HE, YIHUA, M.S,, Aug 2002 COMPUTER SCIENCE

FAST INTERCEPT OF PASSING STREAMS FOR HIGH PERFORMANCE FILTER
APPLICANCESIN APPLICATION SERVICE NETWORKING (90 pp.)

Director of Thess; Javed |. Khan

Internet is increasingly being "active'. Documents are being dynamically
processed before they are served. The location of processing is also dynamic. The work
investigates two aspects. (a) how documents can be processed within an overal service
model/scenario in any location between the origin server and the user-agent; (b) what
type of network software layer in the intercepting machine can expedite intermediate
information processing. Random access into processed datais believed to be an important
performance criterion in any computation. Envisioning a generalized framework for
supporting a wide range of possible content services, the thesis suggests a novel content
scoping and indexing based random access mechanism into a passing stream for
intercepting filter like appliances on this framework. It also presents an application
programming interface for efficient stream editing. The work also presents a user space
implementation of the proposed intercepting machine and a performance study of the
scheme on this implementation. Even without any kernel level support, the
implementation showed about 500-800% speedup over today’s content servicing
technigue in normal conditions. The result suggests such random access can significantly

gpeed up future intercepting gpplications of the Internet.

FAST INTERCEPT OF PASSING STREAMSFOR HIGH PERFORMANCE

FILTER APPLICANCESIN APPLICATION SERVICE NETWORKING

A thesis submitted to
Kent State University in partia
fulfillment of the requirements for the

degree of Master of Science

By
YihuaHe

Aug 2002

Thesiswritten by
YihuaHe
B.E., South China Universty of Technology, 1999

M.S., Kent State University, 2002

Approved by:

, Advisor

, Chair, Department of Computer Science

, Dean, College of Art and Sciences

TABLE OF CONTENT

Approva
Table of Content
List of Figures
List of Tablesand Charts
ACKNOWLEDGEMENT
Chapter 1
Introduction
1.1 Overview
1.2 Background and Related Work
1.3 Layout of the Thess
Chapter 2
Active Service Didtribution and Locdization Moddl
2.1 Architecture and Components
2.2 Information Components
2.3 ASDL Contracting Mode
24 Classfication of Active Services

2.5ASDL SCENARIOS

Vi

viii

13

14

16

17

2.5.1 EUI Model

2.5.2 CPl Model
2.5.3 SPI Model
Chapter 3
EDIP Protocol

3.1 In Route Application Service
3.2 EDIP Indexing Mechanism
3.3 EDIP Header Format
3.4 EDIP Encapsulation by Serverlets
3.5 EDIP Decapsulation and Indexing/Scoping
3.6 Application Processing:
3.7 An exampleillugretion
3.8 Some Sample Plug-in Applications
3.8.1 Active Hyperlinking
3.8.2 Advertisement Filtering
3.8.3 Screen Size Adjustment and Re-layouting
Chapter 4
The Performance

4.1 The Environments

17

19

21

24

24

25

26

28

32

36

42

49

49

53

56

59

59

4.1.1 Software Environment
4.1.2 Hardware Environment
4.2 Test Application and Sample Used
4.3 Performance Test
4.3.1 CPU usages for EDIF service:
4.3.2 CPU usages for FSF service:
4.3.3 CPU Time Comparison among EDIF, FSF and NR Mode
4.3.4 Throughput Comparison among EDIF, FSF and NR Mode
4.3.5 Average Package Ddlays
4.4 Further Analys's
4.4.1 Space Cost
4.4.2 Impact on Different Processor Speeds
Concluson
REFERENCES
GLOSSARY OF TERMSAND ABBREVIATIONS
A Sample User Filter Application

A Sample Marker Program a Source Side

60

61

61

62

62

65

67

71

72

72

75

79

81

85

87

89

LIST OF FIGURES

Fig 1.1: Example Service with EDIP Header

Fig 2.1: ASDL Architecture and Components

Fig 2.2: End-user initiates Sngle sarvice

Fig 2.3: Content Provider initiates group service
Fig 2.4: Service provider initiates group service
Fg 3.1: EDIP Header Format

