
HE, YIHUA, M.S., Aug 2002 COMPUTER SCIENCE

FAST INTERCEPT OF PASSING STREAMS FOR HIGH PERFORMANCE FILTER
APPLICANCES IN APPLICATION SERVICE NETWORKING (90 pp.)

Director of Thesis: Javed I. Khan

Internet is increasingly being "active". Documents are being dynamically

processed before they are served. The location of processing is also dynamic. The work

investigates two aspects: (a) how documents can be processed within an overall service

model/scenario in any location between the origin server and the user-agent; (b) what

type of network software layer in the intercepting machine can expedite intermediate

information processing. Random access into processed data is believed to be an important

performance criterion in any computation. Envisioning a generalized framework for

supporting a wide range of possible content services, the thesis suggests a novel content

scoping and indexing based random access mechanism into a passing stream for

intercepting filter like appliances on this framework. It also presents an application

programming interface for efficient stream editing. The work also presents a user space

implementation of the proposed intercepting machine and a performance study of the

scheme on this implementation. Even without any kernel level support, the

implementation showed about 500-800% speedup over today’s content servicing

technique in normal conditions. The result suggests such random access can significantly

speed up future intercepting applications of the Internet.

FAST INTERCEPT OF PASSING STREAMS FOR HIGH PERFORMANCE

FILTER APPLICANCES IN APPLICATION SERVICE NETWORKING

A thesis submitted to

Kent State University in partial

fulfillment of the requirements for the

degree of Master of Science

By

Yihua He

Aug 2002

 ii

Thesis written by

Yihua He

B.E., South China University of Technology, 1999

M.S., Kent State University, 2002

Approved by:

____________________________, Advisor

____________________________, Chair, Department of Computer Science

____________________________, Dean, College of Art and Sciences

 iii

TABLE OF CONTENT

Approval ii

Table of Content iii

List of Figures vi

List of Tables and Charts viii

ACKNOWLEDGEMENT ix

Chapter 1

Introduction 1

1.1 Overview 1

1.2 Background and Related Work 5

1.3 Layout of the Thesis 8

Chapter 2

Active Service Distribution and Localization Model 9

2.1 Architecture and Components 9

2.2 Information Components 13

2.3 ASDL Contracting Model 14

2.4 Classification of Active Services 16

2.5 ASDL SCENARIOS 17

 iv

2.5.1 EUI Model 17

2.5.2 CPI Model 19

2.5.3 SPI Model 21

Chapter 3

EDIP Protocol 24

3.1 In Route Application Service 24

3.2 EDIP Indexing Mechanism 25

3.3 EDIP Header Format 26

3.4 EDIP Encapsulation by Serverlets 28

3.5 EDIP Decapsulation and Indexing/Scoping 32

3.6 Application Processing: 36

3.7 An example illustration 42

3.8 Some Sample Plug-in Applications 49

3.8.1 Active Hyperlinking 49

3.8.2 Advertisement Filtering 53

3.8.3 Screen Size Adjustment and Re-layouting 56

Chapter 4

The Performance 59

4.1 The Environments 59

 v

4.1.1 Software Environment 60

4.1.2 Hardware Environment 61

4.2 Test Application and Sample Used 61

4.3 Performance Test 62

4.3.1 CPU usages for EDIF service: 62

4.3.2 CPU usages for FSF service: 65

4.3.3 CPU Time Comparison among EDIF, FSF and NR Mode 67

4.3.4 Throughput Comparison among EDIF, FSF and NR Mode 69

4.3.5 Average Package Delays 71

4.4 Further Analysis 72

4.4.1 Space Cost 72

4.4.2 Impact on Different Processor Speeds 75

Conclusion 79

REFERENCES 81

GLOSSARY OF TERMS AND ABBREVIATIONS 85

A Sample User Filter Application 87

A Sample Marker Program at Source Side 89

 vi

LIST OF FIGURES

Fig 1.1: Example Service with EDIP Header 4

Fig 2.1: ASDL Architecture and Components 10

Fig 2.2: End-user initiates single service 19

Fig 2.3: Content Provider initiates group service 21

Fig 2.4: Service provider initiates group service 23

Fig 3.1: EDIP Header Format 27

Fig 3.2: EDIP Encapsulation 29

Fig 3.3: EDIP Selective Decapsulation System 32

Fig 3.4: Data Manipulate API Operations 37

Fig 3.5: Example of Content Processing with stream-edit API 39

Fig 3.6: An example service 43

Fig 3.7: IP packages encoded with EDIP headers 45

Fig 3.8: A Web Page before adaptation 51

Fig 3.9: A Web Page After Adaptation 52

Fig 3.10: Before Adaptation: A Yahoo web page with commercials 54

Fig 3.11: After Adaptation: An ad-free Yahoo page 55

Fig 3.12: A web page from Yahoo before adjusting the size and relayouting 56

 vii

Fig 3.13a: After size adjustment1 57

Fig 3.13b: After size adjustment2 57

Fig 4.1: CPU Time Cost in EDIF Service Mode 64

Fig 4.2: Relative Percentages of CPU Time Cost in EDIF Service Mode 65

Fig 4.3: CPU Time Cost in FSF Service Mode 66

Fig 4.4: Relative Percentages of CPU Time Cost in EDIF Service Mode 67

Fig 4.5: CPU time comparison among EDIF, FSF and NR mode 68

Fig 4.6: Throughput comparison among EDIF, FSF and NR mode 70

Fig 4.7: Average Packages Delays 71

Fig 4.8: Extra Space Percentage Caused by EDIP Headers 73

Fig 4.9: EDIF’s Speedup Over FSF Model with Different a Value 78

 viii

LIST OF TABLES AND CHARTS

Chart 2.1: Specification methods between different parties 15

Chart 2.2: A list of example services and their modes 17

Table 3.1: Administrative API Subset 37

Table 3.2: Data Manipulate API Subset 38

Table 3.3: The labellist used in the example shown in Fig 3.6 40

Chart 3.1: Actions in EDI-Filtering (EDIF) 47

Chart 3.2: Actions in Full Search Filtering (FSF) Mode 48

Chart 3.3: Different Actions between EDIF and FSF mode 49

 ix

ACKNOWLEDGEMENT

I would like to express my deep gratitude and appreciation to Professor Javed I. Khan,

who continually guides and supports me for this thesis. He has not only been an amazing

advisor for this thesis but has also been of help on academic and personal matters.

I would also like to thank faculties and stuffs in Department of Computer Science, Kent

State University. They provided all kinds of valuable help during the time I study here.

Without their generous support, I would not be able to complete my MS degree.

I am also thankful to my friends ---classmates, lab mates, and officemates --- who make

my stay at Kent State University so enjoyable and memorable.

Last but not the least, special thanks to my parents without whose love, support and

encouragement this would not have been possible. I dedicate this thesis to my parents.

1

CHAPTER 1

INTRODUCTION

Internet is increasingly being “active”. Documents are being dynamically processed

before they are served. The location of processing is also dynamic. In this thesis we

investigate two aspects: (a) how documents can be processed within an overall service

model/scenario in any location between the origin server and user-agent; (b) what type of

network software layer in the intercepting machine can facilitate intermediate information

processing.

1.1 Overview

With the growing diversity and broadening geographically coverage of Internet

population, there is more need for personalized and localized information. Simple

server-client service model is no longer satisfying cyber people. The network, which used

to be considered only as transmitting media, now becomes more and more “active”

between the information sources and destinations. Beginning from cache, proxy and

gateways, new services emerge rapidly. Such services include content adaptation, content

personalization, location-aware data insertion, security filters, etc. All of these are

fundamentally stream interception machines requiring some form of intermediate access

2

inside transiting traffic’s content. A significant percent of the delivered Internet traffic is

now ‘touched’.

However, most real- life content data carried over network packets are multi- level

hierarchically encapsulated and lack of indexing mechanism. Searching and pinpointing

exactly where content adaptation should take place are exhausting jobs for conventional

filter programs. For example, in annotation based web content transcoding [2], the

transcoder has to make considerable effort in searching a certain value in the annotations

(basically tags/metadata expressed by XML) at the application level before it can decide

how the content should be transcoded. To make things worse, lack of scoping mechanism

in IP packet structures, a filter program does not know if a passing-by stream is in its

service range, and it has to be decapsulated and encapsulated anyway. For example, in an

advertisement insertion service, a filter program should be only interested in HTML

streams passing by. However, current existing filtering programs have to decapsulate all

passing streams, which may include JPEG, MPEG or MP3 streams that the filter program

is not supposed to do anything with.

Lacking the facilities for indexing and scoping for passing-by streams, current

protocol design and protocol packet structure are inefficient in dealing with filtering and

content adaptation in network. The problem has major implication on the CPU cycle,

memory size, and overall performance of any intercepting appliance system’s architecture.

3

The stream is the working data structure of these capsules. It is perhaps as salient to

appliance’s overall architecture as the design of disk scheduling algorithm or multilevel

memory/cache organization is to the conventional machine architecture. Although simple

end-to-end applications may do away with marginal treatment of this issue, indeed, we

believe right placement of protocol element inside data stream and some form of random

access will be one of the most important factor for high performance stream data

processing appliances.

