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Internet is increasingly being "active". Documents are being dynamically 

processed before they are served. The location of processing is also dynamic. The work 

investigates two aspects: (a) how documents can be processed within an overall service 

model/scenario in any location between the origin server and  the user-agent; (b) what 

type of network software layer in the intercepting machine can expedite intermediate 

information processing. Random access into processed data is believed to be an important 

performance criterion in any computation. Envisioning a generalized framework for 

supporting a wide range of possible content services, the thesis suggests a novel content 

scoping and indexing based random access mechanism into a passing stream for 

intercepting filter like appliances on this framework. It also presents an application 

programming interface for efficient stream editing. The work also presents a user space 

implementation of the proposed intercepting machine and a performance study of the 

scheme on this implementation. Even without any kernel level support, the 

implementation showed about 500-800% speedup over today’s content servicing 

technique in normal conditions. The result suggests such random access can significantly 

speed up future intercepting applications of the Internet. 
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CHAPTER 1 

 

INTRODUCTION 

 

Internet is increasingly being “active”. Documents are being dynamically processed 

before they are served. The location of processing is also dynamic. In this thesis we 

investigate two aspects: (a) how documents can be processed within an overall service 

model/scenario in any location between the origin server and user-agent; (b) what type of 

network software layer in the intercepting machine can facilitate intermediate information 

processing. 

 

1.1 Overview 

With the growing diversity and broadening geographically coverage of Internet 

population, there is more need for personalized and localized information. Simple 

server-client service model is no longer satisfying cyber people. The network, which used 

to be considered only as transmitting media, now becomes more and more “active” 

between the information sources and destinations. Beginning from cache, proxy and 

gateways, new services emerge rapidly. Such services include content adaptation, content 

personalization, location-aware data insertion, security filters, etc. All of these are 

fundamentally stream interception machines requiring some form of intermediate access 
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inside transiting traffic’s content. A significant percent of the delivered Internet traffic is 

now ‘touched’.  

However, most real- life content data carried over network packets are multi- level 

hierarchically encapsulated and lack of indexing mechanism. Searching and pinpointing 

exactly where content adaptation should take place are exhausting jobs for conventional 

filter programs. For example, in annotation based web content transcoding [2], the 

transcoder has to make considerable effort in searching a certain value in the annotations 

(basically tags/metadata expressed by XML) at the application level before it can decide 

how the content should be transcoded. To make things worse, lack of scoping mechanism 

in IP packet structures, a filter program does not know if a passing-by stream is in its 

service range, and it has to be decapsulated and encapsulated anyway. For example, in an 

advertisement insertion service, a filter program should be only interested in HTML 

streams passing by. However, current existing filtering programs have to decapsulate all 

passing streams, which may include JPEG, MPEG or MP3 streams that the filter program 

is not supposed to do anything with.  

Lacking the facilities for indexing and scoping for passing-by streams, current 

protocol design and protocol packet structure are inefficient in dealing with filtering and 

content adaptation in network. The problem has major implication on the CPU cycle, 

memory size, and overall performance of any intercepting appliance system’s architecture. 
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The stream is the working data structure of these capsules. It is perhaps as salient to 

appliance’s overall architecture as the design of disk scheduling algorithm or multilevel 

memory/cache organization is to the conventional machine architecture. Although simple 

end-to-end applications may do away with marginal treatment of this issue, indeed, we 

believe right placement of protocol element inside data stream and some form of random 

access will be one of the most important factor for high performance stream data 

processing appliances.  

Meanwhile, a group of network overlays emerge as frameworks trying to provide 

systematic execution environments to the increasing Internet services. Though the first 

generation CDNs emerged as “passive” temporary caching proxies of HTTP responses 

now we are seeing increased array of other services for customized content delivery that 

needs “active” computation ability at various intermediate points in the information 

network. These points will act as the hub for various actions ranging from rich domain 

knowledge based information steering, filtering, multiplexing, adaptation that will be 

required by ubiquitous services. Unfortunately, at present there is a serious gap in Internet 

protocol suit that can provide systematic support for these emerging services. Currently 

most such ‘adaptations’ are simulated in content provider’s own site typically with arrays 

of backend servers. Such content servicing is mostly isolated and lacks interoperability or 

scalability. The overall growth scenario lacks any roadmap for sustained evolution of 
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such services. 

In this thesis we focus on this little explored but important problem and demonstrate 

a novel content indexing scheme that can facilitate dynamic index based random access 

into streams and provide performance boost to intercepting filter like appliances. Though 

conceptually the mechanism can be implemented in layers above IP, we present an IPV6 

[5] based protocol called Embedded Data Indexing Protocol (EDIP). It is an IPv6 

extension header based content indexing mechanism, which defines how a Content 

Provider (CP)’s serverlet can add special marks into the data stream, and how an 

Adaptation Router (AR) can decode those marks from the data streams and gain pattern 

dependent random access into the elements of required data stream. An example service 

with EDIP header is show in Fig 1.1. 

 

Fig 1.1 Example Service with EDIP Header 

We also investigate the vision of a generalized content services network framework, 
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called Active Service Distribution and Localization (ASDL) model. We outline a 

framework that can support deployments of wide range of services with various 

specification and initiation dependencies. However, before presenting the fast filtering 

mechanism and its framework, first we briefly present some of the very recent and 

interesting developments in this fast unfolding area. 

1.2 Background and Related Work  

The first generation of systematic distributed cache coordination began with the 

proposals for content distribution networks (CDN). Commercially, we have seen the 

emergence of several such content caching systems. The most remarkable one is probably 

Akamai [3], who  provides the global delivery platform for the official web site of the 

2002 FIFA World Cup Korea/Japan™ (www.fifaworldcup.com), and making it the most 

popular sports event in history, according to FIFA1. Akamai achieves huge success in 

business by distributing caches/proxy worldwide, which, in concept, provides closer and 

faster access points to end-users. 

Both Akamai and a number of other teams have been looking into technology for 

content adaptation at an origin server or in those CDN proxy caches. Example works 

include Spyglass [16], IBM Transcoding proxy[12][17], UC Berkeley TranSend [18], and 

                                                 
1Akamai's content delivery services and scalable infrastructure have helped support the more than 

464 million page views during the first eight days of the tournament (May 31 - June 7, 2002)  

---http://www.akamai.com/en/html/about/customers.html on Jan 29, 2002.  
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Mobiware [19]. With provision for value added service in the caching proxies, the IETF 

Working Group has recently proposed the Open Pluggable Edge Services (OPES) [9][10] 

and the Internet Content Adaptation Protocol (iCAP) [20] defining the basic functions of 

future caching proxy. iCAP defined how various caching objects can be transported from 

one cache to another. OPES provides some interesting capabilities to caching proxies. An 

OPES proxy can be equipped with message parsers, rule modules, and proxylets library. 

When messages flow through an OPES proxy, they are not only cached but also 

automatically parsed and processed with these rules[14]. Ma et. al. [4][6]suggested an 

enhanced model of content services networking (CSN) pursuing a more powerful view of 

the application server (or proxy). Ma’s CSN separates passive caching proxies from 

application servers. The application servers can directly communication with the content 

servers and user-agents. Ma shows indeed this approach can handle more service 

scenarios. These include post or pre distribution services either on behalf of the user 

agent or on behalf of the content-provider. Also, it allows for more versatile services to be 

placed into the system as the processing is performed entirely in the application server— a 

separate entity than the caching proxy.  

However, both OPES and basic CSN are still considered overly proxy centric. This 

approach does not provide enough flexibility in accommodating various service 

arrangements that may arise in the real service deployments, which often restricts where, 
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when and how the service can be performed, redirected, and who may provide the service 

specifications. If we look back into the OPES scenario, we will find that a service 

provider may download a set of “rules”, and interpret and execute it by the rule processor. 