Fg 3.2: EDIP Encapsulation

Fg 3.3: EDIP Sdective Decapsulation System
Fg 3.4: Data Manipulate APl Operations

Fig 3.5: Example of Content Processing with stream-edit AP
Fig 3.6: An example sarvice

Fig 3.7: IP packages encoded with EDIP headers
Fig 3.8: A Web Page before adaptation

Fig 3.9: A Web Page After Adaptation

Fig 3.10: Before Adaptation: A Y ahoo web page with commercids

Fig 3.11: After Adaptation: An ad-free'Y ahoo page

Fig 3.12: A web page from Y ahoo before adjudti ng the sze and relayouting

\

10

19

21

23

27

29

32

37

39

43

45

51

52

55

56

Fig 3.13a After Sze adjusmentl

Fig 3.13b: After Sze adjustment2

Fig 4.1: CPU Time Cogt in EDIF Service Mode

Fig 4.2: Rdative Percentages of CPU Time Cost in EDIF Service Mode
Fig 4.3: CPU Time Cost in FSF Service Mode

Fig 4.4: Relative Percentages of CPU Time Cost in EDIF Service Mode
Fig 4.5: CPU time comparison among EDIF, FSF and NR mode

Fig 4.6: Throughput comparison among EDIF, FSF and NR mode

Fig 4.7: Average Packages Delays

Fig 4.8: Extra Space Percentage Caused by EDIP Headers

Fig 4.9: EDIF's Speedup Over FSF Modd with Different aVaue

vii

57

57

65

66

67

68

70

71

73

78

LIST OF TABLESAND CHARTS

Chart 2.1: Specification methods between different parties
Chart 2.2: A list of example services and their modes

Table 3.1: Adminigtrative APl Subset

Table 3.2: DataManipulate APl Subset

Table 3.3: Thelabdlist usad in the example shown in Fig 3.6
Chart 3.1: Actionsin EDI-Filtering (EDIF)

Chart 3.2: Actionsin Full Search Filtering (FSF) Mode

Chart 3.3: Different Actions between EDIF and FSF mode

viii

15

17

37

38

40

47

48

49

ACKNOWLEDGEMENT

| would like to express my deep gratitude and appreciation to Professor Javed |I. Khan,
who continually guides and supports me for this thesis. He has not only been an amazing

advisor for this thesis but has aso been of help on academic and persona metters.

| would aso like to thank faculties and stuffs in Department of Computer Science, Kent
State University. They provided all kinds of valuable help during the time | study here.

Without their generous support, | would not be able to complete my MS degree.

| am also thankful to my friends ---classmates, lab mates, and officemates --- who make

my stay at Kent State University so enjoyable and memorable.

Last but not the least, special thanks to my parents without whose love, support and

encouragement this would not have been possible. | dedicate this thesis to my parents.

CHAPTER 1

INTRODUCTION

Internet is increasingly being “active”. Documents are being dynamically processed
before they are served. The location of processing is also dynamic. In this thesis we
investigate two aspects: (&) how documents can be processed within an overall service
model/scenario in any location between the origin server and user-agent; (b) what type of
network software layer in the intercepting machine can facilitate intermediate information

processing.

1.1 Overview

With the growing diversity and broadening geographically coverage of Internet
population, there is more need for personalized and localized information. Simple
server-client service model is no longer satisfying cyber people. The network, which used
to be considered only as transmitting media, now becomes more and more “active”
between the information sources and destinations. Beginning from cache, proxy and
gateways, new services emerge rapidly. Such services include content adaptation, content
personalization, locationaware data insertion, security filters, etc. All of these are

fundamentally stream interception machines requiring some form of intermediate access

1

inside trangiting traffic’s content. A significant percent of the delivered Internet traffic is
now ‘touched’ .