Meanwhile, a group of network overlays emerge as frameworks trying to provide

systematic execution environments to the increasing Internet services. Though the first

generation CDNs emerged as “passive” temporary caching proxies of HTTP responses

now we are seeing increased array of other services for customized content delivery that

needs “active” computation ability at various intermediate points in the information

network. These points will act as the hub for various actions ranging from rich domain

knowledge based information steering, filtering, multiplexing, adaptation that will be

required by ubiquitous services. Unfortunately, at present there is a serious gap in Internet

protocol suit that can provide systematic support for these emerging services. Currently

most such ‘adaptations’ are simulated in content provider’s own site typically with arrays

of backend servers. Such content servicing is mostly isolated and lacks interoperability or

scalability. The overall growth scenario lacks any roadmap for sustained evolution of

4

such services.

In this thesis we focus on this little explored but important problem and demonstrate

a novel content indexing scheme that can facilitate dynamic index based random access

into streams and provide performance boost to intercepting filter like appliances. Though

conceptually the mechanism can be implemented in layers above IP, we present an IPV6

[5] based protocol called Embedded Data Indexing Protocol (EDIP). It is an IPv6

extension header based content indexing mechanism, which defines how a Content

Provider (CP)’s serverlet can add special marks into the data stream, and how an

Adaptation Router (AR) can decode those marks from the data streams and gain pattern

dependent random access into the elements of required data stream. An example service

with EDIP header is show in Fig 1.1.

Fig 1.1 Example Service with EDIP Header

We also investigate the vision of a generalized content services network framework,

5

called Active Service Distribution and Localization (ASDL) model. We outline a

framework that can support deployments of wide range of services with various

specification and initiation dependencies. However, before presenting the fast filtering

mechanism and its framework, first we briefly present some of the very recent and

interesting developments in this fast unfolding area.

1.2 Background and Related Work

The first generation of systematic distributed cache coordination began with the

proposals for content distribution networks (CDN). Commercially, we have seen the

emergence of several such content caching systems. The most remarkable one is probably

Akamai [3], who provides the global delivery platform for the official web site of the

2002 FIFA World Cup Korea/Japan™ (www.fifaworldcup.com), and making it the most

popular sports event in history, according to FIFA1. Akamai achieves huge success in

business by distributing caches/proxy worldwide, which, in concept, provides closer and

faster access points to end-users.

Both Akamai and a number of other teams have been looking into technology for

content adaptation at an origin server or in those CDN proxy caches. Example works

include Spyglass [16], IBM Transcoding proxy[12][17], UC Berkeley TranSend [18], and

1Akamai's content delivery services and scalable infrastructure have helped support the more than

464 million page views during the first eight days of the tournament (May 31 - June 7, 2002)

---http://www.akamai.com/en/html/about/customers.html on Jan 29, 2002.

6

Mobiware [19]. With provision for value added service in the caching proxies, the IETF

Working Group has recently proposed the Open Pluggable Edge Services (OPES) [9][10]

and the Internet Content Adaptation Protocol (iCAP) [20] defining the basic functions of

future caching proxy. iCAP defined how various caching objects can be transported from

one cache to another. OPES provides some interesting capabilities to caching proxies. An

OPES proxy can be equipped with message parsers, rule modules, and proxylets library.

When messages flow through an OPES proxy, they are not only cached but also

automatically parsed and processed with these rules[14]. Ma et. al. [4][6]suggested an

enhanced model of content services networking (CSN) pursuing a more powerful view of

the application server (or proxy). Ma’s CSN separates passive caching proxies from

application servers. The application servers can directly communication with the content

servers and user-agents. Ma shows indeed this approach can handle more service

scenarios. These include post or pre distribution services either on behalf of the user

agent or on behalf of the content-provider. Also, it allows for more versatile services to be

placed into the system as the processing is performed entirely in the application server— a

separate entity than the caching proxy.

However, both OPES and basic CSN are still considered overly proxy centric. This

approach does not provide enough flexibility in accommodating various service

arrangements that may arise in the real service deployments, which often restricts where,

7

when and how the service can be performed, redirected, and who may provide the service

specifications. If we look back into the OPES scenario, we will find that a service

provider may download a set of “rules”, and interpret and execute it by the rule processor.

Here, rules are actually a set of program language with specific purpose. However, we

noticed some limitations in such scenario. An obvious one is that, although the OPES

model can be configured to “source-centric” or “client-centric”[10], there is not an easy

way for the client to gain help from the source or vise versa. An alternative way to

describe the “rules” is by a pair of tightly coupled program, distributed by a single

authority to both the service source and the service client. Our ASDL[13] model is such

an infrastructure which is considered “service centric”, and EDIP, which is a special IPv6

extension, can be used as a media carrying the helping information in this case.

The idea of putting information in IP level headers is not new, but little effort has

been made in utilizing it in value-added services. S. Blake discussed about the

differentiated services by adding marker field DS in IPv4 and IPv6 headers [1]. Packets

marked by this field will receive a particular per-hop forwarding behavior on nodes along

their path. It is a close approach as our EDIP. However, they didn’t investigate the

possibility to add indexing information into IP headers and utilize it in value-added

service to make random access of the data stream available. Spatscheck [7] and D. Maltz

[8] have separately presented two TCP splicing mechanisms which would allow a filter

8

(connected by two TCP links at two ends), to shed-off some TCP window maintenance

functions, for passive filters by splicing the two TCP stream at two end-points.

The technique we propose accelerates the actual filtering operation and applications,

as much as it helps the networking layers. Also, the gain is not restricted for passive mode

of operation. It uses network layer markup mechanisms to avoid decapsulation of

non-essential application data (stream segments). Also, a key difference is that we include

the case of cooperative application processing in the service model where server side help

may also be available. One can think EDIP is another index mechanism at the IP level

beneath the application level for faster marker recognizing.

1.3 Layout of the Thesis

In Chapter2, we’ll briefly introduce the framework of active service distribution and

Localization (ASDL) model that provides application service between the end-user and

the content-provider. We outline a framework that can support deployment of wide range

of services with various specification and initiation dependencies. Then, in Chapter 3,

we’ll show the detail design of EDIP protocol and its working mechanism, which enables

the high performance filter appliance. Finally, we’ll examine the test bed of a fast

filtering system based on EDIP in Chapter 4, and show the performance boost over

conventional systems.

9

CHAPTER 2

ACTIVE SERVICE DISTRIBUTION AND LOCALIZATION MODEL

In this chapter, we propose the Active Service Distribution and Localization (ASDL)

Model, which is an extension to CDN and CSN architectures. CDN defines a set of cache

proxies distributed at the edge of Internet for faster data access. CSN extended the cache

proxy concept to application proxy, which has the processing abilities for content

adaptation rather than just receive-store-send function. Our ASDL model extends Ma’s

work, and makes co-operative computing available to content providers and service

providers by distributing markers’ programs and filters’ programs between them. This

ASDL model provides a systematic environment for EDIP enabled fast filtering and

adapting.

2.1 Architecture and Components

The Active Service Distribution and Localization (ASDL) Model we propose

identifies the following entities, as shown in Figure 1.

1. Service Management Server (SMS)

2. Adaptation Router (AR)

3. Content Provider (CP) and

10

4. End-User-agent (EU)

In this extended CSN infrastructure, the first two components play novel role. We

provide a short description of each:

Fig 2.1: ASDL Architecture and Components

1. Service Management Server (SMS)

SMS serves as the principle service provider. They act as the mediation center among

the end-users, adaptation router infrastructure providers and the content providers. The

SMS owns the program modules called switchlets that are dynamically deployable to the

ARs. These programs form the actual service. SMSs are responsible for the following

tasks:

11

(1) They maintain static and dynamic information about the service execution

environment and the locations of the applications

(2) They receive the service registration or cancellation requests from end-users,

adaptation routers or content providers

(3) Provide all authentication services

(4) Aggregate the information about usage, availability and location of each

deployed service, and then provide the information back to the deployment

requester

(5) Provide dynamic status visualization and monitoring, accounting and billing

functionalities to value added service participating parties who use ASDL as an

information exchange path

(6) Each SMS is responsible for collecting information about its domain and

periodically exchanges the information, such as registration and deployment

status, with other cooperating SMSs. These exchanges can be triggered

automatically if there is a change in the system.

2. Adaptation-Router (AR)

The adaptation routers are sparsely distributed special networked computing

platforms, which, typically, will be deployed near the edge of the Internet. These can be

setup as a service overlay and be owned by certain ISPs (or overlay ISPs). These ARs can

12

be rented as computational platform to process data streams either on behalf of content

providers (CPs), the end users or even on behalf of the overlay ISP. Unlike the CSN’s

application proxy servers [6], these ARs can have special TCP/IP layers, which can

enable them to fast intercept streams. The processing speed can be much higher than in

application level, because (1) much less decapsulation, encapsulation work will be

needed; (2) and simpler instructions in IP level will let us take advantage of RISC

technology; (3) and some of data streams may indexed or marked by the corresponding

ICP serverlet, for random access into the data stream. Chapter 3 describes the architecture

of such a system.