Here, rules are actually a set of program language with specific purpose. However, we 

noticed some limitations in such scenario. An obvious one is that, although the OPES 

model can be configured to “source-centric” or “client-centric”[10], there is not an easy 

way for the client to gain help from the source or vise versa. An alternative way to 

describe the “rules” is by a pair of tightly coupled program, distributed by a single 

authority to both the service source and the service client. Our ASDL[13] model is such 

an infrastructure which is considered “service centric”, and EDIP, which is a special IPv6 

extension, can be used as a media carrying the helping information in this case.  

The idea of putting information in IP level headers is not new, but little effort has 

been made in utilizing it in value-added services. S. Blake discussed about the 

differentiated services by adding marker field DS in IPv4 and IPv6 headers [1]. Packets 

marked by this field will receive a particular per-hop forwarding behavior on nodes along 

their path. It is a close approach as our EDIP. However, they didn’t investigate the 

possibility to add indexing information into IP headers and utilize it in value-added 

service to make random access of the data stream available. Spatscheck [7] and D. Maltz 

[8] have separately presented two TCP splicing mechanisms which would allow a filter 
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(connected by two TCP links at two ends), to shed-off some TCP window maintenance 

functions, for passive filters by splicing the two TCP stream at two end-points. 

The technique we propose accelerates the actual filtering operation and applications, 

as much as it helps the networking layers. Also, the gain is not restricted for passive mode 

of operation. It uses network layer markup mechanisms to avoid decapsulation of 

non-essential application data (stream segments). Also, a key difference is that we include 

the case of cooperative application processing in the service model where server side help 

may also be available. One can think EDIP is another index mechanism at the IP level 

beneath the application level for faster marker recognizing. 

 

1.3 Layout of the Thesis 

In Chapter2, we’ll briefly introduce the framework of active service distribution and 

Localization (ASDL) model that provides application service between the end-user and 

the content-provider. We outline a framework that can support deployment of wide range 

of services with various specification and initiation dependencies. Then, in Chapter 3, 

we’ll show the detail design of EDIP protocol and its working mechanism, which enables 

the high performance filter appliance. Finally, we’ll examine the test bed of a fast 

filtering system based on EDIP in Chapter 4, and show the performance boost over 

conventional systems.  
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CHAPTER 2 

 

ACTIVE SERVICE DISTRIBUTION AND LOCALIZATION MODEL 

 

In this chapter, we propose the Active Service Distribution and Localization (ASDL) 

Model, which is an extension to CDN and CSN architectures. CDN defines a set of cache 

proxies distributed at the edge of Internet for faster data access. CSN extended the cache 

proxy concept to application proxy, which has the processing abilities for content 

adaptation rather than just receive-store-send function. Our ASDL model extends Ma’s 

work, and makes co-operative computing available to content providers and service 

providers by distributing markers’ programs and filters’ programs between them. This 

ASDL model provides a systematic environment for EDIP enabled fast filtering and 

adapting.  

2.1 Architecture and Components 

The Active Service Distribution and Localization (ASDL) Model we propose 

identifies the following entities, as shown in Figure 1.  

1. Service Management Server (SMS)  

2. Adaptation Router (AR)  

3. Content Provider (CP) and  
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4. End-User-agent (EU)  

In this extended CSN infrastructure, the first two components play novel role. We 

provide a short description of each: 

 

Fig 2.1: ASDL Architecture and Components 

1. Service Management Server (SMS) 

SMS serves as the principle service provider. They act as the mediation center among 

the end-users, adaptation router infrastructure providers and the content providers. The 

SMS owns the program modules called switchlets that are dynamically deployable to the 

ARs. These programs form the actual service. SMSs are responsible for the following 

tasks: 
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(1) They maintain static and dynamic information about the service execution 

environment and the locations of the applications  

(2) They receive the service registration or cancellation requests from end-users, 

adaptation routers or content providers 

(3) Provide all authentication services 

(4) Aggregate the information about usage, availability and location of each 

deployed service, and then provide the information back to the deployment 

requester 

(5) Provide dynamic status visualization and monitoring, accounting and billing 

functionalities to value added service participating parties who use ASDL as an 

information exchange path 

(6) Each SMS is responsible for collecting information about its domain and 

periodically exchanges the information, such as registration and deployment 

status, with other cooperating SMSs. These exchanges can be triggered 

automatically if there is a change in the system.  

2. Adaptation-Router (AR) 

The adaptation routers are sparsely distributed special networked computing 

platforms, which, typically, will be deployed near the edge of the Internet. These can be 

setup as a service overlay and be owned by certain ISPs (or overlay ISPs). These ARs can 
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be rented as computational platform to process data streams either on behalf of content 

providers (CPs), the end users or even on behalf of the overlay ISP. Unlike the CSN’s 

application proxy servers [6], these ARs can have special TCP/IP layers, which can 

enable them to fast intercept streams. The processing speed can be much higher than in 

application level, because (1) much less decapsulation, encapsulation work will be 

needed; (2) and simpler instructions in IP level will let us take advantage of RISC 

technology; (3) and some of data streams may indexed or marked by the corresponding 

ICP serverlet, for random access into the data stream. Chapter 3 describes the architecture 

of such a system.  

3. Content-Provider (CP)  

CP servers can be typical web servers. However, the protocol allows servelets to be 

deployed at sender’s location, if required by any service. For example a serverlet may 

pre-mark the outgoing data streams, when a particular service is active on the stream. The 

marker in a data stream can enable random access in adaptation routers (ARs), and 

therefore dramatically reduces the computation burden of ARs. We will show an active 

hyperlinking example in Chapter 3 and the saving and the cost will be shown and 

analyzed in our example. 

4. End-User-Agent 

EUs are the sinks/terminals of data streams. They may be the normal desktop/laptop 
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computers, or maybe handheld or wireless devices, or wearable computers. These 

terminals may have some kind of resource limitation, and therefore they need the 

resource or service provided by the ISP/AR. End-user agents generally maintain a 

resource-personalization specification, which can be polled by the SMS to determine the 

type and extensions of preprocessing requirements. 

2.2 Information Components 

Any service arrangement will require various types of information to be exchanged 

in various sequences among these parties.  

The first form is the program elements (or the servelets and switchlets) those 

together create the service. A single service may require switchlets and serverlets to be 

deployed into multiple points.  

These modules themselves also require additional parameters to run the service. The 

model identifies two types of such parameters. The static adaptation parameters are those 

can be received before the service begins. The dynamic adaptation parameters are those 

required with every request. We call this kind of parameters as specifications, and the 

party who send out the specifications as the specifier.  

Example of static information includes personalization cookie box that contains a set 

of tablets containing the user, user-agent, and user-environment specific constraint 

information.  
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ASDL also allows dynamic custom index based random stream access. A serverlet 

running on the content provider’s site is a program that can be designed to help the 

service from the content source, such as source file indexing. An active application is a 

program that provides the service directly to the end-user, and it is designed to run on an 

adaptation router, which is normally controlled by some Internet service provider (ISP).  

2.3 ASDL Contracting Model 

The complexity of application service management grows because these information 

elements can come from variety of parties in various sequences based on the specific 

application service scenario. Before we introduce the ASDL protocol let us consider the 

issues: (1) who is going to supply the serverlet running on the side of content provider 

and the active applications running on the side of service provider? (2) Who may be the 

service initiator? (3) Who are going to provide the parameter specifications? 
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Destination of specification 
Specfier 

EU CP AR(SP) 

EU No 

Yes, by HTTP 

extensions or web 

forms 

Yes, by HTTP 

extensions or web 

forms 

CP 

Yes, by XML or 

HTTP meta 

extensions 

No Yes, by serverlet 

AR(SP) 
Yes, by HTTP meta 

extensions 

Yes, by active 

application program 
No 

Chart 2.1: Specification methods between different parties. 