However, most real-life content data carried over network packets are multi-level
hierarchically encapsulated and lack of indexing mechanism. Searching and pinpointing
exactly where content adaptation should take place are exhausting jobs for conventional
filter programs. For example, in annotation based web content transcoding [2], the
transcoder has to make considerable effort in searching a certain value in the annotations
(basically tags/metadata expressed by XML) at the application level before it can decide
how the content should be transcoded. To make things worse, lack of scoping mechanism
in IP packet structures, a filter program does not know if a passing-by stream is in its
service range, and it has to be decapsulated and encapsulated anyway. For example, in an
advertisement insertion service, a filter program should be only interested in HTML
streams passing by. However, current existing filtering programs have to decapsulate all
passing streams, which may include JPEG, MPEG or MP3 streams that the filter program
IS not supposed to do anything with.

Lacking the facilities for indexing and scoping for passing-by streams, current
protocol design and protocol packet structure are inefficient in dealing with filtering and
content adaptation in network. The problem has maor implication on the CPU cycle,

memory size, and overall performance of any intercepting appliance system’s architecture.

The stream is the working data structure of these capsules. It is perhaps as salient to
appliance’s overall architecture as the design of disk scheduling algorithm or multilevel
memory/cache organization is to the conventional machine architecture. Although simple
end-to-end applications may do away with marginal treatment of this issue, indeed, we
believe right placemert of protocol element inside data stream and some form of random
access will be one of the most important factor for high performance stream data
processing appliances.

Meanwhile, a group of network overlays emerge as frameworks trying to provide
systematic execution environments to the increasing Internet services. Though the first
generation CDNs emerged as “passive” temporary caching proxies of HTTP responses
now we are seeing increased array of other services for customized content delivery that
needs “active” computation ability at various intermediate points in the information
network. These points will act as the hub for various actions ranging from rich domain
knowledge based information steering, filtering, multiplexing, adaptation that will be
required by ubiquitous services. Unfortunately, at present there is a serious gap in Internet
protocol suit that can provide systematic support for these emerging services. Currently
most such ‘adaptations’ are simulated in content provider’s own site typically with arrays
of backend servers. Such content servicing is mostly isolated and lacks interoperability or

scalability. The overall growth scenario lacks any roadmap for sustained evolution of

such services.

In this thesis we focus on this little explored but important problem and demonstrate
a novel content indexing scheme that can facilitate dynamic index based random access
into streams and provide performance boost to intercepting filter like appliances. Though
conceptually the mechanism can be implemented in layers above IP, we present an IPV6
[5] based protocol called Embedded Data Indexing Protocol (EDIP). It is an IPv6
extenson header based content indexing mechanism, which defines how a Content
Provider (CP)'s serverlet can add special marks into the data stream, and how an
Adaptation Router (AR) can decode those marks from the data streams and gain pattern
dependent random access into the elements of required data stream. An example service

with EDIP header isshow in Fig 1.1.

EDIP Extenzions

LHTM. [E TE+E]
2HTML [E TE+E'T E]
2,1Ps | | | |

AP Serwer

Fig 1.1 Example Service with EDIP Header

We aso investigate the vision of a generalized content services network framework,

caled Active Service Didtribution and Localization (ASDL) model. We outline a
framework that can support deployments of wide range of services with various
specification and initiation dependencies. However, before presenting the fast filtering
mechanism and its framework, first we briefly present some of the very recent and

interesting developments in this fast unfolding area.

1.2 Background and Related Work

The first generation of systematic distributed cache coordination began with the
proposals for content distribution networks (CDN). Commercialy, we have seen the
emergence of several such content caching systems. The most remarkable one is probably
Akamai [3], who provides the global delivery platform for the official web site of the
2002 FIFA World Cup Korea/Japan™ (www.fifaworldcup.com), and making it the most
popular sports event in history, according to FIFA®. Akamai achieves huge success in
business by distributing caches/proxy worldwide, which, in concept, provides closer and
faster access points to end-users.

Both Akamai and a number of other teams have been looking into technology for
content adaptation at an origin server or in those CDN proxy caches. Example works

include Spyglass [16], IBM Transcoding proxy[12][17], UC Berkeley TranSend [18], and

!Akamai's content delivery services and scalable infrastructure have helped support the more than
464 million page views during the first eight days of the tournament (May 31 - June 7, 2002)
---http://www.akamai.com/en/html/about/customers.html on Jan 29, 2002.