3. Content-Provider (CP)

CP servers can be typical web servers. However, the protocol allows servelets to be

deployed at sender’s location, if required by any service. For example a serverlet may

pre-mark the outgoing data streams, when a particular service is active on the stream. The

marker in a data stream can enable random access in adaptation routers (ARs), and

therefore dramatically reduces the computation burden of ARs. We will show an active

hyperlinking example in Chapter 3 and the saving and the cost will be shown and

analyzed in our example.

4. End-User-Agent

EUs are the sinks/terminals of data streams. They may be the normal desktop/laptop

13

computers, or maybe handheld or wireless devices, or wearable computers. These

terminals may have some kind of resource limitation, and therefore they need the

resource or service provided by the ISP/AR. End-user agents generally maintain a

resource-personalization specification, which can be polled by the SMS to determine the

type and extensions of preprocessing requirements.

2.2 Information Components

Any service arrangement will require various types of information to be exchanged

in various sequences among these parties.

The first form is the program elements (or the servelets and switchlets) those

together create the service. A single service may require switchlets and serverlets to be

deployed into multiple points.

These modules themselves also require additional parameters to run the service. The

model identifies two types of such parameters. The static adaptation parameters are those

can be received before the service begins. The dynamic adaptation parameters are those

required with every request. We call this kind of parameters as specifications, and the

party who send out the specifications as the specifier.

Example of static information includes personalization cookie box that contains a set

of tablets containing the user, user-agent, and user-environment specific constraint

information.

14

ASDL also allows dynamic custom index based random stream access. A serverlet

running on the content provider’s site is a program that can be designed to help the

service from the content source, such as source file indexing. An active application is a

program that provides the service directly to the end-user, and it is designed to run on an

adaptation router, which is normally controlled by some Internet service provider (ISP).

2.3 ASDL Contracting Model

The complexity of application service management grows because these information

elements can come from variety of parties in various sequences based on the specific

application service scenario. Before we introduce the ASDL protocol let us consider the

issues: (1) who is going to supply the serverlet running on the side of content provider

and the active applications running on the side of service provider? (2) Who may be the

service initiator? (3) Who are going to provide the parameter specifications?

15

Destination of specification
Specfier

EU CP AR(SP)

EU No

Yes, by HTTP

extensions or web

forms

Yes, by HTTP

extensions or web

forms

CP

Yes, by XML or

HTTP meta

extensions

No Yes, by serverlet

AR(SP)
Yes, by HTTP meta

extensions

Yes, by active

application program
No

Chart 2.1: Specification methods between different parties.

All the three parties (EU, CP and AR) can be initiators and parameter specifiers of the

ASDL services. However, when the initiator and the specifier are the same party, there is

no need for extra transmission. For example, if an end-user is requesting a bandwidth

adaptation service, he or she can include the bandwidth information inside the initial

request. However, transmission for dependent specifications between different parties is

necessary. There are several ways to transmit the specifications: (1) by tightly coupled

serverlet and active application programs (2) by XMLs or XML-like languages (3) by

meta tags. The specifications between a CP and a SP can be expressed by method (1),

because they share a couple of serverlet and active application programs, both of which

derived from SMS. Information can be exchanged freely between the coup led programs.

16

The specification from content providers to the end-users can be expressed by the XMLs

and HTTP meta extensions, while the specification from AR (SP) to the end-users can

only be expressed by the HTTP meta extension. The CP and AR can make up web forms

for the end-users convenience to provide the specification information. Chart 2.1

summarizes the discussion.

2.4 Classification of Active Services

From the service requesters’ view, we may classify the services into two categories:

(1) the single service request and (2) the group service request. A single service is

requested by a single user and it will work solely for one user to meet its specific request.

For example, a handheld device holder may request the adaptation router to translate all

English web pages into German. This cannot be done at the handheld device, since it

lacks memory, storage or processing speed to finish that task. In this case, the end-user

may “buy” computation resource from the “net”. The other type of service is group

service, which is initiated either by the service provider or the content provider. For

example, a service provider may have some agreement with the third party and advertise

for them. The service provider then can analyze the web html files and put the ads at

appropriate places. The group service can also be initiated by content providers. For

example, a video source server may put special marks in the video stream and help the

adaptation routers to downscale the video gracefully and meet the bandwidth requirement

17

for all different users. The service examples and the modes they belong to are listed

below in chart 2.2.

Mode

Single

Service

Group Services
Example of active services

EUI SPI CPI

Insertion of Ad Banners *

Multimedia adaptation for limited client

bandwidth
* * *

Multi- language adaptation for different user

preference
* * *

Active hyperlinking * *

Active re-direction * *

Virus Scanning *

Stream data adaptation and optimization * *

Watermarking *

Insertion of regional data * *

Language translation *

Chart 2.2: A list of example services and their modes

2.5 ASDL SCENARIOS

2.5.1 EUI Model

In this scenario, the end-user initiates the service. Fig-2.2 illustrates the communication

steps.

18

Setup Stage:

(1) The EU sends service request to SMS.

(2) SMS sends query to the participating ICP Source (ICPS) and AR to collect necessary

configuration data. The query is with the identification of the SMS.

(3) The ICPS and the AR response with digital signature for authentication and other

necessary configuration information to SMS.

(4) SMS then delivers the application modules to ICPS and AR, with corresponding

security keys, which are required when installing the modules.

(5) The ICPS and the AR send back the acknowledgements.

(6) SMS sends the response back to EU with the certificates that EU may need when

sending requests to AR and ICPS.

Data Transfer Stage:

(A) EU sends request with certificates provided by SMS.

(B) ICPS sends out data packages with EDIP headers.

(C) AR processes the packages with EDIP headers, performs value-added in

service, and sends result to EU with normal IP packages

19

Fig 2.2: End-user initiates single service

2.5.2 CPI Model

In this scenario, the content-provider initiates the service. Fig-2.3 illustrates the

communication steps.

Setup Stage:

(1) The ICP Source (ICPS) sends service request to SMS.

(2) SMS sends query to the participating ICPS and AR to collect necessary configuration

20

data. The query is with the identification of the SMS

(3) The ICPS and the AR response with digital signature for authentication and other

necessary configuration information to SMS.

(4) SMS then delivers the application modules to ICPS and AR, with corresponding

security keys, which are required when installing the modules.

(5) The ICPS and the AR send back the acknowledgements.

(6) SMS sends the response back to ICPS with certificates that ICPS may need when

sending requests to AR.

Data Transfer Stage:

(A) End-user (EU) sends the data request

(B) ICPS sends out data packages with EDIP headers.

(C) AR processes the packages with EDIP headers, performs va lue-added in service, and

sends result to EU with normal IP packages

21

Fig 2.3: Content Provider initiates group service

2.5.3 SPI Model

In this scenario, the service provider itself initiates the service, and requests contracts

from the content provider and adaptation routers. Fig-2.4 illustrates the communication

steps.

Setup Stage:

(1) The Service Provider (SP) sends service request to SMS

(2) SMS sends query to the participating ICP Source (ICPS) and AR to collect necessary

22

configuration data. The query is with the identification of the SMS

(3) The ICPS and the AR response with digital signature for authentication and other

necessary configuration information to SMS.

(4) SMS then delivers the application modules to ICPS and AR, with corresponding

security keys, which are required when installing the modules.

(5) The ICPS and the AR send back the acknowledgements.

(7) SMS sends response back to ICPS with the certificates that ICPS may need when

sending requests to AR.

Data Transfer Stage:

(A) EU sends the data request.

(B) ICPS sends out data packages with EDIP headers.

(D) AR processes the packages with EDIP headers, performs value-added in service, and

sends result to EU with normal IP packages.

23

Fig 2.4: Service provider initiates group service

24

CHAPTER 3

EDIP PROTOCOL

In this chapter, we propose Embedded Data Indexing Protocol (EDIP). We will first

introduce the concept of in route application service. Then we’ll move to EDIP’s

indexing mechanism and its header format. We are also going to examine how the EDIP

is encapsulated and decapsulated at content providers and service providers, respectively.

A set of API is provided for easier user filter application developing. Finally, we’ll go

through a number of examples and see the result from some sample user plug- in

applications.

3.1 In Route Application Service

First we explain the service model. In the service model a content stream from

content provider’s server (CP) flow to the end-user (EU). However it may also be

processed in an ISP application processing (AP) server in between during transit. The end

user initiates the content delivery by requesting content from the content provider via

Internet. The Application Service Provider (ASP) modifies the content and adds value to

the communication by application level intercept processing at strategically and/or

topologically located AP servers. In special cases the CP and AP can be collocated in

25

application service provider’s AP.

A special case of AP intervention is the passive filtering service where AP server

only monitors the stream without changing it. A further special case is the stealth filters

where servers or end-users are not aware of the intercept service (and thus also not

helping). If the content provider is also willing to help we call it co-operative filtering

(for non-co-operative filtering some extra fast string matching operations are needed at

the AP server).