All the three parties (EU, CP and AR) can be initiators and parameter specifiers of the  

ASDL services. However, when the initiator and the specifier are the same party, there is 

no need for extra transmission. For example, if an end-user is requesting a bandwidth 

adaptation service, he or she can include the bandwidth information inside the initial 

request. However, transmission for dependent specifications between different parties is 

necessary. There are several ways to transmit the specifications: (1) by tightly coupled 

serverlet and active application programs (2) by XMLs or XML-like languages (3) by 

meta tags.  The specifications between a CP and a SP can be expressed by method (1), 

because they share a couple of serverlet and active application programs, both of which 

derived from SMS. Information can be exchanged freely between the coup led programs. 
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The specification from content providers to the end-users can be expressed by the XMLs 

and HTTP meta extensions, while the specification from AR (SP) to the end-users can 

only be expressed by the HTTP meta extension. The CP and AR can make up  web forms 

for the end-users convenience to provide the specification information.  Chart 2.1 

summarizes the discussion. 

2.4 Classification of Active Services 

From the service requesters’ view, we may classify the services into two categories: 

(1) the single service request and (2) the group service request. A single service is 

requested by a single user and it will work solely for one user to meet its specific request. 

For example, a handheld device holder may request the adaptation router to translate all 

English web pages into German. This cannot be done at the handheld device, since it 

lacks memory, storage or processing speed to finish that task. In this case, the end-user 

may “buy” computation resource from the “net”. The other type of service is group  

service, which is initiated either by the service provider or the content provider. For 

example, a service provider may have some agreement with the third party and advertise 

for them. The service provider then can analyze the web html files and put the ads at 

appropriate places. The group service can also be initiated by content providers. For 

example, a video source server may put special marks in the video stream and help the 

adaptation routers to downscale the video gracefully and meet the bandwidth requirement 
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for all different users. The service examples and the modes they belong to are listed 

below in chart 2.2.  

Mode 

Single 

Service 

Group Services 
Example of active services 

EUI SPI CPI 

Insertion of Ad Banners  *  

Multimedia adaptation for limited client 

bandwidth 
* * * 

Multi- language adaptation for different user 

preference 
* * * 

Active hyperlinking * *  

Active re-direction * *  

Virus Scanning *   

Stream data adaptation and optimization * *  

Watermarking   * 

Insertion of regional data * *  

Language translation *   

Chart 2.2: A list of example services and their modes 

2.5 ASDL SCENARIOS 

2.5.1 EUI Model 

In this scenario, the end-user initiates the service. Fig-2.2 illustrates the communication 

steps. 
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Setup Stage: 

(1) The EU sends service request to SMS. 

(2) SMS sends query to the participating ICP Source (ICPS) and AR to collect necessary 

configuration data. The query is with the identification of the SMS. 

(3) The ICPS and the AR response with digital signature for authentication and other 

necessary configuration information to SMS. 

(4) SMS then delivers the application modules to ICPS and AR, with corresponding 

security keys, which are required when installing the modules. 

(5) The ICPS and the AR send back the acknowledgements. 

(6) SMS sends the response back to EU with the certificates that EU may need when 

sending requests to AR and ICPS. 

Data Transfer Stage: 

(A) EU sends request with certificates provided by SMS. 

(B) ICPS sends out data packages with EDIP headers.  

(C) AR processes the packages with EDIP headers, performs value-added in 

service, and sends result to EU with normal IP packages 
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Fig 2.2: End-user initiates single service 

2.5.2 CPI Model 

In this scenario, the content-provider initiates the service. Fig-2.3 illustrates the 

communication steps. 

Setup Stage: 

(1) The ICP Source (ICPS) sends service request to SMS. 

(2) SMS sends query to the participating ICPS and AR to collect necessary configuration 
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data. The query is with the identification of the SMS 

(3) The ICPS and the AR response with digital signature for authentication and other 

necessary configuration information to SMS. 

(4) SMS then delivers the application modules to ICPS and AR, with corresponding 

security keys, which are required when installing the modules. 

(5) The ICPS and the AR send back the acknowledgements. 

(6) SMS sends the response back to ICPS with certificates that ICPS may need when 

sending requests to AR. 

Data Transfer Stage:  

(A) End-user (EU) sends the data request 

(B) ICPS sends out data packages with EDIP headers.  

(C) AR processes the packages with EDIP headers, performs va lue-added in service, and 

sends result to EU with normal IP packages 
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Fig 2.3: Content Provider initiates group service 

2.5.3 SPI Model 

In this scenario, the service provider itself initiates the service, and requests contracts 

from the content provider and adaptation routers. Fig-2.4 illustrates the communication 

steps. 

Setup Stage: 

(1) The Service Provider (SP) sends service request to SMS  

(2) SMS sends query to the participating ICP Source (ICPS) and AR to collect necessary 
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configuration data. The query is with the identification of the SMS 

(3) The ICPS and the AR response with digital signature for authentication and other 

necessary configuration information to SMS. 

(4) SMS then delivers the application modules to ICPS and AR, with corresponding 

security keys, which are required when installing the modules. 

(5) The ICPS and the AR send back the acknowledgements.  

(7) SMS sends response back to ICPS with the certificates that ICPS may need when 

sending requests to AR. 

Data Transfer Stage: 

(A) EU sends the data request. 

(B) ICPS sends out data packages with EDIP headers. 

(D) AR processes the packages with EDIP headers, performs value-added in service, and 

sends result to EU with normal IP packages. 
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Fig 2.4: Service provider initiates group service 
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CHAPTER 3 

 

EDIP PROTOCOL 

 

In this chapter, we propose Embedded Data Indexing Protocol (EDIP). We will first 

introduce the concept of in route application service. Then we’ll move to EDIP’s 

indexing mechanism and its header format. We are also going to examine how the EDIP 

is encapsulated and decapsulated at content providers and service providers, respectively. 

A set of API is provided for easier user filter application developing. Finally, we’ll go 

through a number of examples and see the result from some sample user plug- in 

applications. 

3.1 In Route Application Service 

First we explain the service model. In the service model a content stream from 

content provider’s server (CP) flow to the end-user (EU). However it may also be 

processed in an ISP application processing (AP) server in between during transit. The end 

user initiates the content delivery by requesting content from the content provider via 

Internet. The Application Service Provider (ASP) modifies the content and adds value to 

the communication by application level intercept processing at strategically and/or 

topologically located AP servers. In special cases the CP and AP can be collocated in 
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application service provider’s AP. 

A special case of AP intervention is the passive filtering service where AP server 

only monitors the stream without changing it. A further special case is the stealth filters 

where servers or end-users are not aware of the intercept service (and thus also not 

helping). If the content provider is also willing to help we call it co-operative filtering 

(for non-co-operative filtering some extra fast string matching operations are needed at 

the AP server).   

The AP server additionally can provide “content cache”. The cache can connect at 

either ‘pre’ or ‘post’ AP stage. Conceptually, caching is just another piped service that AP 

can provide. AP server can be configured to provide multiple services piped on a specific 

request/response stream-- caching can be one of them.  The piping sequence is soft 

configurable. Complex application service can be composed from simpler services by 

service piping. The connection between EU, CP, and AP servers are provided by 

point-to-point separate TCP/IP or UDP connections. 

3.2 EDIP Indexing Mechanism 

The operation of application processing is expedited by two techniques. The first is 

pre-marking the content stream and allowing fast access into to the stream. Second is the 

selective decapsulation re-encapsulation of only the pertinent data segments. Finally, we 
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also define a language to express and carry the marks between the parties involved.  

The actual content intercept processing is performed by a program called the 

application filter capsule, and it runs on AP server. The application service provider 

generally also sends a marking serverlets to the CP server for marking of the content 

stream. Every Application Service Processing has a specified “scope segment” and a “key 

segment” in it. Generally a service is conditional. The data element which contains the 

condition or key is always intercepted and is decapsulated and delivered to the 

application capsule. The stream segment which is within the scope of an active key is 

intercepted and buffered However, its decapsulation and delivery can be deferred based 

on the key evaluation result. If the evaluation is fa lse, it is directly forwarded. Fig-1 

shows the example service with EDIP header, and Fig-3 and Fig-4 are the schematics of 

the enhanced network layers that we have designed for the appliances machine. 

