.  There are few novel findings of this enhanced model. Such 

as the prediction of oscillatory behavior of interacting worms population 

conforming to existing biological systems. 
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C h a p t e r  1  

INTRODUCTION 

Computer viruses are increasingly becoming a major source of productivity drain for 

internet operations.  While the potency of most viruses varies at the mercy of the virus 

writers, but even the relatively harmless viruses are becoming a major productivity drain 

because of their increasingly sophisticated spreading mechanism. When tens of millions of 

computers are affected even a simple reboot can bring part of the internet to its knee. On 

top of these the incessant adaptive mutation launched by their writers are also evident now. 

A particularly sophisticated recent introduction is the killer worm (also called counter-

worm, predator worm, or good will mobile code). This is a new phenomenon that has made 

headlines recently. These worms are out there fighting malicious codes (Code-Red, MS-

Blast, and Sasser) spread by rival virus writer groups. Besides malicious combating worms 

already there is the concept of virus like predator codes. 

There is an interesting digital culture which is helping the emergence of these predator 

worms. For example, one worm’s authors fight another group to expand their peer-to-peer 

networks, which are formed by Trojan horses. Later, these P2P networks are used to launch 

new worm, generate Denial of Service attack, or circulate spam anonymously. In addition, 

some predator worms scavenge on other worms as means to spread their code. For 
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example, the predator worm spread through a flaw or backdoor of another worm. In 

addition, predator worms can have non-malicious applications. They could the necessary 

proactive countermeasure to fight zero-day worms. Some researchers have already defined 

predators as “good will” mobile codes that go after malicious worms and kill them.  

The goal of this research is to mathematically model the behavior of combating worms. 

This thesis models prey-predator dynamics under several interesting combat scenarios. This 

includes the presence of antivirus software, effect of security patches, and combating 

worm’s capability to block or use each others backdoors. Following the steps of previous 

researchers, we use Lotka-Volterra equations and expand it for our models. We present the 

detail model equations, and corresponding scenario analysis based on their numerical 

solutions. 

1.1.  Related work  

While modeling worms is not totally new, there’s only very few in literature about killer 

virus (predator worm). Two papers are in the same line as our work. Toyoizumi and Kara 

used Lotka-Voltera equations to model and analyze the interaction between predator 

worms and traditional worms [1]. They define predators as “good will mobile codes” that 

kill malicious viruses. Also, they discuss how to minimize predators main size effect (their 

number) without losing their effectiveness. Nicol and Lilijenstam define active defenses, as 

techniques that “take the battle to the worm” [4]. They model four active defenses, two of 
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them “nullifying and “sniper” are predator worms. They use the number of protected hosts, 

total consumed bandwidth, and peak scanning rate the network as metrics of effectiveness.  

Staniford was the first to attempt to model random scanning Internet worms [5]. His model 

is a quantitative theory that explains Code-Red spread. The theoretical data generated by 

his equation fairly matched with available Code-Red data.  Later Zou et al provided an 

enhanced model of Code-Red that considers the effects worm countermeasures and routers 

congestion [6]. They base their “two-factor worm model” on Kermack-Mckendrick. Their 

simulations and numerical solutions are better match Code-Red data.  

The thesis is organized in the following way. First we present the basics of our model. We 

present a classification of potential combating worms, and the description of the base 

environment. The Chapter 3 presents the simplest of the scenarios. In Chapter 4 we study 

the effect of anti-virus- which we call harvesting effect on the combat. Chapter 5 contains 

general analysis of patching prey worm against predator worm. Chapter 6 introduces the 

effect of employing system patches on the prey-predator system. Finally we conclude and 

propose future work.  
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C h a p t e r  2  

MODEL BASIS 

2.1.  Virus Types 

Although the terminologies have not been firmly established in literature here we will 

consider Virus to be a super set of self-replicating malicious codes. Worm a subset of 

viruses that are network aware (use network protocols and parameters to spread). Worms 

can be fully automated (port scanning) or partially human-dependent like (email) or can be 

combination of different attack techniques.  

Traditional ways to defend against worms are called defensive techniques (countermeasures) based 

on prevent, detect, clean. Antivirus programs are all traditional software programs that scan for, 

detect, and clean worm infections. System patches are software made available by operating 

system authors that can fix existing security hole of bug. A system patch does not remove a 

virus but will block the spreading mechanism of a new virus or even an existing virus. 

Some worms can attack already infected machine, clean existing worm, and takeover that 

machine. We refer to such killing (or cleaning) worm as predator worm, e.g. Code-Green, Welchi, 

Netsky. On the other hand, prey worms are the victims of predator worms, e.g. MS-Blast, Bagle, 

and Sasser. Worms that attack other worms are predators. Figure 2.1 explains the classification. 

Internet worms are primarily classified according to prey and predator role. 
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Most predators spread by finding and attacking already infected machine. However, other 

predators, in addition, can find and attack clean machines. An infection-driven predator, 

exclusively, attack infected machines. Vulnerability-driven predator, on the other hand, can 

attack both clean and infected machines. A predator worm can find victim prey worms by 

actively propping for prey-infected machines (called active-spreading). A prey worm can 

“fall into predator trap” if it unknowingly scans a predator-infected machine. A predator 

that depends on prey to scanning, is called passive-spreading predator, e.g. CR-Clean. 

Figure 2.1 shows that predator worms are first classified based on their spreading trigger- 

infection driven and vulnerability driven. The later is further classified based on their 

scanning technique-passive and active spreading. 

Patching 

Internet Worm

Prey Worm Predator Worm 

Infection- Vulnerability-Non-
Patching 

Active-
Spreadin

Passive-
Spreadin

Figure 2.1. Worm Classification.  Worms can be 
classified according to their predatory 
characteristics, e.g. their spread trigger and 
scanning technique.
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As shown in Figure 2.1, prey worms can be patching or non-patching. Prey worms may 

protect themselves from their predators by closing the security hole through which they 

penetrated, thus preventing predator from getting in. We call such prey worms a patching worm 

otherwise they are non-patching prey worms. 

2.2.  Environment 

We assume The Internet size as fixed number of machines M . Two reasons for this 

assumption: small infection period, and huge Internet size. Internet worms spread in 

minutes/hours, while a major change take much longer. The day and night time effect is 

compensated for by the wide spread of the Internet around the world. The other reason is 

the huge size of the Internet, that even adding or removing thousands of machines at once 

doesn’t have significant effect of ten of millions total number. For a specific worm, one 

machine is either susceptible to that infection (called vulnerable), or immune (called 

removed). Vulnerable machines can be penetrated by a worm, and once infected they 

spread the infection on their own. Removed machines cannot be infected by a worm for 

some reason, such as: being patched, having platform, behind firewall, etc.  

Usually, there are many worms spreading over the Internet at the same time. This research 

is concerned with the interaction of two prey and predator worms, and thus we ignore all 

other existing worms.  We also assume that set of vulnerable machines (set-S) for the prey 

worm is the same for the predator worm. Same applies to the removed machines set (set-

R). The vulnerable and removed machines sets are complements of each others. If number 
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of vulnerable machines is S , and number of vulnerable ones is R , MRS =+ , the total 

number of machines.  Figure 2.2 shows the two main sets set-S and set-R. Usually, 

vulnerable and removed machines don’t switch back and forth. However, in cases when 

system patch is used, a vulnerable machine can become removed. 