The AP server additionally can provide “content cache”. The cache can connect at

either ‘pre’ or ‘post’ AP stage. Conceptually, caching is just another piped service that AP

can provide. AP server can be configured to provide multiple services piped on a specific

request/response stream-- caching can be one of them. The piping sequence is soft

configurable. Complex application service can be composed from simpler services by

service piping. The connection between EU, CP, and AP servers are provided by

point-to-point separate TCP/IP or UDP connections.

3.2 EDIP Indexing Mechanism

The operation of application processing is expedited by two techniques. The first is

pre-marking the content stream and allowing fast access into to the stream. Second is the

selective decapsulation re-encapsulation of only the pertinent data segments. Finally, we

26

also define a language to express and carry the marks between the parties involved.

The actual content intercept processing is performed by a program called the

application filter capsule, and it runs on AP server. The application service provider

generally also sends a marking serverlets to the CP server for marking of the content

stream. Every Application Service Processing has a specified “scope segment” and a “key

segment” in it. Generally a service is conditional. The data element which contains the

condition or key is always intercepted and is decapsulated and delivered to the

application capsule. The stream segment which is within the scope of an active key is

intercepted and buffered However, its decapsulation and delivery can be deferred based

on the key evaluation result. If the evaluation is fa lse, it is directly forwarded. Fig-1

shows the example service with EDIP header, and Fig-3 and Fig-4 are the schematics of

the enhanced network layers that we have designed for the appliances machine.

3.3 EDIP Header Format

EDIP uses IPV6 extension header for content marking. It contains two parts: the

General Field (GF) and Key Blocks (KB). The General Field (GF) identifies that it is an

EDIP header, and contains general information in how to process the header. Each Key

Block (KB) represents a keyword in this IP package, with positions of the keyword

indexed by the offsets. Not every EDIP header has one or more KBs. Sometimes, an

27

EDIP header may only have a GF, representing that the current IP package belongs to an

indexed stream, while there is no key word appearance in this package. The total number

of KBs that an EDIP can have is only limited to the maximum size of an IP package. Fig

2.1 shows a possible EDIP header format.

Fig-3.1: EDIP Header Format

Fields in EDIP are defined as below:

---General Fields:

Next Header: Next Header Types

Version: Version number of EDIP, the first bit indicating if it is encrypted or not

(1=encrypted, 0=not encrypted)

28

Checksum: Standard Checksum

HDR Length: The length of this EDIP Header, in words(4bytes).

Stream ID: Hash number of source port, destination port and sequence number from TCP

header.

NKw: Number of Keywords included in this EDIP Header, 16 maximum

Reserved: Reserved for future use (for example, longer keyword length)

---Key Block Fields

Key Len: Keyword Length, in words, 16 maximum

Nidx: Number of Indexes for the keyword, 16 maximum

Content Length: The length, in bytes, of content immediate after the keyword, 256 bytes

maximum

Offset: Location of the keyword in the ipv6 package

3.4 EDIP Encapsulation by Servelets

After capsulated by TCP/UDP, data stream can pass through multiple markers in the

29

source’s serverlet pipe. Each marker program is associated with exactly one keyword and

it examines the passing stream to see if there is any keyword appearance inside. If there

are one or more appearances, the marker generates a key block containing the offset

information about where the keyword is in the stream. Later, these key blocks join the

original data stream in the general field generator, where a GF, as well as the key blocks,

will be added at the beginning of each package. The encapsulation process is shown

below in Fig 3.2.

Fig-3.2: EDIP Encapsulation

The markers’ codes are registered and distributed by SMS. Each CP’s server running

30

the markers will have a marker admin (MA) to maintain the markers. After MA receives

markers deployment request from SMS and pass the authentications, MA will check if

there is available resource (such as available slots in markers’ pool, the size limit of a

marker, etc) to deploy the marker. To enhance the security, MA may provide an

encryption key to the general field generator, who may encipher the GF, and only

authorized value-added service providers can decipher it. A possible marker and GF

generator’s pseudo codes are presented below in pseudo-3.1 and pseudo-3.2.

Pseudo-3.1: Marker’s pseudocode

31

A real marker program example at source side is attached at the end of this thesis.

The program used in the sample introduced in section 3.8.1.

Pseudo-3.2: General Field Generator’s Code

32

3.5 EDIP Decapsulation and Indexing/Scoping

EDIP decapsulation and value-added services are executed in the ISPs Adaptation Router

(AR), which sit on the edge of Internet backbone. There are several tasks that an AR must

do. (1) Differentiate the IP packages that need special processing from those normal IP

packages. (2) Retrieve the offset information from the special-marked streams to the

corresponding applications, which may use the information for value-added service. (3)

Negotiate with SMS and maintain the service statistics. The main components include a

stream controller, a keyword detector and a buffer controller.

Fig-3.3 EDIP Selective Decapsulation System

33

Fig-3.3 shows a possible architecture of a typical selective decapsulation system running

on a router. Its main components and functions are described as follows:

Stream Controller:

A stream controller’s input is mixed IP packages, which may be IP packages with

EDIP header, or just normal IP packages without EDIP header. A stream controller is

supposed to forward those IP packages without EDIP in normal procedures, and store

those with EDIP header into the Buffer for further actions. Further more, if the EDIP

header contains any key blocks, the stream controller will decrypt it with corresponding

decryption key from AR Admin, and send the keywords, contents and streamids to

Keyword Detector. A possible pseudocode of a stream controller is shown below in

Pseudo-3.3:

34

Pseudo-3.3: Stream Controller’s Code

Buffer Controller:

The buffer controller is supposed to maintain two lists --- a required_steamid_list and

a release_streamid_list. Periodically, the buffer controller will check if there are any IP

packages with the stream id listed in the two lists. Those in required list will be sent to

application level and those in release list will be forwarded to their destinations. Every IP

package in the buffer has a timestamp. If timestamp expires, the IP package will be

released. A possible pseudocode of a buffer controller is shown below in Pseudo-3.4:

Pseudo-3.4: Buffer Controller’s code

35

Keyword Detector:

The keyword detector is supposed to check if the keywords sent by stream controller are

in the keyword list maintained by AR Admin. If not, the stream id will be added into

release_streamid_list in the buffer controller. If yes, the stream id can be added to the

required_streamid_list. Sometimes, Detector can do a little more. For example, each

keyword entry can have a condition on the corresponding content. If a package’s content

matches the corresponding condition, its stream id will be added in the

required_streamid_list in the buffer controller. If not, release it. A possible pseudocode of

a keyword detector is shown below in Pseudo-3.5:

Pseudo-3.5: Keyword Detector’s Code

If we look back, we will find that the existence of EDIP header, in fact, plays the role

of scoping facility, while the offsets in the EDIP header play the role of indexing facility.

By having these two facilities, the performance of applications running at adaptation

36

routers will be improved significantly, which will be shown in Chapter 4.

3.6 Application Processing

The application is armed with a set of special services APIs to take advantage of the

marking processing.

These APIs can be viewed as two parts: (1) the administrative API subset, which is

related to the start and stop of the service, and (2) the data manipulate API subset, which

is related to editing the coming stream. An example of these two subsets of APIs is

illustrated below in table-3.1 and table-3.2. The application program can use the

administrative API subset to edit, bypass, drop, or insert bytes with a sequence stream of

incoming data. The buffers are application buffers. Each of these operations is performed

within the context of an incoming and outgoing TCP socket stream pair. Fig-5 shows an

example of a stream-edit capsule and its edit operation on a stream. The stream offsets

are algebraically calculated from key indexes supplied by EDIP. The data manipulate API

subset can enable/disable the tracking of keys by activating/deactivating the

marker/servelets and the intercept mechanism beneath. It can request for the next offset

for a particular key. If the key test is successful (or unsuccessful), it can request (or

release) delivery of the scope data. The AP capsules are also given a set of fast string

search and protocol parsing routines (with potential hardware accelerators).

37

Fig-3.4: Data Manipulate API Operations

API Comment

ActivateMarker(IP, M_ID) Start the marker (serverlet) at source

side

DeactivateMarker(IP, M_ID) Stop the marker (serverlet) at source

side

ActivateEditor(IP, E_ID, labellist, range) Start the editor at router’s side

DeactivateEditor(IP, E_ID, range) Stop the editor at router’s side

ActivateTrap(E_ID, labellist) Set the trapper in OS

Table –3.1: Administrative API Subset

38

API Comment

Associate (inQ, outQ) Associate two streams

GetOffset (label) Get the offset of the label in the stream

Bypass(sid, a, b) Forward bytes from a to b

Drop(sid, c, d) Drop bytes c to d (into trash sink)

Deliver(sid, e,f, &msgbuffer) Deliver bytes from e to f with newcontent

Insert (sid, msgbuffer) Insert the msgbuffer content to the stream.

Table –3.2 Data Manipulate API Subset

After the serverlet and the filter have been deployed, a common procedure will be

taken at the adaptation router’s execution environment to conduct the service. Both the

administrative API and the data manipulate API will be used in those procedures.

(1) Activate marker (in serverlet) at the source side. This step will activate the pattern

detector, which will search some specific keywords or labels.