3.3 EDIP Header Format 

EDIP uses IPV6 extension header for content marking. It contains two parts: the 

General Field (GF) and Key Blocks (KB). The General Field (GF) identifies that it is an 

EDIP header, and contains general information in how to process the header. Each Key 

Block (KB) represents a keyword in this IP package, with positions of the keyword 

indexed by the offsets. Not every EDIP header has one or more KBs. Sometimes, an 
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EDIP header may only have a GF, representing that the current IP package belongs to an 

indexed stream, while there is no key word appearance in this package. The total number 

of KBs that an EDIP can have is only limited to the maximum size of an IP package. Fig 

2.1 shows a possible EDIP header format. 

 

Fig-3.1: EDIP Header Format 

Fields in EDIP are defined as below: 

---General Fields:  

Next Header: Next Header Types 

Version: Version number of EDIP, the first bit indicating if it is encrypted or not 

(1=encrypted, 0=not encrypted) 
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Checksum: Standard Checksum 

HDR Length: The length of this EDIP Header, in words(4bytes). 

Stream ID: Hash number of source port, destination port and sequence number from TCP 

header. 

NKw: Number of Keywords included in this EDIP Header, 16 maximum 

Reserved: Reserved for future use (for example, longer keyword length) 

---Key Block Fields 

Key Len: Keyword Length, in words, 16 maximum 

Nidx: Number of Indexes for the keyword, 16 maximum 

Content Length: The length, in bytes, of content immediate after the keyword, 256 bytes 

maximum 

Offset: Location of the keyword in the ipv6 package 

3.4 EDIP Encapsulation by Servelets 

After capsulated by TCP/UDP, data stream can pass through multiple markers in the 
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source’s serverlet pipe. Each marker program is associated with exactly one keyword and 

it examines the passing stream to see if there is any keyword appearance inside. If there 

are one or more appearances, the marker generates a key block containing the offset 

information about where the keyword is in the stream. Later, these key blocks join the 

original data stream in the general field generator, where a GF, as well as the key blocks, 

will be added at the beginning of each package. The encapsulation process is shown 

below in Fig 3.2. 

 

Fig-3.2: EDIP Encapsulation 

The markers’ codes are registered and distributed by SMS. Each CP’s server running 
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the markers will have a marker admin (MA) to maintain the markers. After MA receives 

markers deployment request from SMS and pass the authentications, MA will check if 

there is available resource (such as available slots in markers’ pool, the size limit of a 

marker, etc) to deploy the marker. To enhance the security, MA may provide an 

encryption key to the general field generator, who may encipher the GF, and only 

authorized value-added service providers can decipher it. A possible marker and GF 

generator’s pseudo codes are presented below in pseudo-3.1 and pseudo-3.2. 

 

Pseudo-3.1: Marker’s pseudocode 
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A real marker program example at source side is attached at the end of this thesis. 

The program used in the sample introduced in section 3.8.1.  

 

Pseudo-3.2: General Field Generator’s Code 
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3.5 EDIP Decapsulation and Indexing/Scoping 

EDIP decapsulation and value-added services are executed in the ISPs Adaptation Router 

(AR), which sit on the edge of Internet backbone. There are several tasks that an AR must 

do. (1) Differentiate the IP packages that need special processing from those normal IP 

packages. (2) Retrieve the offset information from the special-marked streams to the 

corresponding applications, which may use the information for value-added service. (3) 

Negotiate with SMS and maintain the service statistics. The main components include a 

stream controller, a keyword detector and a buffer controller.  

 

Fig-3.3 EDIP Selective Decapsulation System 
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Fig-3.3 shows a possible architecture of a typical selective decapsulation system running 

on a router. Its main components and functions are described as follows: 

Stream Controller: 

A stream controller’s input is mixed IP packages, which may be IP packages with 

EDIP header, or just normal IP packages without EDIP header. A stream controller is 

supposed to forward those IP packages without EDIP in normal procedures, and store 

those with EDIP header into the Buffer for further actions. Further more, if the EDIP 

header contains any key blocks, the stream controller will decrypt it with corresponding 

decryption key from AR Admin, and send the keywords, contents and streamids to 

Keyword Detector. A possible pseudocode of a stream controller is shown below in 

Pseudo-3.3: 
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Pseudo-3.3: Stream Controller’s Code 

Buffer Controller: 

The buffer controller is supposed to maintain two lists --- a required_steamid_list and 

a release_streamid_list. Periodically, the buffer controller will check if there are any IP 

packages with the stream id listed in the two lists. Those in required list will be sent to 

application level and those in release list will be forwarded to their destinations. Every IP 

package in the buffer has a timestamp. If timestamp expires, the IP package will be 

released. A possible pseudocode of a buffer controller is shown below in Pseudo-3.4:  

 

Pseudo-3.4: Buffer Controller’s code 



35 
 

Keyword Detector: 

The keyword detector is supposed to check if the keywords sent by stream controller are 

in the keyword list maintained by AR Admin. If not, the stream id will be added into 

release_streamid_list in the buffer controller. If yes, the stream id can be added to the 

required_streamid_list. Sometimes, Detector can do a little more. For example, each 

keyword entry can have a condition on the corresponding content. If a package’s content 

matches the corresponding condition, its stream id will be added in the 

required_streamid_list in the buffer controller. If not, release it. A possible pseudocode of 

a keyword detector is shown below in Pseudo-3.5: 

 

Pseudo-3.5: Keyword Detector’s Code 

If we look back, we will find that the existence of EDIP header, in fact, plays the role 

of scoping facility, while the offsets in the EDIP header play the role of indexing facility. 

By having these two facilities, the performance of applications running at adaptation 
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routers will be improved significantly, which will be shown in Chapter 4. 

3.6 Application Processing 

The application is armed with a set of special services APIs to take advantage of the 

marking processing.  

These APIs can be viewed as two parts: (1) the administrative API subset, which is 

related to the start and stop of the service, and (2) the data manipulate API subset, which 

is related to editing the coming stream. An example of these two subsets of APIs is 

illustrated below in table-3.1 and table-3.2. The application program can use the 

administrative API subset to edit, bypass, drop, or insert bytes with a sequence stream of 

incoming data. The buffers are application buffers. Each of these operations is performed 

within the context of an incoming and outgoing TCP socket stream pair. Fig-5 shows an 

example of a stream-edit capsule and its edit operation on a stream. The stream offsets 

are algebraically calculated from key indexes supplied by EDIP. The data manipulate API 

subset can enable/disable the tracking of keys by activating/deactivating the 

marker/servelets and the intercept mechanism beneath.  It can request for the next offset 

for a particular key. If the key test is successful (or unsuccessful), it can request (or 

release) delivery of the scope data. The AP capsules are also given a set of fast string 

search and protocol parsing routines (with potential hardware accelerators). 
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Fig-3.4: Data Manipulate API Operations 

API Comment 

ActivateMarker(IP, M_ID)  Start the marker (serverlet) at source 

side 

DeactivateMarker(IP, M_ID)  Stop the marker (serverlet) at source 

side 

ActivateEditor(IP, E_ID, labellist, range)  Start the editor at router’s side 

DeactivateEditor(IP, E_ID, range) Stop the editor at router’s side 

ActivateTrap(E_ID, labellist) Set the trapper in OS 

Table –3.1: Administrative API Subset 
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API Comment 

Associate (inQ, outQ)  Associate two streams 

GetOffset (label) Get the offset of the label in the stream 

Bypass(sid, a, b)  Forward bytes from a to b 

Drop(sid, c, d)  Drop bytes c to d (into trash sink) 

Deliver(sid, e,f, &msgbuffer) Deliver bytes from e to f with newcontent 

Insert (sid, msgbuffer) Insert the msgbuffer content to the stream. 

Table –3.2 Data Manipulate API Subset 

After the serverlet and the filter have been deployed, a common procedure will be 

taken at the adaptation router’s execution environment to conduct the service.  Both the 

administrative API and the data manipulate API will be used in those procedures. 