A vulnerable machine that is infected by a worm is called infectious. All other vulnerable 

machines that are not compromised fall in the clean machines set (set-n) of size )(tn . 

Machines can change state from clean to infectious, or infectious to clean. An infectious 

machine is infected one worm: prey or predator worm. We assume that no machine has 

multiple worm infection. The reason for this are, when a prey meets a predator worms, the 

predator would takeover the prey worm, leaving only the predators infection. Infectious 

machines that are infected by a prey worm (worm-x) are called set-x, which has cardinality 

)(tx . Infectious machines that are infected by predator worm (worm-y) fall in set-y with 

size )(ty . Figure 2.2 shows the two infectious sets and their relation to the clean set. 

Machines in set-x can change state and move into set-y. The cardinalities of set-n, set-x, 

and set-y, are variable functions of time, where the total sum )()()( tytxtnS ++=  is the 

size of vulnerable machines set. 
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Figure 2.2 Machines Sets 
Internet: M 
Vulnerable machines: S 
Removed machines: R 
M=S+R 
Clean machines: n(t) 
Prey (Infectious): x(t) 
Predator (Infectous: y(t) 
S=n(t)+x(t)+y(t) 

 set-y 
y(t) 

set-n 
n(t) 

set-x 
x(t) 

set-S 
S set-R 

R 

M
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C h a p t e r  3  

PREY, PREDATOR MODEL  

Two combating worms: worm-x and worm-y, spread over a network. Worm-x is a 

traditional prey worm, which spreads by infecting clean machines and has no patching 

feature, e.g. Slammer. Worm-y is a predator worm that can only takeover worm-x infected 

machines; thus considered infection-driven. Two possible variations of worm-y are: 

passive-spreading and active-spreading. Set-x is the set of all worm-x members and has 

cardinality of )(tx  at any time t . Set-y, of size )(ty , contains all instances of worm-y.  

The number of clean machines that are infected, by worm-x, at any time is dependent on 

both available clean and worm-x infected machines. This infection increase rate (clean-set) 

decease rate) equals axn , where a  a positive fraction. Encounters between worm-x and 

worm-y result in increase in set-y (decreases in set-x) which is proportional to number of 

available worm-x infected and worm-y infected machines. This change rate equalsbxy , 

where b  is a positive number. Figure 3.1 describes the transition between sets in this 

scenario. The link signifies the transfer rate of members from one set to the other. The 

Value on the arrow is the transition rate. 
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The infection rate of worm-x is the first derivative of )(tx . The same applies to worm-y 

infection rate, and clean machines change rate. The dynamic of the system can be described 

by equations 3.1, 3.2, 3.3, and 3.4.  

bxyaxn
dt
dx

−=  (3.1) 

bxy
dt
dy

=  (3.2) 

axn
dt
dn

−=  (3.3) 

Figure 3.1. Machines transition diagram for prey-
predator scenario. The circles represent machines’ 
sets and arrows are transitions’ direction and rate. 

set-y 
y(t) 

axn 

set-n 
n(t) 

bxy 

set-x 
x(t) 

Set-y: predator 
Set-n: clean 
Set-x: prey 
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000 )0(,)0(,)0( nnyyxx ===  (3.4) 

The value of parameters a and b are dependent on worms scanning rate and network size. 

Following, we discuss the value derivation of a  and b  for two predator variations: 

passive-spreading and active-spreading. 

3.1.  Parameters Computations 

Passive-Spreading Predator. Assume that worm-y is passive-spreading predator; thus does 

no scanning on its own to find infected machines. Let worm-x scanning rate be r , where r  

is the number of unique scans generated  by the worm per a unit of time. The total number 

of scans by all members in set-x then is rx . Since R+x(t)+y(t)+n(t)=M, the value of rx  is 

the sum of all scans by worm-y of all machine sets, as in equation 3.5 

M
rxnrxyrxrxRrx +++

=
2

(3.5)

If each time that worm-x scans a clean machine results in a new infection, then parameter 

a  is given by equation 3.6 

M
ra =  

(3.6)
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Likewise, if every encounter between y-worm and worm-x infected machine results in 

takeover by worm-y, then parameter b  is given by equation 3.7 

M
rb =  

(3.7)

Active-Spreading Predator. Active-spreading worm-y does its own scanning in order to 

find worm-x infected machines. Assuming worm-y has scanning rate be v , the total 

number of scanning by members in set-y is vy  satisfies equation 3.8 

M
vynvyvyxvyRvy +++

=
2

(3.8)

The encounters between worm-x and worm-y are result of scans by both. Thus, parameter b 

can be described by equation 3.9 

M
rvb +

=  
(3.9)

Other Factors. We assumed that an encounter between x-infected and y-infected machine 

will always result in worm y taking over. Practically, worm-y can have some success 

probability g . That case the new value of b  will be computed as gb . This applies in the 

same way to parameter a . If worm-x has h  percent of its scans successful, the new value 

of  a  would be ha . 
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3.1.  Analysis  

The following solution curves were obtained using Maple numerical solution.  

 

In figure 3.2 and 3.3, two curves are plotted )(tx  in red and )(ty  in green for different 

values of ba : . The general behavior described here shows that initially worm-x increase 

exponentially as it would without worm-y existence. Worm-y increase proportional to 

worm-x increase (food of worm-y). The increase in worm-y population results in decrease 

in worm-x population (as worm-y eats worm-x). The )(tx  curve stops increasing (where it 

hits it maximum) and starts declining. Curve )(ty  continues to increase until it uses up all 

Figure 3.2. a.M=10, M=3000000, x0=100, y0=1, n0=1000000 
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available worm-x members, where it hits its maximum and freeze thereafter. The system 

reaches steady state when both infection rates are zero. This occurs when all worm-x 

infected machines are re-infected by worm-y.  

 

Breakout Condition. By studying figure 3.2, we can observe that Syx == )max()max( . 

We name this condition as Prey-breakout condition since it occurs as result of faster 

growth in prey population than predator population ( ab ≤ ).The time when breakout is 

taking place is called breakout interval. If  bak −=  and if 0≥k , than increasing k  will 

Figure 3.3. a.M=10, M=3000000, x0=100, y0=1, n0=1000000 
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increase the breakout interval. It’s important to note that whenever there’s prey-breakout, 

there’s predator breakout too.  

Contamination Condition. In figure 3.3 )max()max( yx ≤ . This condition is called prey-

contamination condition, which occurs when the predator population is faster than the prey 

( ab > ). This condition is the opposite of prey-breakout condition. However, predator 

population breakout could happen in parallel with prey-contamination.  

 
Figure 3.4. a.M=10, M=3000000, x0=100, y0=1, n0=1000000. 
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Figure 3.4 is plot of )(yx  for different values of the ratio ba : . Increasing b  value results 

in increasing )(ty  which means more effective worm-y that can catch worm-x even faster. 