(2) Activate system trap in the active router’s execution OS, telling the OS when some

keyword in the labellist comes, wake the service up.

(3) Go to sleep

(4) When waken up by the OS, request to deliver the stream within the specified range to

the application

(5) The application will use data manipulate APIs, such as getoffset(), bypass(), insert(),

39

drop() and etc to modify the data stream if needed. An example of a content processing

using stream edit API is show in Fig-3.5.

(6) Go to step (3) until the editor is deactivated.

Fig 3.5 Example of Content Processing with stream-edit API

For example, if we want to process the stream shown in Fig-3.5 for language

translation, one possible procedure will be taken as shown in Pseudo-3.6. The labellist

used in the pseudo code is shown in table-3.3. The offset information in table-3.3 is

retrieved after ‘GetOffset’ API is excuted in pseudo-3.6.

40

M_ID Keyword Offset

1001 <language=”en”> 0

1002 <language=”bn”> 57

1003 <language=”cn”> 105

1004 </language> 45, 93, 133

Table-3.3: The labellist used in the example shown in Fig 3.6

41

Pseudo-3.6: A pseudocode for processing examples shown in Fig-3.5

To get friendlier programming interface, these APIs may be wrapped for easier use.

At the end of the thesis, we attached a simple filter application, which adds links to some

specific keywords appeared in passing-by HTML streams, to show how the APIs and

wrap-up work. The result of the filtering is going to be shown in Section 3.8.1.

42

3.7 An example illustration

The proposed mechanism accelerates the application level intercept process. The

advantage is derived essentially by three principal sources: (1)Only the byte segments

carrying ‘keys’ are unconditionally decapsulated. (2)The byte segments carrying ‘scope’

are conditionally decapsulated only when the key conditions are true. (3)Rest of the bytes

are never decapsulated.

There is also another source of run-time performance boost. Stream is marked by the

servelet processes running at the content source. In cases, it is sometime possible to mark

with direct content knowledge by the content generator without any string search.

Otherwise, the marking can still be performed by sting search/ or parsing of the original

content as preprocessing. It still therefore can drastically reduce the run time cost. To

compare— current filters have to perform run-time full search and/or full parsing. The

scheme however has cost. It is the extra data that will be needed by the EDIP markers.

The actual saving therefore is the function of key density, and the key success probability

in the stream. Though, apparently it may seem that high key density can offset the

performance gain, but in practice the EDIP key density can always be controlled by using

a gross key in EDIP and then using application level processing to find the real keys. This

is benefit of application level soft key definition ability. In practice, only a small part of

data stream is generally modified. Consequently, the expensive part is way too

43

inconsequential compared to the saving made by bypassing the costly decapsulation/

reencapsulation of the rest.

Here we introduce an active hyperlinking example, which will add a corresponding

hyper link when it meets some specific word. It involves three parties: (1) an end user,

who is requesting several files from content provider via Internet; (2) a content provider,

say, CNN.COM, which provides the original data and runs the serverlets on one of its

servers generating the EDIP header; (3) a value-added service provider, normally known

as an ISP, say, AOL.COM, which owns the ARs. The scenario is shown below in Fig 3.6.

Fig 3.6 An example service

Assumptions:

l A user of AOL is requesting two HTML files and one JPG file from CNN.COM.

l AOL’s online mall is selling motherboards, and they want to put hyperlinks on where

the word “motherboard” appears in HTML file.

44

l AOL has an agreement with CNN.COM --- CNN will put a marker where the word

“motherboard” appears.

l The first HTML file is divided into 2 IP packages, the second HTML file is divided

into 3 IP packages, the JPG file is divided into 3 IP packages

l The first HTML file has an EDIP header with keyword “shirt”, requested by other

entity. AOL is supposed to ignore it.

l The second HTML file has an EDIP header with keyword “motherboard”, which is

the keyword target, appearing in its second IP package

l The JPG file does not have any EDIP header

Mission:

The AOL adaptation router modifies all HTML files with “motherboard” by adding a

link to its online mall. All other files are not supposed to change.

45

Fig 3.7: IP packages encoded with EDIP headers

Fig 3.7 shows the result after the 3 files have been processed by CP’s serverlets.

Each of the two HTML files has a keyword, (“shirt” for the first one, “motherboard” for

the second one.) and each of them is carrying an EDIP header. The JPEG file does not

have any keyword, and therefore no EDIP header is added. Both keyword “shirt” and

“motherboard” appear in the second IP package in their own HTML files, and each of

46

these IP packages is carrying a general field and a key block. All the other IP packages

from those two HTML files are only carrying general fields, which indicate they belong

to a stream with keywords, but those keywords do not shown in the current package.

Chart 3.1 shows the EDI-Filtering (EDIF) process actions in AR for each IP package

in our example. IP packages with EDIP headers (1-1, 1-2, 2-1, 2-2, 2-3) will be sent to the

keyword detector, but only those match the requirement from applications will be

decapsulated and sent to upper level for further processing. All the other IP packages will

be forwarded as normal packages.

Chart 3.2 shows the processing actions in AR without EDIP header, i.e., the Full

Search Filtering (FSF). In this schema, each IP packages coming into the AR will be

decapsulated, tested, encapsulated, and forwarded, which is computation resource

consuming compared to EDIF model. The gray blocks in Fig 7 and Fig 8 show the net

saving of EDIF over FSF in our example. The yellow blocks in Fig 7 show the possible

net cost, which is the task to detect if key words are matched. However, in FSF model,

the task has also to be done, but it is often done in the application level. Based on that, we

can almost neglect the cost of detector’s in our future quantity analysis in performance.

47

Actions and Destinations (EDIF mode)

Package Router

Level
Intermediate

App

Level
Intermediate

Router

Level

1-1 [E] To buffer Forward

1-2 [E+K] To detector

To buffer

 Forward

2-1 [E] To buffer Decapsulate Encapsulate Send

2-2 [E+KT] To buffer Decapsulate Encapsulate Send

2-3 [E] To buffer Decapsulate

Modify

Add a link
Encapsulate Send

3-1 To forwarder Forward

3-2 To forwarder Forward

3-3 To forwarder Forward

Chart 3.1 Actions in EDI-Filtering (EDIF)

48

Actions and Destinations (FSF mode)

Package Router

Level
Intermediate

App

Level
Intermediate

Router

Level

1-1 Send up to

Inter Layers

Decapsulate Search

Not Match

Encapsulate Forward

1-2 Send up to

Inter Layers

Decapsulate Search

Not Match

Encapsulate Forward

2-1 Send up to

Inter Layers

Decapsulate Encapsulate Send

2-2 Send up to

Inter Layers

Decapsulate Encapsulate Send

2-3 Send up to

Inter Layers

Decapsulate

Search

Match

Modify

Add a link Encapsulate Send

3-1 Send up to

Inter Layers

Decapsulate Search

Not Match

Encapsulate Forward

3-2 Send up to

Inter Layers

Decapsulate Search

Not Match

Encapsulate Forward

3-3 Send up to

Inter Layers

Decapsulate Search

Not Match

Encapsulate Forward

Chart 3.2: Actions in Full Search Filtering (FSF) Mode

49

Actions EDIF FSF

Decapsulate 3 pkgs (2-1, 2-2, 2-3) 8 pkgs (all)

Encapsulate 3 pkgs (2-1, 2-2, 2-3) 8 pkgs (all)

Search 2 index searches (1-2, 2-2) 8 sequential searches (all)

Chart 3.3 Different Actions between EDIF and FSF mode

Chart 3.3 shows the difference in how much the computational resource is consumed

between EDIF model and FSF model for our example.

3.8 Some Sample Plug-in Applications

In this section, we’ll show three sample applications, which are implemented in our

experimental adaptation routers, using EDIP indexing scheme for fast content

interception and adaptation.

3.8.1 Active Hyperlinking

Active hyperlinking is adding hyperlinks to some specific patterns appear in certain

web pages to draw the attention or provide more information to potential interested

readers. The web pages are adapted neither at the content providers servers nor at the end

users’ computers, but at the adaptation server in between. Using this scenario, it will be

50

easier to localize or personalize the web pages the end users are going to see.

Fig 3.8 and Fig 3.9 illustrate the example. Note that before adaptation (Fig 3.8), the

authors’ names are plain text in “Publications” section. The plug- in program on top of the

adaptation router then takes the authors’ names as keywords, and changes the web pages

by adding their corresponding email addresses wherever the keywords appear. Now, web

page readers just need to click the links to send emails to the authors. (Fig 3.9)

51

Fig 3.8 A Web Page before adaptation

52

Fig 3.9: A Web Page After Adaptation

53

3.8.2 Advertisement Filtering

Today most content providers are bringing commercials to the web pages. Some

people may not want to see those commercials, or they want to see more local news. By

submitting the service to adaptation routers, the end users may get ad-free web pages, or,

if ISPs wish, local advertisement can be inserted.

Fig 3.10 shows a Yahoo page before adaptation. The shaded areas are commercials

marked by Yahoo. Fig 3.11 shows the web page after filtered. The indexing information

in EDIP headers directs the filter which part should be deleted from the stream in order to

get an ad-free page.