(1) Activate marker (in serverlet) at the source side. This step will activate the pattern 

detector, which will search some specific keywords or labels. 

(2) Activate system trap in the active router’s execution OS, telling the OS when some 

keyword in the labellist comes, wake the service up. 

(3) Go to sleep 

(4) When waken up by the OS, request to deliver the stream within the specified range to 

the application 

(5) The application will use data manipulate APIs, such as getoffset(), bypass(), insert(), 
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drop() and etc to modify the data stream if needed. An example of a content processing 

using stream edit API is show in Fig-3.5. 

(6) Go to step (3) until the editor is deactivated. 

 

Fig 3.5 Example of Content Processing with stream-edit API 

For example, if we want to process the stream shown in Fig-3.5 for language 

translation, one possible procedure will be taken as shown in Pseudo-3.6. The labellist 

used in the pseudo code is shown in table-3.3. The offset information in table-3.3 is 

retrieved after ‘GetOffset’ API is excuted in pseudo-3.6. 
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M_ID Keyword Offset 

1001 <language=”en”> 0 

1002 <language=”bn”> 57 

1003 <language=”cn”> 105 

1004 </language> 45, 93, 133 

Table-3.3: The labellist used in the example shown in Fig 3.6 
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Pseudo-3.6: A pseudocode for processing examples shown in Fig-3.5 

To get friendlier programming interface, these APIs may be wrapped for easier use. 

At the end of the thesis, we attached a simple filter application, which adds links to some 

specific keywords appeared in passing-by HTML streams, to show how the APIs and 

wrap-up work. The result of the filtering is going to be shown in Section 3.8.1. 
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3.7 An example illustration 

The proposed mechanism accelerates the application level intercept process. The 

advantage is derived essentially by three principal sources: (1)Only the byte segments 

carrying ‘keys’ are unconditionally decapsulated. (2)The byte segments carrying ‘scope’ 

are conditionally decapsulated only when the key conditions are true. (3)Rest of the bytes 

are never decapsulated. 

There is also another source of run-time performance boost. Stream is marked by the 

servelet processes running at the content source. In cases, it is sometime possible to mark 

with direct content knowledge by the content generator without any string search. 

Otherwise, the marking can still be performed by sting search/ or parsing of the original 

content as preprocessing. It still therefore can drastically reduce the run time cost. To 

compare— current filters have to perform run-time full search and/or full parsing. The 

scheme however has cost. It is the extra data that will be needed by the EDIP markers. 

The actual saving therefore is the function of key density, and the key success probability 

in the stream. Though, apparently it may seem that high key density can offset the 

performance gain, but in practice the EDIP key density can always be controlled by using 

a gross key in EDIP and then using application level processing to find the real keys. This 

is benefit of application level soft key definition ability. In practice, only a small part of 

data stream is generally modified. Consequently, the expensive part is way too 
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inconsequential compared to the saving made by bypassing the costly decapsulation/ 

reencapsulation of the rest.  

Here we introduce an active hyperlinking example, which will add a corresponding 

hyper link when it meets some specific word. It involves three parties: (1) an end user, 

who is requesting several files from content provider via Internet; (2) a content provider, 

say, CNN.COM, which provides the original data and runs the serverlets on one of its 

servers generating the EDIP header; (3) a value-added service provider, normally known 

as an ISP, say, AOL.COM, which owns the ARs. The scenario is shown below in Fig 3.6. 

 

Fig 3.6 An example service 

Assumptions: 

l A user of AOL is requesting two HTML files and one JPG file from CNN.COM.  

l AOL’s online mall is selling motherboards, and they want to put hyperlinks on where 

the word “motherboard” appears in HTML file.  
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l AOL has an agreement with CNN.COM --- CNN will put a marker where the word 

“motherboard” appears. 

l The first HTML file is divided into 2 IP packages, the second HTML file is divided 

into 3 IP packages, the JPG file is divided into 3 IP packages 

l The first HTML file has an EDIP header with keyword “shirt”, requested by other 

entity. AOL is supposed to ignore it. 

l The second HTML file has an EDIP header with keyword “motherboard”, which is 

the keyword target, appearing in its second IP package 

l The JPG file does not have any EDIP header 

Mission: 

The AOL adaptation router modifies all HTML files with “motherboard” by adding a 

link to its online mall. All other files are not supposed to change. 
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Fig 3.7:  IP packages encoded with EDIP headers 

Fig 3.7 shows the result after the 3 files have been processed by CP’s serverlets. 

Each of the two HTML files has a keyword, (“shirt” for the first one, “motherboard” for 

the second one.) and each of them is carrying an EDIP header. The JPEG file does not 

have any keyword, and therefore no EDIP header is added. Both keyword “shirt” and 

“motherboard” appear in the second IP package in their own HTML files, and each of 
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these IP packages is carrying a general field and a key block. All the other IP packages 

from those two HTML files are only carrying general fields, which indicate they belong 

to a stream with keywords, but those keywords do not shown in the current package. 

Chart 3.1 shows the EDI-Filtering (EDIF) process actions in AR for each IP package 

in our example. IP packages with EDIP headers (1-1, 1-2, 2-1, 2-2, 2-3) will be sent to the 

keyword detector, but only those match the requirement from applications will be 

decapsulated and sent to upper level for further processing. All the other IP packages will 

be forwarded as normal packages. 

Chart 3.2 shows the processing actions in AR without EDIP header, i.e., the Full 

Search Filtering (FSF). In this schema, each IP packages coming into the AR will be 

decapsulated, tested, encapsulated, and forwarded, which is computation resource 

consuming compared to EDIF model. The gray blocks in Fig 7 and Fig 8 show the net 

saving of EDIF over FSF in our example. The yellow blocks in Fig 7 show the possible 

net cost, which is the task to detect if key words are matched. However, in FSF model, 

the task has also to be done, but it is often done in the application level. Based on that, we 

can almost neglect the cost of detector’s in our future quantity analysis in performance. 
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Actions and Destinations (EDIF mode) 

Package Router 

Level 
Intermediate 

App 

Level 
Intermediate 

Router 

Level 

1-1 [E] To buffer    Forward 

1-2 [E+K] To detector 

To buffer 

   Forward 

2-1 [E] To buffer Decapsulate Encapsulate Send 

2-2 [E+KT] To buffer Decapsulate Encapsulate Send 

2-3 [E] To buffer Decapsulate 

Modify 

Add a link 
Encapsulate Send 

3-1 To forwarder    Forward 

3-2 To forwarder    Forward 

3-3 To forwarder    Forward 

Chart 3.1 Actions in EDI-Filtering (EDIF) 
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Actions and Destinations (FSF mode) 

Package Router 

Level 
Intermediate 

App 

Level 
Intermediate 

Router 

Level 

1-1 Send up to 

Inter Layers 

Decapsulate Search 

Not Match 

Encapsulate Forward 

1-2 Send up to 

Inter Layers 

Decapsulate Search 

Not Match 

Encapsulate Forward 

2-1 Send up to 

Inter Layers 

Decapsulate Encapsulate Send 

2-2 Send up to 

Inter Layers 

Decapsulate Encapsulate Send 

2-3 Send up to 

Inter Layers 

Decapsulate 

Search 

Match 

Modify 

Add a link Encapsulate Send 

3-1 Send up to 

Inter Layers 

Decapsulate Search 

Not Match 

Encapsulate Forward 

3-2 Send up to 

Inter Layers 

Decapsulate Search 

Not Match 

Encapsulate Forward 

3-3 Send up to 

Inter Layers 

Decapsulate Search 

Not Match 

Encapsulate Forward 

Chart 3.2: Actions in Full Search Filtering (FSF) Mode 
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Actions EDIF FSF 

Decapsulate 3 pkgs (2-1, 2-2, 2-3) 8 pkgs (all) 

Encapsulate 3 pkgs (2-1, 2-2, 2-3) 8 pkgs (all) 

Search 2 index searches (1-2, 2-2) 8 sequential searches (all) 

Chart 3.3 Different Actions between EDIF and FSF mode 

Chart 3.3 shows the difference in how much the computational resource is consumed 

between EDIF model and FSF model for our example. 