The larger is the maximum of )(tx , the larger )(ty  maximum needed to stabilize the 

system. Thus, larger b  result in smaller maximum for )(tx , )(ty , and )(yx . 

3.2.  Initial Population 

Initial population is the number of worm-x infected machines at time zero )0(x , where 

time-zero is the point when worm-y is launched. Response time is the time between worm-

x start and worm-y start, or the time duration when worm-x and worm-y didn’t (before time 

zero). It is clean then that response time and initial population are direct linear 

computations of each others, thus can be thought of as one thing.  
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Figure 3.5 is a plot of )(tx  and )(ty  for different initial population values. The graph 

explains the small effect of )0(x  on maximum values; even increasing )0(x  exponentially 

increases the maximum linearly. The phase portrait of the two curves is shown in figure 

3.6. It’s clear that changing the initial population causes almost no difference on the 

resulting populations.  

Figure 3.5. a.M=10, b.M=60, M=3000000, y0=1, n0=1000000 
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3.3.  Case Expansion 

We expand this case by considering vulnerability-driven type of predator. So, worm-y 

infects both clean and worm-x infected machines. Figure 3.7 describes the transitions 

between the machines sets. Worm-x increases as the basic scenario, by infecting clean 

machines at rate axn . Worm-y increases by targeting clean machines at rate cyn  ( c  is 

positive), and clean machines decreases at the same rate. The system dynamics can be 

described in equations 3.10, 3.11, 3.12 and 3.13. 

Figure 3.6. a.M=10, b.M=60, M=3000000, y0=1, n0=1000000 
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bxyaxn
dt
dx

−=  
(3.10) 

bxycyn
dt
dy

+=  
(3.11) 

cynaxn
dt
dn

−−=  
(3.12) 

000 )0(,)0(,)0( nnyyxx ===  
(3.13) 

Parameters a , b  and c  are dependent on worms scanning rate and network size. 

Parameter a  and b  values can be derived as before in the basic scenario. The value of c  is 

dependent of worm-y scanning rate and is described in equation 3.14 

Figure 3.7. Machines transition diagram for prey-
predator expansion scenario. The circles represent 
machines’ sets and arrows are transitions’ direction 
and rate. 

set-y 
y(t) 

axn

set-n 
n(t) 

bxy

set-x 
x(t) 

Set-y: predator 
Set-n: clean 
Set-x: prey 

cyn
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M
vc =  

(3.14)

When predator is infection-driven ( 0=c ) prey and predator are totally coupled in a closed 

loop. Increasing the prey population increases the predator population. Increasing the 

predator population decreases prey population. Decreasing prey population decreases 

predator population. Finally decreasing predator population increases the prey population.  

In case of vulnerability-driven predator ( 0>c ) the predator has more than one option to 

spread. The prey-predator loop is not totally closed. Increasing prey population increases 

the predator population. Increasing the predator population decreases prey population. 

Decreasing prey population does NOT decrease predator population.  

Figure 3.8 shows the plot of )(tn , )(tx  and )(ty . Compared with figure 3.2 and 3.3, the 

behavior is similar with two exceptions: the prey-breakout condition didn’t take place, 

while )(ty  reaches the maximum environment capacity. Figure 3.8 shows that prey-

contamination meanwhile it shows a predator-breakout increase condition. 

Breakout Condition. Observing figure 3.8, we notice that Sy =)max( , which we call as 

predator-breakout condition. This occurs because predator growth is not limited by prey 

population but environment capacity ( 0>c ).  
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Figure 3.8. a.M=10, b.M=25, c.M=5, M=3000000, x0=100, y0=1, 
n0=1000000
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C h a p t e r  4  

PREY, PREDADTOR, AND ANTIVIRUS MODEL 

Worm-x and worm-y are prey and predator worms that are competing over an environment. 

Worm-y is vulnerability-driven predator. Some machines on the network run antivirus 

software that can detect and clean both worms’ infections. This scenario is analogous to 

harvesting (spraying, or fishing) phenomena in biological systems, where some third-party 

eliminates members of both combating populations. We assume that as people become  

more aware of an epidemic, they download, install, and update antivirus software at 

increasing rate. 

We define the number of machines with antivirus as an increasing function of time. The 

functions )(tzx  and )(tz y  are the ratios of worm-x and worm-y, respectively, infected 

machines that are cleaned by the antivirus software. For example, )(tyz y  is the number of 

worm-y infected machines that become clean of infection at time t . We define )(tzx  and 

)(tz y  in equations 4.1 and 4.2. The constants xd  and yd  are fraction numbers that 

determines the antivirus capacity to clean worm-x and worm-y, respectively. If xd  is  0.5 

and yd  is 0.3, the antivirus can clean 50% of worm-x machines, and 30% of worm-y on the 

long run. 
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)1/()( += ttdtz yy  
(4.1)

)1/()( += ttdtz xx  
(4.2)

 

Figure 4.1 describes the transition of members between machines’ sets as a result of the 

two worms and antivirus reactions. Worm-x increase on count of clean machines set (set-n) 

at rate axn . Meanwhile, set-n gains worm-x machines back at rate xxz , once cleaned by 

the an antivirus. On the other hand, worm-y increase on count of both clean and worm-x 

machines at rate bxycyn + . In contrary of all previous scenarios, set-y decreases at rate 

)(tyz y , as result of antivirus effect. The system behavior is described by equations 4.3, 4.4, 

4.5, and 4.6   

Figure 4.1. Machines transition diagram for prey-
predator and antivirus scenario. The circles 
represent machines’ sets and arrows are 
transitions’ direction and rate. 

set-y 
y(t) 

axn

set-n 
n(t) 

bxy

set-x 
x(t) 

Set-y: predator 
Set-n: clean 
Set-x: prey 

cyn

yzy 

xzx 
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xxzbxyaxn
dt
dx

−−=  
(4.3)

yyzbxycyn
dt
dy

−+=  
(4.4)

yx yzxzcynaxn
dt
dn

++−−=  
(4.5)

000 )0(,)0(,)0( nnyyxx ===  
(4.6)

4.1.  Analysis 

In this subsection, we assume that both worm-x and worm-y are affected equally by the 

antivirus effect. Thus zzz xy == . 
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Figure 4.2 shows a new type of behavior, both curves )(tx  and )(ty  oscillate for a while as 

they gradually become constant lines. This phenomenon is a result of introducing the 

antivirus effect, which kills predators as will as prey infections. Originally, the increase in 

predators population causes degrade in prey population, and this is what is initially 

happening in this case. However, as the antivirus cleans some predator infections causing 

its population to drop, more prey infections will have chance to survive, and thus prey 

Figure 4.2. c.M=0 (Infection-Driven). a.M=10, b.M=25, d=0.4, x0=100, 
y0=1, n0=1000000, M=3000000  
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population increases again. Increasing prey population results in increasing predator 

population. However the second peek is lower than the first once since the antivirus is 

continuously reducing both populations. This periodical behavior repeats itself each time 

with lower maximum values. The oscillation turns into straight lines with some vibration, 

which eventually diminishes, resulting into two constant lines. At this stage the system 

reaches its steady state or equilibrium point, where the change rate is zero for all variables 

(increases and decreases in both populations cancel each others) 

 

Figure 4.3. c.M=0 (Infection-Driven). a.M=10, b.M=25, d=0.4, x0=100, 
y0=1, n0=1000000, M=3000000  



 27 

Figure 4.3 shows the system’s oscillation behavior in a different way. The )(yx  curve, 

winds inwards until it reaches the equilibrium point, which is not zero. In other words, both 

infections will continue to exist forever.  