The same scenario can be used in parental control.

54

Fig 3.10: Before Adaptation: A Yahoo web page with commercials

55

Fig 3.11 After Adaptation: An ad-free Yahoo page

56

3.8.3 Screen Size Adjustment and Re-layouting

Fig 3.12: A web page from Yahoo before adjusting the size and relayouting

57

Fig 3.13a: After size adjustment1 Fig 3.13b: After size adjustment2

Wireless devices are getting more and more popular. PDAs, pocket PCs, and even

cell phones now can be used to surf the Internet. With limitation in dimensions, the

viewable screen size of a hand-held device cannot be the same as that of a desktop or

laptop computer. A mobile user will have difficulties in viewing a normal 800*600 page

on a 240*320 screen size PDA. Nowadays, content providers often keep special “small

screen” versions for mobile users. But with rapid growing diversity of hand-held devices,

58

this solution cannot meet all users’ needs. Fig 3.12 shows a Yahoo page before screen

resizing. The shaded areas are marked by special markers, which are keywords the

adaptation router is looking for. Fig 3.13 shows the page after screen resizing. Note that

the layout could be changed according to user’s preference. For example, in Fig 3.14, the

appearance and the sequence of appearance of memory blocks are different from those in

Fig 3.13, although they are originating from a single source file and the adaptation

plug-in doesn’t change. (The user preference submitted to the adaptation router changes.)

59

CHAPTER 4

THE PERFORMANCE

An experimental test bed is designed to verify the functions and exam the

performance of the adaptation router and the EDIP protocol we proposed above. We’ll

first introduce the hardware and software environments, on which we build the test bed.

Then we’ll investigate several performance benchmarks and compare them with those of

conventional adaptation mode. Finally, we examine EDIP’s extra space cost and the

potential performance boost by using RISC technology and dedicated chips.

4.1 The Environments

The source code of the test bed was written in standard C language. The test bed has

been successfully functioning in some of the major UNIX environments in the

Department of Computer Science and Network & Media Communication Research Lab

in Kent State University. The tested systems include:

(1) TRIDENT, HP-UX B.11.00, Hewlett-Packard 9000/785

(2) AEGIS, HP-UX B.11.11, Hewlett-Packard 9000/770

(3) FORRESTAL, Redhat 7.1, AMD Athlon 800MHz

60

(4) IOWA, Redhat 7.1, AMD Athlon 800MHz

(5) AWAGATEWAY, Redhat 7.2, Intel Pentium 166MHz

(6) DAVELINUX, Redhat 7.2, Intel Pentium 166MHz.

When we exam the performance of the adaptation router, we choose Linux Redhat 7.2

(Kernel 2.4.7-10) which runs on an Intel Pentium 166Mhz system. The reason we choose

such a system to exam the performance of our adaptation router is described in the

following sections.

4.1.1 Software Environment

The software environment we choose in the performance test for the adaptation

router is Linux Redhat 7.2 (Kernel 2.4.7-10). At the time the test bed was built, version

7.2 was the latest distribution of Redhat Linux (now Redhat 7.3 has just landed), which

included the 2.4.7-10 kernel. It supports up to 64GB of RAM, far more than the 4GB

limit in the 2.2 kernel series. While the 2.2.x kernel can't take full advantage of servers

with more than four CPUs, the 2.4 series is much more scalable, with SMP (symmetric

multiprocessor) support for machines with as many as eight CPUs. From personal

production to basic web serving, Red Hat Linux contains everything needed for a stable

and secure working environment. With its powerfulness and versatility, we believe

building our test bed on such a system has general and comparable meaning.

61

4.1.2 Hardware Environment

The hardware we use in the test bed is generally IBM-compatible PCs including Intel

Pentium CPU and AMD Athlon CPU. The computer running adaptation router in the

performance test has a single Intel Pentium 166MHz CPU and 64Meg SDRAM, with a

conventional 3COM 10/100 network adapter. Other computers playing the content

providers and the end-user agents include one Intel Pentium 166 MHz, one Intel Pentium

IV 1.6 GHz and two AMD Athlon 800 MHz machines. The reason we choose a relatively

slow system as our adaptation router is that, the times() function, which returns the

processor time used when a process calls it, only has a resolution of 1/100th second. In

this case, a slower system will produce less relative error. Further more, a fast system

may produce too much data in too little time for a conventional 10/100M network adapter.

The adaptation router will spend considerable resource on congestion control and make

the execution time unpredictable. Using a slower system can avoid such unpredictable

factors.

4.2 Test Application and Sample Used

The application used in this performance test is active hyperlinking. Two sample

files are used. The first one is an HTML file, in which there are two keywords in our

adaptation router’s service range. Two hyperlinks will be added into the HTML file when

it passes the adaptation router. This HTML file represents streams that need to be

62

serviced. The second is a JPG file, which represents streams that need not to be serviced.

It will not be changed when it passes the adaptation router. Both files are trimmed to

50.0k bytes in size for easier performance calculation. Keeping same total number in

amount, these two files will be sent repeatedly to adaptation routers in various ratios,

simulating different service densities.

For comparison purpose, we also built two other models besides the Embedded Data

Indexing Filtering (EDIF) mode. They are Full Search Filtering (FSF) service model and

Normal Router (NR) mode, which is without any adaptation service. To make the result

more comparable, these three models are built using the same programming strategy ---in

fact, they share most codes in common parts, such as encapsulation, decapsulation,

regular routing algorithms and so on.

4.3 Performance Test

4.3.1 CPU usages for EDIF service:

In this section we provide the performance of the EDIF filtering. We found that the

CPU usages is closely related to the amount of data that in service range. We define

“service density” as the percentage of data volume that needs adaptive service (i.e. in

service range). In this experiment, we send total 5M bytes data through the adaptation

router with variety of service densities. We plotted x axle as the service density ranging

63

from 0% (idle) to 100% (full). Fig 4.1 plots the absolute value of CPU time cost by EDIF

schemes for major components in the adaptation router, and Fig 4.2 plots each

component’s relative CPU cost percentage, which is the ratio of CPU time used for this

component to the total CPU time used by the adaptation router.

We can see from those graphs that with the increase of service density, the CPU time

used by each major component is increased. The encap/decap time increases because the

more IP packages in service range, the more IP packages need to be decapsulated and

encapsulated for searching and modifying. The similar reason applies to the explanation

why user application CPU time increases while service density increases --- this is due to

more packages are in service range, the more packages need to be searched and modified.

The routing time does not start from 0 when the service density is 0%. This is because the

adaptive router has to spend CPU time in regular routing. When service density increases,

more packages have to be routed to buffers and queues and delivered to user application

for adaptation purpose. Those packages take more routing time than the packages that

just need regular routing to their network destinations. That explains why the routing time

also increases when the service density increases.

64

Fig 4.1 CPU Time Cost in EDIF Service Mode

In Fig 4.2, we can see that routing takes almost all CPU time used by the adaptation

router. The percentage decreases as service density grows, because the time used by user

applications and encap/decap of network capsule grows faster than that by routing.

65

Fig 4.2 Relative Percentages of CPU Time Cost in EDIF Service Mode

4.3.2 CPU usages for FSF service:

In this section we provide the performance of the Full Search Filtering (FSF). We

still send total 5M bytes data through the adaptation router with variety of service

densities. Fig 4.3 plots the absolute value of CPU time cost by FSF schemes, and Fig 4.4

plots the relative CPU cost percentages for each component.

We can see from those graphs that the CPU time used by most components almost

remains the same regardless of the change of service density. CPU time used by user

applications does increase a little bit while the service density increases. This is due to

streams in service range will be adapted after targets have been found. In this test, the

adaptation is to substitute the keyword with a hyper link. The higher service density, the

66

more actions will be taken, and thus more CPU time will be consumed. However, user

applications spend most of their CPU resource in sequential searching the keyword. The

substitution only takes little CPU time. That’s why the user application CPU does not

increase much.

Fig 4.3 CPU Time Cost in FSF Service Mode

If we compare Fig 4.4 with Fig 4.2, we will find out one of the reasons why EDIF

mode is much faster than FSF mode when service density is low. In FSF mode, when the

service density is low, the user application and encap/decap procedures take more than

80% in relative CPU cost, which is totally unnecessary in EDIF mode. When the service

density grows, the time for user application and encap/decap procedures grows naturally

in EDIF mode, but we’ll see the relative CPU cost for user application is still less than

67

that of FSF mode. The is because sequential search, which has O(n) complexity, is used

in FSF mode, while EDIP enabled indexing search, which has O(1) complexity, is used in

EDIF mode.

Fig 4.4 Relative Percentages of CPU Time Cost in EDIF Service Mode

4.3.3 CPU Time Comparison among EDIF, FSF and NR Mode

In this section we put performance data from EDIF and FSF mode together, plus the

CPU time used by a simulated normal router without any service. The performance of NR

mode represents the best possible performance we can achieve.

As Fig 4.5 shows, the EDIF incurred much smaller cost than FSF throughout.