3.8 Some Sample Plug-in Applications 

In this section, we’ll show three sample applications, which are implemented in our 

experimental adaptation routers, using EDIP indexing scheme for fast content 

interception and adaptation.  

3.8.1 Active Hyperlinking 

Active hyperlinking is adding hyperlinks to some specific patterns appear in certain 

web pages to draw the attention or provide more information to potential interested 

readers. The web pages are adapted neither at the content providers servers nor at the end 

users’ computers, but at the adaptation server in between. Using this scenario, it will be 
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easier to localize or personalize the web pages the end users are going to see.  

Fig 3.8 and Fig 3.9 illustrate the example. Note that before adaptation (Fig 3.8), the 

authors’ names are plain text in “Publications” section. The plug- in program on top of the 

adaptation router then takes the authors’ names as keywords, and changes the web pages 

by adding their corresponding email addresses wherever the keywords appear. Now, web 

page readers just need to click the links to send emails to the authors. (Fig 3.9) 
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Fig 3.8 A Web Page before adaptation 
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Fig 3.9: A Web Page After Adaptation 
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3.8.2 Advertisement Filtering 

Today most content providers are bringing commercials to the web pages. Some 

people may not want to see those commercials, or they want to see more local news. By 

submitting the service to adaptation routers, the end users may get ad-free web pages, or, 

if ISPs wish, local advertisement can be inserted. 

Fig 3.10 shows a Yahoo page before adaptation. The shaded areas are commercials 

marked by Yahoo. Fig 3.11 shows the web page after filtered. The indexing information 

in EDIP headers directs the filter which part should be deleted from the stream in order to 

get an ad-free page. 

The same scenario can be used in parental control.  
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Fig 3.10: Before Adaptation: A Yahoo web page with commercials 
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Fig 3.11 After Adaptation: An ad-free Yahoo page 
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3.8.3 Screen Size Adjustment and Re-layouting 

 

 

 
Fig 3.12: A web page from Yahoo before adjusting the size and relayouting 
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Fig 3.13a: After size adjustment1             Fig 3.13b: After size adjustment2 

 

Wireless devices are getting more and more popular. PDAs, pocket PCs, and even 

cell phones now can be used to surf the Internet. With limitation in dimensions, the 

viewable screen size of a hand-held device cannot be the same as that of a desktop or 

laptop computer. A mobile user will have difficulties in viewing a normal 800*600 page 

on a 240*320 screen size PDA. Nowadays, content providers often keep special “small 

screen” versions for mobile users. But with rapid growing diversity of hand-held devices, 
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this solution cannot meet all users’ needs. Fig 3.12 shows a Yahoo page before screen 

resizing. The shaded areas are marked by special markers, which are keywords the 

adaptation router is looking for. Fig 3.13 shows the page after screen resizing. Note that 

the layout could be changed according to user’s preference. For example, in Fig 3.14, the 

appearance and the sequence of appearance of memory blocks are different from those in 

Fig 3.13, although they are originating from a single source file and the adaptation 

plug-in doesn’t change. (The user preference submitted to the adaptation router changes.) 
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CHAPTER 4 

THE PERFORMANCE  

An experimental test bed is designed to verify the functions and exam the 

performance of the adaptation router and the EDIP protocol we proposed above. We’ll 

first introduce the hardware and software environments, on which we build the test bed. 

Then we’ll investigate several performance benchmarks and compare them with those of 

conventional adaptation mode. Finally, we examine EDIP’s extra space cost and the 

potential performance boost by using RISC technology and dedicated chips. 

4.1 The Environments 

The source code of the test bed was written in standard C language. The test bed has 

been successfully functioning in some of the major UNIX environments in the 

Department of Computer Science and Network & Media Communication Research Lab 

in Kent State University. The tested systems include: 

(1) TRIDENT, HP-UX B.11.00, Hewlett-Packard 9000/785 

(2) AEGIS, HP-UX B.11.11, Hewlett-Packard 9000/770  

(3) FORRESTAL, Redhat 7.1, AMD Athlon 800MHz 
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(4) IOWA, Redhat 7.1, AMD Athlon 800MHz 

(5) AWAGATEWAY, Redhat 7.2, Intel Pentium 166MHz 

(6) DAVELINUX, Redhat 7.2, Intel Pentium 166MHz. 

When we exam the performance of the adaptation router, we choose Linux Redhat 7.2 

(Kernel 2.4.7-10) which runs on an Intel Pentium 166Mhz system. The reason we choose 

such a system to exam the performance of our adaptation router is described in the 

following sections. 

4.1.1 Software Environment 

The software environment we choose in the performance test for the adaptation 

router is Linux Redhat 7.2 (Kernel 2.4.7-10). At the time the test bed was built, version 

7.2 was the latest distribution of Redhat Linux (now Redhat 7.3 has just landed), which 

included the 2.4.7-10 kernel. It supports up to 64GB of RAM, far more than the 4GB 

limit in the 2.2 kernel series. While the 2.2.x kernel can't take full advantage of servers 

with more than four CPUs, the 2.4 series is much more scalable, with SMP (symmetric 

multiprocessor) support for machines with as many as eight CPUs. From personal 

production to basic web serving, Red Hat Linux contains everything needed for a stable 

and secure working environment. With its powerfulness and versatility, we believe 

building our test bed on such a system has general and comparable meaning. 
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4.1.2 Hardware Environment 

The hardware we use in the test bed is generally IBM-compatible PCs including Intel 

Pentium CPU and AMD Athlon CPU. The computer running adaptation router in the 

performance test has a single Intel Pentium 166MHz CPU and 64Meg SDRAM, with a 

conventional 3COM 10/100 network adapter. Other computers playing the content 

providers and the end-user agents include one Intel Pentium 166 MHz, one Intel Pentium 

IV 1.6 GHz and two AMD Athlon 800 MHz machines. The reason we choose a relatively 

slow system as our adaptation router is that, the times() function, which returns the 

processor time used when a process calls it, only has a resolution of 1/100th second. In 

this case, a slower system will produce less relative error. Further more, a fast system 

may produce too much data in too little time for a conventional 10/100M network adapter. 

The adaptation router will spend considerable resource on congestion control and make 

the execution time unpredictable. Using a slower system can avoid such unpredictable 

factors. 

4.2 Test Application and Sample Used 

The application used in this performance test is active hyperlinking. Two sample 

files are used. The first one is an HTML file, in which there are two keywords in our 

adaptation router’s service range. Two hyperlinks will be added into the HTML file when 

it passes the adaptation router. This HTML file represents streams that need to be 
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serviced. The second is a JPG file, which represents streams that need not to be serviced. 

It will not be changed when it passes the adaptation router. Both files are trimmed to 

50.0k bytes in size for easier performance calculation. Keeping same total number in 

amount, these two files will be sent repeatedly to adaptation routers in various ratios, 

simulating different service densities.  

For comparison purpose, we also built two other models besides the Embedded Data 

Indexing Filtering (EDIF) mode. They are Full Search Filtering (FSF) service model and 

Normal Router (NR) mode, which is without any adaptation service. To make the result 

more comparable, these three models are built using the same programming strategy ---in 

fact, they share most codes in common parts, such as encapsulation, decapsulation, 

regular routing algorithms and so on. 

4.3 Performance Test 

4.3.1 CPU usages for EDIF service: 

In this section we provide the performance of the EDIF filtering. We found that the 

CPU usages is closely related to the amount of data that in service range. We define 

“service density” as the percentage of data volume that needs adaptive service (i.e. in 

service range). In this experiment, we send total 5M bytes data through the adaptation 

router with variety of service densities. We plotted x axle as the service density ranging 
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from 0% (idle) to 100% (full). Fig 4.1 plots the absolute value of CPU time cost by EDIF 

schemes for major components in the adaptation router, and Fig 4.2 plots each 

component’s relative CPU cost percentage, which is the ratio of CPU time used for this 

component to the total CPU time used by the adaptation router.  