 

In the both figure 4.2 and 4.3, we ignored the effect of parameter c . Now we study the 

effect of parameter c  using figure 4.4 and 4.5. Both graphs have the same values, except 

that in the 1. =Mc  in the first and 2. =Mc  in the other. It’s noticeable that increasing the 

value of c  reduces oscillation. 

Figure 4.4. a.M=10, b.M=7, d=0.4, x0=100, y0=1, n0=1000000, 
M=3000000 
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Parameter c  decreases oscillation as it loosens the coupling loop between prey and 

predator behaviors. As we mentioned in section 3.4 when c  is zero, the system is fully tied. 

In the case when c  is not zero, increasing the prey increases the predator, and increasing 

the predator decreases the prey. However, decreasing prey doesn’t decrease the predator as 

much. As a result the peak values in both curves are smaller for. Thus oscillation vanishes 

sooner for larger c . 

Figure 4.5. a.M=10, b.M=7, d=0.4, x0=100, y0=1, n0=1000000, 
M=3000000. 
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C h a p t e r  5  

PATCHING-PREY, PREDADTOR MODEL 

A patching worm is a prey worm tries to protect itself from a predator by closing the 

backdoor through which it penetrated the system. Different instances of the same worm 

may or may not succeed in patching a machine, for reasons like the machine platform or 

configuration. We define p  for be the presentation of prey-infected machines that become 

immune to predator infection. On the other hand pq −= 1 of prey worms fail to patch 

some infected machines.  

The prey members fall into two sets: successful and unsuccessful. The successful patching 

worm subset is called set-xp, and has cardinality )(txp . The complement subset is the 

unsuccessful patching worms, called set-xn, and of cardinality )(txn . The behavior of this 

patching prey-predator system is described in figure 5.1. The clean machines set losses 

member machines to both set-xp and set-xn, at proportional to their ratios p and q. On the 

other hand, only set-xn would loss members to predators set (set-y). Equations 5.1 through 

5.5 describe the dynamics of the system.  
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ybxnaxnaxq
dt
dx

npn
n −+= )(  

(5.1)

)( naxaxp
dt

dx
pn

p +=  
(5.2)

ybx
dt
dy

n=  
(5.3)

naxnax
dt
dn

pn −−=  
(5.4)

bxy 

qaxn + qamn 

Figure 5.1. Machines transition diagram for 
patching prey versus predator scenario. The 
circles represent machines’ sets and arrows are 
transitions’ direction and rate. 
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This scenario has the basis of mutant worm scenario, where a group of one worm 

population gains extra feature that makes them more resistant to predator worm, more 

infectious, etc. More interesting, the featured members can bread both featured and 

ordinary members, same applies to the ordinary members’ breading. In this section we 

considered the case where sub-group of prey worms mutate and thus become immune to 

predator infection. 

5.1.  Analysis 

Figure 5.2 is a plot of the prey population )()( txtx pn +  in red and the predator population 

)(ty  in green. Prey population grows exponentially, as long as the predator population is 

insignificant (around zero). Once )(ty  picks up in value, the prey population )()( txtx pn +  

starts to decrease. The predator manages to take over q percent of the maximum prey 

infections, as the p percent are immune. Thus )()( txtx pn +  stops at level )max(. pn xxp + , 

while )(ty  stops at the complement level, and the system becomes stable. The yellow 

curve is the plot of )(tn , which is the number of machines is set-n (clean vulnerable 

machines). This curve reaches zero as all clean machines in the system become infected. 

Thus the change rate of all sets in the system reaches zero at  its steady state.  
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Figure 5.3 clearly shows that the equilibrium point of the system is not zero. Though the 

prey population reaches the environment capacity, we don’t call this a prey-breakout 

condition. The reason for this is prey-breakout should always results in predator breakout. 

Instead we call this maximum-infection condition, when all vulnerable machines are 

infected at stability state. 

Figure 5.2. a.M=10, b.M=15, xn0=100, xp0=0, y0=1, n0=1000000, 
M=3000000, p=0.3, q=0.7 
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Figure 5.3. a.M=10, b.M=15, xn0=100, xp0=0, y0=1, n0=1000000, 
M=3000000, p=0.3, q=0.7 
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C h a p t e r  6  

PREY, PREDADTOR, AND SYSTEM PATCH MODEL 

In all previously scenarios the number of vulnerable machines on the network was fixed S . 

In this scenario we consider the system patching factor, which immune clean vulnerable 

machines in set-n. Thus the size of set-S shrinks and set-R expands as result of system 

patches. We assume that patching a machine makes it immune to both prey and predator 

infections. We define the number of system patched machines as increasing function of 

time )(tw , as defined in equation 6.1. The constant k  determines the capability of the 

patching. For example if 4.0=k , it means on the long run this system patch will immune 

40% of the vulnerable clean machines. 

)1/()( += tkttw  
(6.1)

Figure 6.1 describes the machines transitions between the different sets as result of 

interaction between the two worms and the system patch. Every time a clean machine is 

system patched, that machine is moved from set-S to the removed machines set (set-n). 

Members are lost by set-n and gained by set-R at a rate proportional to both, )(tn  and 

)(tw . The interaction between set-n, set-x, and set-y is the same, except that as set-n is 

shrinking, both prey and predator will have fewer machines to infect.  
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Equations 6.2 through 6.5 are similar to equations 3.10- 3.13, except for the term wn  in 

equation 6.4.  

bxyaxn
dt
dx

−=  
(6.2)

bxycyn
dt
dy

+=  
(6.3)

wncynaxn
dt
dn

−−−=  
(6.4)

000 )0(,)0(,)0( nnyyxx ===  
(6.5)

Figure 6.1. Machines transition diagram for prey-
predator and system-patch scenario. The circles 
represent machines’ sets and arrows are transitions’ 
direction and rate.
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6.1.  Analysis 

Figure 6.2 shows how increasing system patch effectiveness could affect the prey-predator 

system. Increasing k  results in decreasing the maximum of both )(tx  and )(ty  curves. It’s 

clear that system patching would prevent infections breakout. Also, highly effective system 

patch ( 5.0>k ) can even contaminate a super-speed infection cost in few hundreds of 

infected machines. 

 

Figure 6.3 shows the effect of increasing k  on the system equilibrium point equilibrium.  