Particularly interesting is the points with a low service density. Here simple FSF incurred

a cost about 14 times higher than that of a normal router. However, the EDIF performs

68

almost as good as the normal router. This is because of two reasons: (1) the marking

mechanism allows EDIF to avoid decapsulations and encapsulations; (2) no sequential

searching happens. In contrast the FSF has to decapsulated the entire stream and

sequentially search whether there is a serviceable packet or not. Naturally, with the

increased service density, the cost of service is increased in both the schemes. Notably,

even when service density=100%, the EDIF mechanism could perform better. This is

because EDIP header enabled index searching is much faster than sequential search that

FSF must take.

Fig 4.5 CPU time comparison among EDIF, FSF and NR mode

69

4.3.4 Throughput Comparison among EDIF, FSF and NR Mode

CPU time is not all for a system. People may concern more for overall performance than

CPU time cost only. The difference here is, the system spend considerable amount of

resource on system calls, which is not counted in previous comparisons. System calls

include receiving a package from network, sending a package to network, print messages

on the screen and so on. Most system calls are inevitable (such as receiving/sending IP

packages), and they take significant amount of system resources in all of the three service

modes. This fact neutralizes some benefit we gain from less CPU cost in EDIF mode.

However, as shown in Fig 4.6, EDIF remains strong when service density is low (over

50% higher throughput when service density close to 0), and still better than FSF even

when service density is 100%.

70

Fig 4.6 Throughput comparison among EDIF, FSF and NR mode

71

4.3.5 Average Package Delays

If one can say the adaptation server administrator cares more about the system throughput,

what the end users concern more is the package delays. No one wants to view a web page

half a minute later after (s)he clicks a link. Although real delay time for an end user also

depends on network conditions, we recorded incoming and outgoing time for packages

flow through our experimental adaptation router. Then we average the difference between

each pair as the average package delay on our adaptation router. Fig 4.7 plots the result.

We can see that EDIF mode is almost as good as NR mode when service density is low,

while it still has advantages over FSF mode even when service density grows to 100%.

Fig 4.7 Average Packages Delays

72

4.4 Further Analysis

4.4.1 Space Cost

In this analysis, we inspect the space cost of EDIP headers. We assume a stream with

EDIP header is divided into pknum IP packages; each one is pksize bytes in size. We also

assume that there are n keywords inside this stream, and the ith keywords will appear at

the frequency of fi times/byte, which we call key density of the ith keyword.. The

frequency for any keyword that will appear is F time/byte. Let Ai be the total number of

indexes, and Bi be the total number of key blocks for the ith keyword. Since each key

block contains at least one index for a key, we have Bi<=Ai. Sindex denotes the size of an

index in bytes. Since we use 16 bits to express an offset (an index), Sindex=2. Skbr denotes

the size of a key block in bytes, excluding the indexes. We have Skbr=4. Sgf denotes the

size of a general field in bytes, and Sgf=12. Sextra is the extra space needed for EDIP

headers, Soriginal is the size of the original stream. E denotes the extra percentage of space

needed to accommodate EDIP headers. We summarize the discussion with equations

from EQ 4.1 to 4.6. The result of E is expressed in EQ 4.7:

∑
=

=
n

i

ifF
1

 (EQ 4.1)

pknumpksizefA ii ××= (EQ 4.2)

73

ii AB ≤ (EQ 4.3)

∑∑∑∑∑
== == =

++=
pknum

i

gf

n

i

Bi

j

kbr

n

i

Ai

j

indexextra SSSS
11 11 1

 (EQ 4.4)

pknumpksizeSoriginal ×= (EQ 4.5)

original

extra

S
S

E = (EQ 4.6)

pksize
S

SSFE
gf

kbrindex ++×≤)((EQ 4.7)

Fig 4.8 Extra Space Percentage Caused by EDIP Headers

74

The result for EQ 4.7 is plotted in Fig 4.8. Here Sindex=2., Skbr=4,and Sgf=12. The

extra space cost is below 2% when the average package size is larger than 1500 bytes2,

even if f=1/600, which is considered a very high key density3. When the package size is

larger than 5k bytes, the extra space percentage will remain small, but will not be

significantly reduced. Note that we assume the service density is 100%, which means

each stream has EDIP headers and it is the worst case. In real world, service density

should be kept low, which makes even lower the extra space percentage for EDIP

headers.

2MTU: Maximum Transmission Unit, which is the largest size frame, specified in bytes, that can be sent in

a frame -based network. Normally, IP packages with content are divided into multiple frames to transmit via

network. 1500 byte is the suggested value of MTU size by most ISPs.

3In practice, key density can always be controlled, by using fewer gross keys and application level

processing to find the real keys.

75

4.4.2 Impact on Different Processor Speeds

 It is important to note that in the entire operation the computation is performed in

three levels. These are (i) IP level (stream controller, routing, buffering, etc.), (ii)

intermediate level (encapsulation, decapsulation, etc.) and (iii) application level

(searching/indexed jump, filtering, etc.). In order to examine the computational

complexity, we use eServiceMod
ComponentC to denote the Complexity for Component in ServiceMode.

For example EDIF
actC denotes the complexity of user actions (adding links to web page in

active hyperlinking example) in EDIF service mode. Note that in EDIF service mode, the

complexities for routing4 are different for IP packages in service range from those out of

service range. Suppose P% is the service density, which means how many percentages of

IP packages are in service range. EQ 4.8 and EQ 4.9 describe the total complexity for

EDIF service mode and FSF service mode, respectively.

EDIF
routnokey

EDIF
routkey

EDIF
decap

EDIF
encap

EDIF
search

EDIF
act

EDIF CPCCCCCPC ×−+++++×= %)1()(% (EQ 4.8)

FSF
routing

FSF
decap

FSF
encap

FSF
search

FSF
act

FSF CCCCCPC ++++×= % (EQ 4.9)

However, the average time to process a package is not only decided by processing

complexity, but also by the speed of processor. We assume PPAPP, PPINTER and PPIP are

4Here “routing” includes two tasks: (1) choosing paths among nodes in network (regular routing) (2)

choosing the paths inside adaptation router (routing among buffers, stream controllers)

76

the power of processors for user application level, intermediate level and IP level,

respectively. EQ 4.10 shows the average time to process an IP package in EDIF service

mode and EQ 4.11 shows the average time to process an IP package in FSF mode.

IP

EDIF
routnokey

EDIF
routnokey

EDIF
routkey

INTER

EDIF
decap

EDIF
encap

APP

EDIF
search

EDIF
actEDIF

PP

CCCP

PP

CCP

PP
CCP

T
+−×

+
+×

+
+×

=
)(%)(%)(%

 (EQ 4.10)

IP

FSF
routing

INTER

FSF
decap

FSF
encap

APP

FSF
search

FSF
actFSF

PP

C

PP

CC

PP
CCP

T +
+

+
+×

=
%

 (EQ 4.11)

In the tests we conducted in previous several sections, we use a single processor for

all three levels of processing, which means PPAPP=PPINTER =PPIP. However, in reality, we

could use RISC technology in lower levels, which contains simpler instructions. Some

vendors made chips dedicated to routing or IP decoding/encoding, which makes

PPIP>PPINTER >PPAPP. For simplicity, we assume that each lower level is a (a>=1) times

faster than its immediate higher level. We’ll have EQ 4.12:

APPINTERIP PPPPPP 2αα ==)1(≥α (EQ 4.12)

 Let EDIF
FSFR be the ratio of speed of EDIP over FSF service mode. From EQ 4.10, EQ

4.11 and EQ 4.12, we’ll get EQ 4.13, shown as following:

77

EDIF
routnokey

EDIF
routnokey

EDIF
routkey

EDIF
decap

EDIF
encap

EDIF
search

EDIF
act

FSF
routing

FSF
decap

FSF
encap

FSF
search

FSF
act

EDIF

FSF
EDIF
FSF

CCCCCCCP

CCCCCP

T
T

R
+−++++×

++++×
==

])()[(%

])([%
2

22

αα

ααα

 (EQ 4.13)

For a given system, a and all complexities are fixed values. For example, in our

tested system, we have a=1. The complexities values can be derived from the data of Fig

4.1 and Fig 4.3. For example, in our experimental system, we have:

7=FSF
actC 50=+ EDIF

search
EDIF
act CC

100=FSF
searchC 61=+ EDIF

decap
EDIF
encap CC

57=+ FSF
decap

FSF
ecap CC 22=EDIF

routnokeyC

29=FSF
routingC 40=EDIF

routkeyC

Fig 4.9 now plots the EDIP scheme’s relative speedup for three different speed

differentials (a=1,2, and 3). We could see that the speed differential among these three

levels can significantly affect the overall performance of the system. As can be noted that

advantage of EDIP increases with large alpha. The time saving is particularly dramatic if

service density remains small.

78

Fig 4.9 EDIF’s Speedup Over FSF Model with Different a Value.