We can see from those graphs that with the increase of service density, the CPU time 

used by each major component is increased. The encap/decap time increases because the 

more IP packages in service range, the more IP packages need to be decapsulated and 

encapsulated for searching and modifying. The similar reason applies to the explanation 

why user application CPU time increases while service density increases --- this is due to 

more packages are in service range, the more packages need to be searched and modified. 

The routing time does not start from 0 when the service density is 0%. This is because the 

adaptive router has to spend CPU time in regular routing. When service density increases, 

more packages have to be routed to buffers and queues and delivered to user application 

for adaptation purpose. Those packages take more routing time than the packages that 

just need regular routing to their network destinations. That explains why the routing time 

also increases when the service density increases.  
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Fig 4.1 CPU Time Cost in EDIF Service Mode 

 

In Fig 4.2, we can see that routing takes almost all CPU time used by the adaptation 

router. The percentage decreases as service density grows, because the time used by user 

applications and encap/decap of network capsule grows faster than that by routing.  
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Fig 4.2 Relative Percentages of CPU Time Cost in EDIF Service Mode 

4.3.2 CPU usages for FSF service: 

In this section we provide the performance of the Full Search Filtering (FSF). We 

still send total 5M bytes data through the adaptation router with variety of service 

densities. Fig 4.3 plots the absolute value of CPU time cost by FSF schemes, and Fig 4.4 

plots the relative CPU cost percentages for each component.  

We can see from those graphs that the CPU time used by most components almost 

remains the same regardless of the change of service density. CPU time used by user 

applications does increase a little bit while the service density increases. This is due to 

streams in service range will be adapted after targets have been found. In this test, the 

adaptation is to substitute the keyword with a hyper link. The higher service density, the 
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more actions will be taken, and thus more CPU time will be consumed. However, user 

applications spend most of their CPU resource in sequential searching the keyword. The 

substitution only takes little CPU time. That’s why the user application CPU does not 

increase much.  

 

Fig 4.3 CPU Time Cost in FSF Service Mode 

If we compare Fig 4.4 with Fig 4.2, we will find out one of the reasons why EDIF 

mode is much faster than FSF mode when service density is low. In FSF mode, when the 

service density is low, the user application and encap/decap procedures take more than 

80% in relative CPU cost, which is totally unnecessary in EDIF mode. When the service 

density grows, the time for user application and encap/decap procedures grows naturally 

in EDIF mode, but we’ll see the relative CPU cost for user application is still less than 
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that of FSF mode. The is because sequential search, which has O(n) complexity, is used 

in FSF mode, while EDIP enabled indexing search, which has O(1) complexity, is used in 

EDIF mode. 

 

Fig 4.4 Relative Percentages of CPU Time Cost in EDIF Service Mode 

4.3.3 CPU Time Comparison among EDIF, FSF and NR Mode 

In this section we put performance data from EDIF and FSF mode together, plus the 

CPU time used by a simulated normal router without any service. The performance of NR 

mode represents the best possible performance we can achieve.  

As Fig 4.5 shows, the EDIF incurred much smaller cost than FSF throughout. 

Particularly interesting is the points with a low service density. Here simple FSF incurred 

a cost about 14 times higher than that of a normal router. However, the EDIF performs 
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almost as good as the normal router. This is because of two reasons: (1) the marking 

mechanism allows EDIF to avoid decapsulations and encapsulations; (2) no sequential 

searching happens.  In contrast the FSF has to decapsulated the entire stream and 

sequentially search whether there is a serviceable packet or not. Naturally, with the 

increased service density, the cost of service is increased in both the schemes. Notably, 

even when service density=100%, the EDIF mechanism could perform better. This is 

because EDIP header enabled index searching is much faster than sequential search that 

FSF must take. 

 
Fig 4.5 CPU time comparison among EDIF, FSF and NR mode 
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4.3.4 Throughput Comparison among EDIF, FSF and NR Mode 

CPU time is not all for a system. People may concern more for overall performance than 

CPU time cost only. The difference here is, the system spend considerable amount of 

resource on system calls, which is not counted in previous comparisons. System calls 

include receiving a package from network, sending a package to network, print messages 

on the screen and so on. Most system calls are inevitable (such as receiving/sending IP 

packages), and they take significant amount of system resources in all of the three service 

modes. This fact neutralizes some benefit we gain from less CPU cost in EDIF mode. 

However, as shown in Fig 4.6, EDIF remains strong when service density is low (over 

50% higher throughput when service density close to 0), and still better than FSF even 

when service density is 100%. 
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Fig 4.6 Throughput comparison among EDIF, FSF and NR mode 
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4.3.5 Average Package Delays 

If one can say the adaptation server administrator cares more about the system throughput, 

what the end users concern more is the package delays. No one wants to view a web page 

half a minute later after (s)he clicks a link. Although real delay time for an end user also 

depends on network conditions, we recorded incoming and outgoing time for packages 

flow through our experimental adaptation router. Then we average the difference between 

each pair as the average package delay on our adaptation router. Fig 4.7 plots the result. 

We can see that EDIF mode is almost as good as NR mode when service density is low, 

while it still has advantages over FSF mode even when service density grows to 100%. 

 
Fig 4.7 Average Packages Delays 
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4.4 Further Analysis 

4.4.1 Space Cost  

In this analysis, we inspect the space cost of EDIP headers. We assume a stream with 

EDIP header is divided into pknum IP packages; each one is pksize bytes in size. We also 

assume that there are n keywords inside this stream, and the ith keywords will appear at 

the frequency of fi times/byte, which we call key density of the ith keyword.. The 

frequency for any keyword that will appear is F time/byte. Let Ai be the total number of 

indexes, and Bi be the total number of key blocks for the ith keyword. Since each key 

block contains at least one index for a key, we have Bi<=Ai. Sindex denotes the size of an 

index in bytes. Since we use 16 bits to express an offset (an index), Sindex=2. Skbr denotes 

the size of a key block in bytes, excluding the indexes. We have Skbr=4. Sgf denotes the 

size of a general field in bytes, and Sgf=12. Sextra is the extra space needed for EDIP 

headers, Soriginal is the size of the original stream. E denotes the extra percentage of space 

needed to accommodate EDIP headers. We summarize the discussion with equations 

from EQ 4.1 to 4.6. The result of E is expressed in EQ 4.7: 

∑
=

=
n

i

ifF
1

                (EQ 4.1) 

pknumpksizefA ii ××=             (EQ 4.2) 
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Fig 4.8 Extra Space Percentage Caused by EDIP Headers 
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The result for EQ 4.7 is plotted in Fig 4.8. Here Sindex=2., Skbr=4,and Sgf=12. The 

extra space cost is below 2% when the average package size is larger than 1500 bytes2, 

even if f=1/600, which is considered a very high key density3. When the package size is 

larger than 5k bytes, the extra space percentage will remain small, but will not be 

significantly reduced. Note that we assume the service density is 100%, which means 

each stream has EDIP headers and it is the worst case. In real world, service density 

should be kept low, which makes even lower the extra space percentage for EDIP 

headers. 

 

 

                                                 
2MTU: Maximum Transmission Unit, which is the largest size frame, specified in bytes, that can be sent in 

a frame -based network. Normally, IP packages with content are divided into multiple frames to transmit via 

network. 1500 byte is the suggested value of MTU size by most ISPs. 

3In practice, key density can always be controlled, by using fewer gross keys and application level 

processing to find the real keys.  
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4.4.2 Impact on Different Processor Speeds 

 

 It is important to note that in the entire operation the computation is performed in 

three levels. These are (i) IP level (stream controller, routing, buffering, etc.), (ii) 

intermediate level (encapsulation, decapsulation, etc.) and (iii) application level 

(searching/indexed jump, filtering, etc.). In order to examine the computational 

complexity, we use eServiceMod
ComponentC  to denote the Complexity for Component in ServiceMode. 