Figure 6.2. a.M=10, b.M=15, x0=100, y0=1, n0=1000000, M=3000000
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Figure 6.3. a.M=10, b.M=15, x0=100, y0=1, n0=1000000, M=3000000
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SUMMERY 

In this paper we have presented several scenarios of virus-virus warfare. We classify worm 

types according to their predatory characteristics. We study and analyze the prey and 

predator interaction, and investigate the parameters values. We expand our deterministic 

time-continuous model and use numerical solutions to study several advanced scenarios, 

including antivirus effect on prey-predator system, patching prey versus predator, and using 

system patches effect. Since the beginning of this work co-incidentally several ware-fare 

has been reported in real Internet. However, we must warn this work does not model the 

specific warfare. 
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FUTURE WORK 

There are actually additional scenarios which can be potentially modeled. One example is 

Cascade Chain Worms (Wave Worm). Many worms have more than one version. New 

versions are meant to update old ones. However, existence of old versions can increase or 

decrease the new version spread rate. Another example is Multi-Infection scenario. Our 

current model considers the number infected machines to be the worm population size. 

This is true as long as each machine single infection. A particular challenge in current 

computer virology research- including this work is very limited scope to verify model 

results with real world data due to absence of any estimation mechanism in the Internet. 

Techniques such as Internet telescopes May in near future provide such verifiability [7]. 

Up to date, all existing models, including those in this paper, are based on random network 

model. Meanwhile, the Internet is a scale-free network that has power low degree of 

distribution. Worms will soon hit new spread records, if they are designed to take 

advantage of massively connected Internet nodes, also called hubs in [9]. More important, 

scale-free networks can helpful to the spread worms’ vaccines.  [8]. 
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A p p e n d i x  A  

MAPLE COMMANDS 

I. Prey-Predator Basic Scenario 

> restart; 
> with(DEtools); 
> with(plots); 
> with(linalg); 
> with(student); 
> f:= (x,y,n) -> a*x*n/M - b*x*y/M; 

 := f  → ( ), ,x y n  − 
a x n

M
b x y

M  

> g:= (x,y,n) -> b*x*y/M; 

 := g  → ( ), ,x y n b x y
M  

> h:= (x,y,n) -> -a*x*n/M; 

 := h  → ( ), ,x y n −
a x n

M  

> U:= [x(t),y(t),n(t)]; 
:= U [ ], ,( )x t ( )y t ( )n t  

> sys1:= diff(x(t),t)=f(x(t),y(t),n(t)), 
diff(y(t),t)=g(x(t),y(t),n(t)), 
diff(n(t),t)=h(x(t),y(t),n(t)); 

sys1 := 

, , = d
d
t ( )x t  − 

a ( )x t ( )n t
M

b ( )x t ( )y t
M  = d

d
t ( )y t

b ( )x t ( )y t
M  = d

d
t ( )n t −

a ( )x t ( )n t
M

 

> ic1:= x(0)=x[0], y(0)=y[0], n(0)=n[0]; 
:= ic1 , , = ( )x 0 x0  = ( )y 0 y0  = ( )n 0 n0  

> b_v:= [5, 10, 30, 60]; 
:= b_v [ ], , ,5 10 30 60  
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> prey_string:= ["x(t), b.M=5", "x(t), b.M=10", "x(t), 
b.M=30", "x(t), b.M=60"]; 

 := prey_string [ ], , ,"x(t), b.M=5" "x(t), b.M=10" "x(t), b.M=30" "x(t), b.M=60"  

> predator_string:= ["y(t), b.M=5", "y(t), b.M=10", "y(t), 
b.M=30", "y(t), b.M=60"]; 

 := predator_string [ ], , ,"y(t), b.M=5" "y(t), b.M=10" "y(t), b.M=30" "y(t), b.M=60"  

> xy_string:= ["x(y), b.M=5", "x(y), b.M=10", "x(y), 
b.M=30", "x(y), b.M=60"]; 

 := xy_string [ ], , ,"x(y), b.M=5" "x(y), b.M=10" "x(y), b.M=30" "x(y), b.M=60"  

> param2:= [a=10, b=b_v[j], M=3000000, x[0]=100, y[0]=1, 
N=1000000, n[0]=1000000]$j=1..4; 
param2 [ ], , , , , , = a 10  = b 5  = M 3000000  = x0 100  = y0 1  = N 1000000  = n0 1000000 , := 

[ ], , , , , , = a 10  = b 10  = M 3000000  = x0 100  = y0 1  = N 1000000  = n0 1000000 ,

[ ], , , , , , = a 10  = b 30  = M 3000000  = x0 100  = y0 1  = N 1000000  = n0 1000000 ,

[ ], , , , , , = a 10  = b 60  = M 3000000  = x0 100  = y0 1  = N 1000000  = n0 1000000

  

> for i from 1 by 1 to 4 do 
> sol2[i]:= dsolve(eval({sys1,ic1},param2[i]), U, 
type=numeric); 
> g3[i]:= odeplot(sol2[i], [[t,x(t)],[t,y(t)]], 0..15, 
numpoints=1000, thickness=2, legend=[prey_string[i], 
predator_string[i]], title="Prey Worm versus Infection-
Driven Predator Worm\nfor Different Parameter b Values", 
linestyle=i, labeldirections=[HORIZONTAL,VERTICAL], 
labels=["Time (unit of time)", "Prey and Predator 
Populations (# of machines)"], axes=BOXED); 
> g4[i]:= odeplot(sol2[i], [y(t),x(t)], 
0..20,numpoints=1000, thickness=2, linestyle=i, 
legend=xy_string[i], title="Phase Portrait of Prey-Predator 
(Infection-Driven) System\nfor Different Parameter b 
Values", labeldirections=[HORIZONTAL,VERTICAL], 
labels=["Predator Population (# of machines)","Prey 
Population (# of machines)"], axes=BOXED); 
> end do; 
 
> display (g3[1],g3[2]); 
> display (g3[3],g3[4]); 
> display (seq(g4[i],i=1..4)); 
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II. Initial-Population of Prey-Predator Scenario 

> restart; 
> with(DEtools); 
> with(plots); 
> with(linalg); 
> with(student); 
> f:= (x,y,n) -> a*x*n/M - b*x*y/M; 

 := f  → ( ), ,x y n  − 
a x n

M
b x y

M  

> g:= (x,y,n) -> b*x*y/M; 

 := g  → ( ), ,x y n b x y
M  

> h:= (x,y,n) -> -a*x*n/M; 

 := h  → ( ), ,x y n −
a x n

M  

> U:= [x(t),y(t),n(t)]; 
:= U [ ], ,( )x t ( )y t ( )n t  

> sys1:= diff(x(t),t)=f(x(t),y(t),n(t)), 
diff(y(t),t)=g(x(t),y(t),n(t)), 
diff(n(t),t)=h(x(t),y(t),n(t)); 

sys1 := 

, , = d
d
t ( )x t  − 

a ( )x t ( )n t
M

b ( )x t ( )y t
M  = d

d
t ( )y t b ( )x t ( )y t

M  = d
d
t ( )n t −

a ( )x t ( )n t
M

 

> ic1:= x(0)=x[0], y(0)=y[0], n(0)=n[0]; 
:= ic1 , , = ( )x 0 x0  = ( )y 0 y0  = ( )n 0 n0  