79

CONCLUSION

Fast intercept of streamed data is a growing concern in networking. The application

level embedded processing is rapidly increasing and can be a potential bottleneck in

Internet traffic carriage. The network protocols and packet data structures have been

designed mostly for end-to-end processing. In this thesis we have presented a part of our

research, which looks into mechanisms that can provide scope and indexing information

to intermediate network hubs to enable random access in a stream. As shown in the

experiment, these mechanisms expedite process of passing stream significantly under

common conditions. And with potential hardware acceleration, much better performance

could be achieved.

Another important provisioning is the sharable and mobile code servers inside

network. In recent years some advances have been made in programmable networks.

Among them active networks [21][22][23] initiative proposes the generalization of the

traditional router concept— where transiting packets can be modified almost in any way

with custom embedded program modules in the network elements. Several other attempts

are underway, where standalone processors are being added with routers.

One of the top issues here is the security. Since program codes are mobile, a local

system has to make sure such “alien” codes are not harmful, no matter caused by careless

80

programmers or malicious cyber attackers. Although this problem can be partially solved

by verification or authentication among participating parties, it seems the complete

solution is designing a highly dynamic runtime environment[24][25][26].

One of the other issues is the filter programs management. When an adaptation

service server is running a number of filter programs from different sources, we have to

prevent them from collision and dead locks. If we look into these problems, we may find

that most of them have counterpoints in a conventional OS, such as user management,

sharing, deadlock prevention, security check and so on. This arose the idea of designing

special purpose active network operating systems or execution environments that can

systematically support adaptation services over the Internet. Several research groups are

working on these issues, such as ANTS [11] and Janos Java NodeOS [15] .

We believe a commercialized fast content adaptation network will appear in near

future. However, a lot of effort has to be made before such a system can be put into wide

use in large scale.

81

REFERENCES

[1] S. Blake, D. Black and etc., RFC 2475 “An Architecture for Differentiated

Services”, 1998

[2] “Annotation-based web content transcoding”, M. Hori, etc, The 9th WWW

conference, 2000, available at: http://www9.org/w9cdrom/169/169.htm [Last

accessed on Jun 30, 2002]

[3] Akamai, http://www.akamai.com [last accessed on Jun 30, 2002]

[4] S. J. Lee, W. Y. Ma, and B. Shen, Interactive video caching and delivery using

video abstraction and summarization, Proc. International Workshop on Web

caching and Content distribution (WCW’01), Jun 2001

[5] S. Deering, R. Hinden, “Internet Protocol, version 6 specification”, RFC 2460,

1998

[6] Wei-Ying Ma, Bo Shen and Jack Brassil, “Content Services Network: The

Architecture and Protocols”, Int. workshop on web caching and content

distribution, June 2001.

[7] Oliver Spatscheck, J. S. Hansen, J. H. Hartman and L. Peterson; Optimizing

TCP forwarder performance, IEEE/ACM Trans. Networking 8, 2, Apr. 2000,

pp146 - 157.

82

[8] D. Maltz and E Bhagwat, "TCP splicing for application layer proxy

performance," IBM, ftp://ftp.cs.cmu.edu/user/dmaltz/Doc/splice-perf-tr.ps, Mar.

1998.

[9] Open Pluggable Edge Service (OPES), http://www.ietf-opes.org [Last accessed

on Jun 30, 2002]

[10] “A Model for Open Pluggable Edge Services”, G. Tomlinson, etc.,

draft-tomlinson-opes-model-00.txt

[11] ANTS http://www.cs.washington.edu/research/networking/ants/

[12] “Developing Web Applications for Pervasive Computing Devices”, Steve Imes,

IBM webserver studio document, Jan 2001

[13] “Ubiquitous Internet Application Services on Sharable Infrastructure”, Javed I.

Khan and Yihua He, technical report, available at:

http://bristi.facnet.mcs.kent.edu/~javed/medianet/techreports/TR2002-03-02-asp

-KH.pdf

[14] “OPES Architecture for Rule Processing and Service Execution”, Lily Yang,

Marcus Hofmann, draft-yang-opes-rule-processing-service-execution-00.txt

[15] Janos Java NodeOS http://www.cs.utah.edu/flux/janos/jnodeos.html [Last

accessed on Jun 30, 2002]

[16] Spyglass-Prism. http://www.spyglass.com. Last accessed on Jun 30, 2002

83

[17] J. Smith, R. Mohan, and C. Li, “Scalable multimedia delivery for pervasive

computing,” ACM Multimedia,1999.

[18] Fox, S. D. Gribble, Y. Chawathe, and E. A. Brewer, Adapting to network and

client variation using active proxies: lessons and perspectives, IEEE Personal

Communication, Vol. 5, No. 4, pp. 10-19, August 1998.

[19] O. Angin, A.T. Campbell, M. E. Kounavis, and R. R.-F. Liao, The Mobiware

Toolkit: Programmable support for adaptive mobile networking, IEEE Personal

Communications, Vol. 5, No. 4, August 1998, pp. 32-43.

[20] Jeremy Elson and Alberto Cerpa, Editors, ICAP, The Internet Content

Adaptation Protocol, 2001

[21] Javed I. Khan, S. S. Yang, A Framework for Building Complex Netcentric

Systems on Active Network, Proceedings of DARPA Active Network Confrence

and Exposition 2002, IEEE Press, San Francisco, May, 2002.

[22] Wetherall, David, Active Network Vision and Reality: Lessons from

capsule-based System, Operating Systems Review, 34(5): pages 64-79,

December 1999.

[23] Jonathan M. Smith, Programmable Networks: Selected Challenges in

Computer Networking, Computer, January 1999 (Vol. 32, No. 1), pp. 40-42

[24] S. Murphy, E. Lewis, and R. Watson: Secure Active Network Prototypes,

84

Proceedings of DARPA Active Network Conference and Exposition (DANCE),

pages166-181, May 2002

[25] S. Krishnaswamy, J. Evans, and G. Minden: A prototype Framework for

Providing Hop-by-Hop Security in an Experimentallly Deployed Active

Network, Proceedings of DARPA Active Network Conference and Exposition

(DANCE), pages 216-223, May 2002

[26] M. Hicks, A Keromytis, and J. Smith: A Secure PLAN (extended version), ,

Proceedings of DARPA Active Network Conference and Exposition (DANCE),

pages 224-237, May 2002

[27] Javed I. Khan and Yihua He: Fast Intercept of A Passing Stream For High

Performance Filter Appliances, accepted by 5th International Conference on

High-Speed Networks and Multimedia Communications HSNMC'02 July 3-5,

2002, Jeju Island, Korea

85

GLOSSARY OF TERMS AND ABBREVIATIONS

AR Adaptation Router

AR Admin Adaptation Router Administrator (at service provider's side)

ASDL Active Service Distribution and Localization (Model)

CDN Content Delivery Network

CP Content Provider

CPI Content Provider Initiated (Service)

CSN Content Service Network

EDIF Embedded Data Index Filtering (mode)

EDIP Embedded Data Indexing Protocol

EU End User (Agent)

EUI End User Initiated (Service)

FSF Full Search Filtering (mode)

GF General Field (in EDIP header)

KB Key Block (in EDIP header)

Key Density The frequency of key word appearance

MA Marker Administrator (at content provider' side)

NR Normal Router (mode without any service)

86

Service Density The percentages of data volume that in service range

SMS Service Management Server

SPI Service Provider Initiated (Service)

87

A SAMPLE USER FILTER APPLICATION

(Active Hyperlinking)

int userapp()

{

 int streamid;

 struct searchresult_t searchresult;

 int i;

 int string0len, string1len;

 char string0[]="<i>Yihua He</i>";

 char string1[]="<i>Yihua He</i>";

 string1len=strlen(string1);

 string0len=strlen(string0);

 for (; ;)

 {

 streamid=getstreamid();

 if (0>keysearch(streamid, 0, string0, string0len, &searchresult))

 printf("keyword not found\n");

88

 else

 {

 printf("keyword %s found at: \n", searchresult.keyword);

 for (i=0; i<searchresult.numofindex; i++)

 printf("%d ", searchresult.offset[i]);

 printf("\n");

 for (i=searchresult.numofindex-1; i>=0; i--)

 {

 temp=searchresult.offset[i];

 deletebyte(temp, string0len);

 insertbyte(searchresult.offset[i], string1, string1len);

 }

 }

 sendstream(streamid);

 }

 return(0);

}

89

A SAMPLE MARKER PROGRAM AT SOURCE SIDE

int marker1 (char *in, int in_len, struct searchresult_t *searchresult)

{

 char kwd[]="<i>Yihua He</i>";

 int offset;

 strcpy(searchresult->keyword, kwd);

 searchresult->keylen=strlen(kwd);

 searchresult->numofindex=0;

 for (offset=0; offset+strlen(kwd)<in_len; offset++)

 {

 if (bcmp(in+offset, kwd, strlen(kwd))==0)

 {

 searchresult->offset[searchresult->numofindex]=offset;

 (searchresult->numofindex)++;

 if ((searchresult->numofindex)>=MAXNUMOFFOUND)

 {

 printf("too many keyword found! \n");

 return (-1);

90

 }

 }

 }

 return (searchresult->numofindex);

}