For example EDIF
actC  denotes the complexity of user actions (adding links to web page in 

active hyperlinking example) in EDIF service mode. Note that in EDIF service mode, the 

complexities for routing4 are different for IP packages in service range from those out of 

service range. Suppose P% is the service density, which means how many percentages of 

IP packages are in service range. EQ 4.8 and EQ 4.9 describe the total complexity for 

EDIF service mode and FSF service mode, respectively.  

EDIF
routnokey

EDIF
routkey

EDIF
decap

EDIF
encap

EDIF
search

EDIF
act

EDIF CPCCCCCPC ×−+++++×= %)1()(%  (EQ 4.8) 

FSF
routing

FSF
decap

FSF
encap

FSF
search

FSF
act

FSF CCCCCPC ++++×= %        (EQ 4.9) 

However, the average time to process a package is not only decided by processing 

complexity, but also by the speed of processor. We assume PPAPP, PPINTER and PPIP are 

                                                 
4Here “routing” includes two tasks: (1) choosing paths among nodes in network (regular routing) (2) 

choosing the paths inside adaptation router (routing among buffers, stream controllers)  
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the power of processors for user application level, intermediate level and IP level, 

respectively. EQ 4.10 shows the average time to process an IP package in EDIF service 

mode and EQ 4.11 shows the average time to process an IP package in FSF mode.  

IP
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       (EQ 4.11) 

In the tests we conducted in previous several sections, we use a single processor for 

all three levels of processing, which means PPAPP=PPINTER =PPIP. However, in reality, we 

could use RISC technology in lower levels, which contains simpler instructions. Some 

vendors made chips dedicated to routing or IP decoding/encoding, which makes 

PPIP>PPINTER >PPAPP. For simplicity, we assume that each lower level is a (a>=1) times 

faster than its immediate higher level. We’ll have EQ 4.12: 

APPINTERIP PPPPPP 2αα ==   )1( ≥α           (EQ 4.12) 

 Let EDIF
FSFR  be the ratio of speed of EDIP over FSF service mode. From EQ 4.10, EQ 

4.11 and EQ 4.12, we’ll get EQ 4.13, shown as following: 
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For a given system, a and all complexities are fixed values. For example, in our 

tested system, we have a=1. The complexities values can be derived from the data of Fig 

4.1 and Fig 4.3. For example, in our experimental system, we have: 

7=FSF
actC         50=+ EDIF

search
EDIF
act CC  

100=FSF
searchC         61=+ EDIF

decap
EDIF
encap CC  

57=+ FSF
decap

FSF
ecap CC       22=EDIF

routnokeyC  

29=FSF
routingC         40=EDIF

routkeyC  

Fig 4.9 now plots the EDIP scheme’s relative speedup for three different speed 

differentials (a=1,2, and 3). We could see that the speed differential among these three 

levels can significantly affect the overall performance of the system. As can be noted that 

advantage of EDIP increases with large alpha. The time saving is particularly dramatic if 

service density remains small. 
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Fig 4.9 EDIF’s Speedup Over FSF Model with Different a Value. 
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CONCLUSION 

 

Fast intercept of streamed data is a growing concern in networking. The application 

level embedded processing is rapidly increasing and can be a potential bottleneck in 

Internet traffic carriage. The network protocols and packet data structures have been 

designed mostly for end-to-end processing. In this thesis we have presented a part of our 

research, which looks into mechanisms that can provide scope and indexing information 

to intermediate network hubs to enable random access in a stream. As shown in the 

experiment, these mechanisms expedite process of passing stream significantly under 

common conditions. And with potential hardware acceleration, much better performance 

could be achieved.  

Another important provisioning is the sharable and mobile code servers inside 

network. In recent years some advances have been made in programmable networks. 

Among them active networks [21][22][23] initiative proposes the generalization of the 

traditional router concept—  where transiting packets can be modified almost in any way 

with custom embedded program modules in the network elements. Several other attempts 

are underway, where standalone processors are being added with routers. 

One of the top issues here is the security. Since program codes are mobile, a local 

system has to make sure such “alien” codes are not harmful, no matter caused by careless 
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programmers or malicious cyber attackers. Although this problem can be partially solved 

by verification or authentication among participating parties, it seems the complete 

solution is designing a highly dynamic runtime environment[24][25][26].  

One of the other issues is the filter programs management. When an adaptation 

service server is running a number of filter programs from different sources, we have to 

prevent them from collision and dead locks. If we look into these problems, we may find 

that most of them have counterpoints in a conventional OS, such as user management, 

sharing, deadlock prevention, security check and so on. This arose the idea of designing 

special purpose active network operating systems or execution environments that can 

systematically support adaptation services over the Internet. Several research groups are 

working on these issues, such as ANTS [11] and Janos Java NodeOS [15] . 

We believe a commercialized fast content adaptation network will appear in near 

future. However, a lot of effort has to be made before such a system can be put into wide 

use in large scale.  
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GLOSSARY OF TERMS AND ABBREVIATIONS 

 

AR    Adaptation Router 

AR Admin  Adaptation Router Administrator (at service provider's side) 

ASDL   Active Service Distribution and Localization (Model) 

CDN   Content Delivery Network 

CP    Content Provider 

CPI    Content Provider Initiated (Service) 

CSN   Content Service Network 

EDIF   Embedded Data Index Filtering (mode) 

EDIP   Embedded Data Indexing Protocol 

EU    End User (Agent) 

EUI    End User Initiated (Service) 

FSF    Full Search Filtering (mode) 

GF    General Field (in EDIP header) 

KB    Key Block (in EDIP header) 

Key Density  The frequency of key word appearance 

MA Marker   Administrator (at content provider' side) 

NR    Normal Router (mode without any service) 
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Service Density The percentages of data volume that in service range 

SMS   Service Management Server 

SPI    Service Provider Initiated (Service) 
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A SAMPLE USER FILTER APPLICATION 

(Active Hyperlinking) 

 

int userapp() 

{  

 int      streamid; 

 struct searchresult_t searchresult; 

 int   i; 

 int   string0len, string1len; 

 char  string0[]="<i>Yihua He</i>"; 

 char  string1[]="<i><a href=\"mailto:yihe@cs.kent.edu\">Yihua He</a></i>"; 

 string1len=strlen(string1); 

 string0len=strlen(string0); 

 for (; ; ) 

 { 

  streamid=getstreamid(); 

  if (0>keysearch(streamid, 0, string0, string0len, &searchresult)) 

   printf("keyword not found\n"); 
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  else  

  { 

   printf("keyword %s found at: \n", searchresult.keyword); 

   for (i=0; i<searchresult.numofindex; i++) 

    printf("%d  ", searchresult.offset[i]); 

   printf("\n");  

   for (i=searchresult.numofindex-1; i>=0; i--) 

   { 

    temp=searchresult.offset[i]; 

    deletebyte(temp, string0len); 

    insertbyte(searchresult.offset[i], string1, string1len); 

   } 

  } 

  sendstream(streamid); 

 } 

 return(0); 

} 
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A SAMPLE MARKER PROGRAM AT SOURCE SIDE 

 

int marker1 (char *in, int in_len, struct searchresult_t *searchresult) 

{ 

 char kwd[]="<i>Yihua He</i>"; 

 int  offset; 

 strcpy(searchresult->keyword, kwd); 

 searchresult->keylen=strlen(kwd); 

 searchresult->numofindex=0; 

 for (offset=0; offset+strlen(kwd)<in_len; offset++) 

 { 

  if (bcmp(in+offset, kwd, strlen(kwd))==0) 

  { 

   searchresult->offset[searchresult->numofindex]=offset; 

   (searchresult->numofindex)++; 

   if ((searchresult->numofindex)>=MAXNUMOFFOUND) 

   { 

    printf("too many keyword found! \n"); 

    return (-1); 
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   } 

  } 

 } 

 return (searchresult->numofindex); 

} 

 