> x_v:= [100, 1000, 10000]; 
:= x_v [ ], ,100 1000 10000  

> prey_string:=["x(t), x0=100", "x(t), x0=1000", "x(t), 
x0=10000"]; 

 := prey_string [ ], ,"x(t), x0=100" "x(t), x0=1000" "x(t), x0=10000"  
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> predator_string:=["y(t), x0=100", "y(t), x0=1000", "y(t), 
x0=10000"]; 

 := predator_string [ ], ,"y(t), x0=100" "y(t), x0=1000" "y(t), x0=10000"  

> xy_string:=["x(y), x0=100", "x(y), x0=1000", "x(y), 
x0=10000"]; 

 := xy_string [ ], ,"x(y), x0=100" "x(y), x0=1000" "x(y), x0=10000"  

> param2:= [a=10, b=60, M=3000000, x[0]=x_v[j], y[0]=1, 
N=1000000, n[0]=1000000]$j=1..3; 
param2 [ ], , , , , , = a 10  = b 60  = M 3000000  = x0 100  = y0 1  = N 1000000  = n0 1000000 , := 

[ ], , , , , , = a 10  = b 60  = M 3000000  = x0 1000  = y0 1  = N 1000000  = n0 1000000 ,

[ ], , , , , , = a 10  = b 60  = M 3000000  = x0 10000  = y0 1  = N 1000000  = n0 1000000

 

> for i from 1 by 1 to 3 do 
> sol2[i]:= dsolve(eval({sys1,ic1},param2[i]), U,  
type=numeric); 
> g3[i]:= odeplot(sol2[i], [[t,x(t)],[t,y(t)]], 0..10, 
numpoints=1000, thickness=2, legend=[prey_string[i], 
predator_string[i]], title="Prey Worm versus Infection-
Driven Predator Worm\nfor Different Initial Population 
Values", linestyle=i, 
labeldirections=[HORIZONTAL,VERTICAL], labels=["Time (unit 
of time)","Prey and Predator Population Size (# of 
machine)"], axes=BOXED); 
> g4[i]:= odeplot(sol2[i], [y(t),x(t)], 0..20, 
numpoints=1000, thickness=2, linestyle=i, 
legend=xy_string[i], title="Phase Portrait of Prey-Predator 
System\nfor Different Initial Population Values", 
labeldirections=[HORIZONTAL,VERTICAL],labels=["Predator 
Population (# of machines)","Prey Population (# of 
machines)"], axes=BOXED); 

> end do; 
 
> display(seq(g3[i],i=1..3)); 
> display(seq(g4[i],i=1..3)); 
 
 

III. Prey-Predator Expansion Case 

> restart; 
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> with(DEtools); 
> with(plots); 
> with(linalg); 
> with(student); 
> f:= (x,y,n) -> a*x*n/M - b*x*y/M; 

 := f  → ( ), ,x y n  − 
a x n

M
b x y

M  

> g:= (x,y,n) -> c*y*n/M + b*x*y/M; 

 := g  → ( ), ,x y n  + 
c y n

M
b x y

M  

> h:= (x,y,n) -> -a*x*n/M - c*y*n/M; 

 := h  → ( ), ,x y n −  − 
a x n

M
c y n

M  

> U:= [x(t),y(t),n(t)]; 
:= U [ ], ,( )x t ( )y t ( )n t  

> sys1:= diff(x(t),t)=f(x(t),y(t),n(t)), 
diff(y(t),t)=g(x(t),y(t),n(t)), 
diff(n(t),t)=h(x(t),y(t),n(t)); 

sys1  = d
d
t ( )x t  − 

a ( )x t ( )n t
M

b ( )x t ( )y t
M  = d

d
t ( )y t  + 

c ( )y t ( )n t
M

b ( )x t ( )y t
M, , := 

 = d
d
t ( )n t −  − 

a ( )x t ( )n t
M

c ( )y t ( )n t
M

 

> ic1:= x(0)=x[0], y(0)=y[0], n(0)=n[0]; 
:= ic1 , , = ( )x 0 x0  = ( )y 0 y0  = ( )n 0 n0  

> param2:= [a=10, b=25, c=5, M=3000000, x[0]=100, y[0]=1, 
n[0]=1000000]; 

 := param2 [ ], , , , , , = a 10  = b 25  = c 5  = M 3000000  = x0 100  = y0 1  = n0 1000000  

> sol2:= dsolve(eval({sys1,ic1},param2), U, type=numeric); 
> g3:= odeplot(sol2, [[t,x(t)],[t,y(t)],[t,n(t)]], 0..10, 
numpoints=1000, thickness=2, legend=["x(t)", "y(t)", 
"n(t)"], title="Prey  Worm versus Vulnerability-Driven 
Predator Worm", style=LINE, 
labeldirections=[HORIZONTAL,VERTICAL], labels=["Time (unit 
of time)","Prey, Predator, and Clean Populations (# of 
machines)"], axes=BOXED); 
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> g4:= odeplot(sol2, [y(t),x(t)], 0..20, numpoints=1000, 
thickness=2, style=LINE, legend="x(y)", title="Phase 
Portrait of Prey-Predator (Vulnerability-Driven) System", 
labeldirections=[HORIZONTAL,VERTICAL], labels=["Predator 
Population (# of machines)","Prey Population (# of 
machines)"], axes=boxed); 
 
> display(g3); 
 
> display(g4); 
 

IV. Prey-Predator and Antivirus Scenario 

> restart; 
> with(DEtools); 
> with(plots); 
> with(linalg); 
> with(student); 
> f:= (x,y,n,z) -> a*x*n/M - b*x*y/M - z*x; 

 := f  → ( ), , ,x y n z  −  − 
a x n

M
b x y

M z x  

> g:= (x,y,n,z) -> b*x*y/M - z*y; 

 := g  → ( ), , ,x y n z  − 
b x y

M z y  

> h:= (x,y,n,z) -> -a*x*n/M + z*x + z*y; 

 := h  → ( ), , ,x y n z −  +  + 
a x n

M z x z y  

> k:= (t) -> d/((t+1)^2); 

 := k  → t d
( ) + t 1 2

 

> sys1:= diff(x(t),t)=f(x(t),y(t),n(t),z(t)), 
diff(y(t),t)=g(x(t),y(t),n(t),z(t)), 
diff(n(t),t)=h(x(t),y(t),n(t),z(t)), diff(z(t),t)=k(t); 

sys1  = d
d
t ( )x t  −  − 

a ( )x t ( )n t
M

b ( )x t ( )y t
M ( )z t ( )x t  = d

d
t ( )y t  − 

b ( )x t ( )y t
M ( )z t ( )y t, , := 

 = d
d
t ( )n t −  +  + 

a ( )x t ( )n t
M ( )z t ( )x t ( )z t ( )y t  = d

d
t ( )z t

d
( ) + t 1 2,
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> ic1:= x(0)=x[0], y(0)=y[0], n(0)=n[0], z(0)=z[0]; 
 := ic1 , , , = ( )x 0 x0  = ( )y 0 y0  = ( )n 0 n0  = ( )z 0 z0  

> U:= [x(t),y(t),n(t),z(t)]; 
:= U [ ], , ,( )x t ( )y t ( )n t ( )z t  

> param:= [a=10, b=25, d=0.4, x[0]=100, y[0]=1, z[0]=0, 
n[0]=1000000, M=3000000]; 

 := param [ ], , , , , , , = a 10  = b 25  = d 0.4  = x0 100  = y0 1  = z0 0  = n0 1000000  = M 3000000  

> sol1:= dsolve(eval({sys1,ic1},param), U, type=numeric); 
:= sol1 proc ( ) ... end procx_rkf45  

> odeplot(sol1, [[t,x(t)],[t,y(t)]], 0..200, numpoints=1000, 
labels=["Time (unit of time)","Prey and Predator 
Populations (# of machines)"], 
labeldirections=[HORIZONTAL,VERTICAL], axes=BOXED, 
thickness=2, title="Prey Worm versus Infection-Driven 
Predator Worm\nwith Antivirus Effect", 
legend=["x(t),y(t)"]); 
> odeplot(sol1, [y(t),x(t)], 0..300, numpoints=2000, 
labels=["Predator Population (# of machines)","Prey 
Population (# of machines)"], 
labeldirections=[HORIZONTAL,VERTICAL], axes=BOXED, 
thickness=2, title="Phase Portrait of Prey-Predator 
(Infection-Driven) System\nwith Antivirus Effect", 
legend="x(y)"); 
 
 
> restart; 
> with(DEtools); 
> with(plots); 
> with(linalg); 
> with(student); 
> f:= (x,y,n,z) -> a*x*n/M - b*x*y/M - z*x; 

 := f  → ( ), , ,x y n z  −  − 
a x n

M
b x y

M z x  

> g:= (x,y,n,z) -> c*y*n/M + b*x*y/M - z*y; 

 := g  → ( ), , ,x y n z  +  − 
c y n

M
b x y

M z y  

> h:= (x,y,n,z) -> -a*x*n/M -c*y*n/M + z*x + z*y; 



 49 

 := h  → ( ), , ,x y n z −  −  +  + 
a x n

M
c y n

M z x z y  

> k:= (t) -> d/((t+1)^2); 

 := k  → t d
( ) + t 1 2

 

> sys1:= diff(x(t),t)=f(x(t),y(t),n(t),z(t)), 
diff(y(t),t)=g(x(t),y(t),n(t),z(t)), 
diff(n(t),t)=h(x(t),y(t),n(t),z(t)), diff(z(t),t)=k(t); 

sys1  = d
d
t ( )x t  −  − 

a ( )x t ( )n t
M

b ( )x t ( )y t
M ( )z t ( )x t , := 

 = d
d
t ( )y t  +  − 

c ( )y t ( )n t
M

b ( )x t ( )y t
M ( )z t ( )y t ,

 = d
d
t ( )n t −  −  +  + 

a ( )x t ( )n t
M

c ( )y t ( )n t
M ( )z t ( )x t ( )z t ( )y t  = d

d
t ( )z t d

( ) + t 1 2,
 

> ic1:= x(0)=x[0], y(0)=y[0], n(0)=n[0], z(0)=z[0]; 
 := ic1 , , , = ( )x 0 x0  = ( )y 0 y0  = ( )n 0 n0  = ( )z 0 z0  

> U:= [x(t),y(t),n(t),z(t)]; 
:= U [ ], , ,( )x t ( )y t ( )n t ( )z t  

> c_v:= [1,2]; 
:= c_v [ ],1 2  

> param:= [a=10, b=7, c=c_v[i], d=0.4, x[0]=100, y[0]=1, 
z[0]=0, n[0]=1000000, M=3000000]$j=1..2; 
param [ := 

, , , , , , , , = a 10  = b 7  = c [ ],1 2
i

 = d 0.4  = x0 100  = y0 1  = z0 0  = n0 1000000  = M 3000000

] [,
, , , , , , , , = a 10  = b 7  = c [ ],1 2

i
 = d 0.4  = x0 100  = y0 1  = z0 0  = n0 1000000  = M 3000000

]
 

> prey_string:=["x(t), c=1", "x(t), c=2"]; 
:= prey_string [ ],"x(t), c=1" "x(t), c=2"  

> predator_string:=["y(t), c=1", "y(t), c=2"]; 
:= predator_string [ ],"y(t), c=1" "y(t), c=2"  

> sty:= [1, 3]; 
:= sty [ ],1 3  
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> xy_string:=["x(y), c=1", "x(y), c=2"]; 
:= xy_string [ ],"x(y), c=1" "x(y), c=2"  

> for i from 1 by 1 to 2 do 
> sol[i]:= dsolve(eval({sys1,ic1},param[i]), U, 
type=numeric); 
> g1[i]:=odeplot(sol[i], [[t,x(t)],[t,y(t)]], 0..300, 
numpoints=1000, labels=["Time (unit of time)","Prey and 
Predator Populations (# of machines)"], 
labeldirections=[HORIZONTAL,VERTICAL], axes=BOXED, 
thickness=2, title="Prey Worm versus Vulnerability-Driven 
Predator Worm\nwith Antivirus Effect", 
legend=[prey_string[i],predator_string[i]], 
linestyle=sty[i]); 
> g2[i]:= odeplot(sol[i], [y(t),x(t)], 0..300, 
numpoints=2000, labels=["Predator Population (# of 
machines)","Prey Population (# of machines)"], 
labeldirections=[HORIZONTAL,VERTICAL], axes=BOXED, 
thickness=2, title="Phase Portrait of Prey-Predator 
(Vulnerability-Driven) System\nwith Antivirus Effect", 
legend=xy_string[i], linestyle=sty[i]); 

> end do; 
 
> display(g1[1]); 
> display(g1[2]); 
 
 

V. Patching Prey versus Predator Scenario 

> restart; 
> with(DEtools); 
> with(plots); 
> with(linalg); 
> with(student); 
> f:= (x,y,n,m) -> q*a*x*n/M + q*a*m*n/M - b*x*y/M; 

 := f  → ( ), , ,x y n m  +  − 
q a x n

M
q a m n

M
b x y

M  

> f1:=(x,y,n,m) -> p*a*x*n/M + p*a*m*n/M; 

 := f1  → ( ), , ,x y n m  + 
p a x n

M
p a m n

M  
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> g:= (x,y,n,m) -> b*x*y/M; 

 := g  → ( ), , ,x y n m b x y
M  

> h:= (x,y,n,m) -> -a*x*n/M - a*m*n/M; 

 := h  → ( ), , ,x y n m −  − 
a x n

M
a m n

M  

> sys1:= diff(x(t),t)=f(x(t),y(t),n(t),m(t)), 
diff(y(t),t)=g(x(t),y(t),n(t),m(t)), 
diff(n(t),t)=h(x(t),y(t),n(t),m(t)), 
diff(m(t),t)=f1(x(t),y(t),n(t),m(t)); 

sys1  = d
d
t ( )x t  +  − 

q a ( )x t ( )n t
M

q a ( )m t ( )n t
M

b ( )x t ( )y t
M  = d

d
t ( )y t b ( )x t ( )y t

M, , := 

 = d
d
t ( )n t −  − 

a ( )x t ( )n t
M

a ( )m t ( )n t
M  = d

d
t ( )m t  + 

p a ( )x t ( )n t
M

p a ( )m t ( )n t
M,

 

> U:= [x(t),y(t),n(t),m(t)]; 
:= U [ ], , ,( )x t ( )y t ( )n t ( )m t  

> ic1:= x(0)=x[0], y(0)=y[0], n(0)=n[0], m(0)=m[0]; 
 := ic1 , , , = ( )x 0 x0  = ( )y 0 y0  = ( )n 0 n0  = ( )m 0 m0  

> param1:= [a=10, b=15, x[0]=100, m[0]=0, y[0]=1, 
n[0]=1000000, M=3000000, p=0.3, q=0.7]; 
param1 [ := 

, , , , , , , , = a 10  = b 15  = x0 100  = m0 0  = y0 1  = n0 1000000  = M 3000000  = p 0.3  = q 0.7 ]  

> sol1:= dsolve(eval({sys1,ic1},param1), U, type=numeric); 
:= sol1 proc ( ) ... end procx_rkf45  

> odeplot(sol1, [[t,x(t)+m(t)],[t,y(t)],[t,n(t)]], 0..30, 
numpoints=300, legend=["xn(t)+xp(t)","y(t)","n(t)"], 
labeldirections=[HORIZONTAL,VERTICAL], labels=["Time", 
"Prey, Predator, and Clean Machines Population"], 
title="Patch Prey versus Infection Driven Predator", 
thickness=2); 
> odeplot(sol1, [y(t),x(t)+m(t)], 0..30, numpoints=300, 
legend="xn(y)+xp(y)", 
labeldirections=[HORIZONTAL,VERTICAL], labels=["Predator 
Population", "Prey Population"], title="Patch Prey versus 
Infection Driven-Predator Phase Portrait", thickness=2); 
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VI. Prey-Predator and System Patch Scenario 

> restart; 
> with(DEtools); 
> with(plots); 
> with(linalg); 
> with(student); 
> f:= (x,y,n,w) -> a*x*n/M - b*x*y/M; 

 := f  → ( ), , ,x y n w  − 
a x n

M
b x y

M  

> g:= (x,y,n,w) -> c*y*n/M + b*x*y/M; 

 := g  → ( ), , ,x y n w  + 
c y n

M
b x y

M  

> h:= (x,y,n,w) -> -a*x*n/M - c*y*n/M - w*n; 

 := h  → ( ), , ,x y n w −  −  − 
a x n

M
c y n

M w n  

> k:= (t) -> g/(t+1); 

 := k  → t g
 + t 1  

> U:= [x(t),y(t),n(t),w(t)]; 
:= U [ ], , ,( )x t ( )y t ( )n t ( )w t  

> sys1:= diff(x(t),t)=f(x(t),y(t),n(t),w(t)), 
diff(y(t),t)=g(x(t),y(t),n(t),w(t)), 
diff(n(t),t)=h(x(t),y(t),n(t),w(t)), diff(w(t),t)=k(t); 

sys1  = d
d
t ( )x t  − 

a ( )x t ( )n t
M

b ( )x t ( )y t
M  = d

d
t ( )y t  + 

c ( )y t ( )n t
M

b ( )x t ( )y t
M, , := 

 = d
d
t ( )n t −  −  − 

a ( )x t ( )n t
M

c ( )y t ( )n t
M ( )w t ( )n t  = d

d
t ( )w t

g
 + t 1,

 

> ic1:= x(0)=x[0], y(0)=y[0], n(0)=n[0], w(0)=w[0]; 
 := ic1 , , , = ( )x 0 x0  = ( )y 0 y0  = ( )n 0 n0  = ( )w 0 w0  

> g_v:= [0.05, 0.1, 0.5, 0.9]; 
:= g_v [ ], , ,0.05 0.1 0.5 0.9  

> param2:= [a=10, b=25, c=2, g=g_v[j], M=3000000, x[0]=100, 
y[0]=1, n[0]=1000000, w[0]=0]$j=1..4; 
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param2 [ := 
, , , , , , , , = a 10  = b 25  = c 2  = g 0.05  = M 3000000  = x0 100  = y0 1  = n0 1000000  = w0 0 ],

[ ], , , , , , , , = a 10  = b 25  = c 2  = g 0.1  = M 3000000  = x0 100  = y0 1  = n0 1000000  = w0 0 ,

[ ], , , , , , , , = a 10  = b 25  = c 2  = g 0.5  = M 3000000  = x0 100  = y0 1  = n0 1000000  = w0 0 ,
[ ], , , , , , , , = a 10  = b 25  = c 2  = g 0.9  = M 3000000  = x0 100  = y0 1  = n0 1000000  = w0 0

 

> x_s:=["x(t), k=0.05", "x(t), k=0.1", "x(t), k=0.5", 
"x(t), k=0.9"]; 

 := x_s [ ], , ,"x(t), k=0.05" "x(t), k=0.1" "x(t), k=0.5" "x(t), k=0.9"  

> y_s:=["y(t), k=0.05", "y(t), k=0.1", "y(t), k=0.5", 
"y(t), k=0.9"]; 

 := y_s [ ], , ,"y(t), k=0.05" "y(t), k=0.1" "y(t), k=0.5" "y(t), k=0.9"  

> xy_s:=["x(y), k=0.05", "x(y), k=0.1", "x(y), k=0.5", 
"x(y), k=0.9"]; 

 := xy_s [ ], , ,"x(y), k=0.05" "x(y), k=0.1" "x(y), k=0.5" "x(y), k=0.9"  

> for i from 1 by 1 to 4 do 
> sol2[i]:= dsolve(eval({sys1,ic1},param2[i]), U, 
type=numeric); 
> g3[i]:= odeplot(sol2[i], [[t,x(t)],[t,y(t)]], 0..30, 
numpoints=300, thickness=1, legend=[x_s[i], y_s[i]], 
title="Prey  Worm versus Vulnerability-Driven Predator 
Worm\nwith System Patch Effect", linestyle=i, 
labeldirections=[HORIZONTAL,VERTICAL], labels=["Time (unit 
of time)","Prey, Predator Populations (# of machines)"], 
axes=BOXED); 
> g4[i]:= odeplot(sol2[i], [y(t),x(t)], 0..20, 
numpoints=300, thickness=1, linestyle=i, legend=xy_s[i], 
title="Phase Portrait of Prey-Predator (Vulnerability-
Driven) System\nwith System Patch Effect", 
labeldirections=[HORIZONTAL,VERTICAL], labels=["Predator 
Population (# of machines)","Prey Population (# of 
machines)"], axes=boxed); 
> end do; 
 
> display (seq(g3[i],i=1..4)); 
> display (seq(g4[i],i=1..4)); 
 

 