Mobiware [19]. With provision for value added service in the caching proxies, the IETF
Working Group has recently proposed the Open Pluggable Edge Services (OPES) [9][10]
and the Internet Content Adaptation Protocol (iCAP) [20] defining the basic functions of
future caching proxy. iCAP defined how various caching objects can be transported from
one cache to another. OPES provides some interesting capabilities to caching proxies. An
OPES proxy can be equipped with message parsers, rule modules, and proxylets library.
When messages flow through an OPES proxy, they are not only cached but also
automatically parsed and processed with these ruleg[14]. Ma et. a. [4][6]suggested an
enhanced model of content services networking (CSN) pursuing a more powerful view of
the application server (or proxy). Mas CSN separates passive caching proxies from
application servers. The application servers can directly communication with the content
servers and user-agents. Ma shows indeed this approach can handle more service
scenarios. These include post or pre distribution services either on behalf of the user
agent or on behalf of the content-provider. Also, it alows for more versatile services to be
placed into the system as the processing is performed entirely in the application server—a
Sseparate entity than the caching proxy.

However, both OPES and basic CSN are still considered overly proxy centric. This
approach does not provide enough flexibility in accommodating various service

arrangements that may arise in the real service deployments, which often restricts where,

when and how the service can be performed, redirected, and who may provide the service
gpecifications. If we look back into the OPES scenario, we will find that a service
provider may download a set of “rules’, and interpret and execute it by the rule processor.
Here, rules are actualy a set of program language with specific purpose. However, we
noticed some limitations in such scerario. An obvious one is that, although the OPES
model can be configured to “source-centric” or “client-centric’[10], there is not an easy
way for the client to gain help from the source or vise versa. An alternative way to
describe the “rules’ is by a pair of tightly coupled program, distributed by a single
authority to both the service source and the service client. Our ASDL[13] model is such
an infrastructure which is considered “service centric”, and EDIP, which is a specia IPv6
extension, can be used as amedia carrying the helping information in this case,

The idea of putting information in IP level headers is not new, but little effort has
been made in utilizing it in value-added services. S. Blake discussed about the
differentiated services by adding marker field DS in IPv4 and IPv6 headers [1]. Packets
marked by this field will receive a particular per-hop forwarding behavior on nodes along
their path. It is a close approach as our EDIP. However, they didn’t investigate the
possibility to add indexing information into IP headers and utilize it in value-added
service to make random access of the data stream available. Spatscheck [7] and D. Maltz

[8] have separately presented two TCP splicing mechanisms which would alow a filter

(connected by two TCP links at two ends), to shed-off some TCP window maintenance
functions, for passve filters by splicing the two TCP stream at two end-points.

The technique we propose accelerates the actual filtering operation and applications,
as much as it helps the networking layers. Also, the gain is not restricted for passive mode
of operation. It uses network layer markup mechanisms to avoid decapsulation of
non-essential application data (stream segments). Also, a key difference is that we include
the case of cooperative application processing in the service model where server side help
may also be available. One can think EDIP is another index mechanism at the IP level

beneath the gpplication leve for faster marker recognizing.

1.3 Layout of the Thesis

In Chapter2, we' Il briefly introduce the framework of active service distribution and
Localization (ASDL) model that provides application service between the end-user and
the content-provider. We outline a framework that can support deployment of wide range
of services with various specification and initiation dependencies. Then, in Chapter 3,
we' |l show the detail design of EDIP protocol and its working mechanism, which enables
the high performance filter appliance. Finaly, we'll examine the test bed of a fast
filtering system based on EDIP in Chapter 4, and show the performance boost over

conventiona systems.

CHAPTER 2

ACTIVE SERVICE DISTRIBUTION AND LOCALIZATION MODEL

In this chapter, we propose the Active Service Distribution and Localization (ASDL)
Model, which is an extension to CDN and CSN architectures. CDN defines a set of cache
proxies distributed at the edge of Internet for faster data access. CSN extended the cache
proxy concept to application proxy, which has the processing abilities for content
adaptation rather than just receive-store-send function. Our ASDL model extends Ma's
work, and makes co-operative computing available to content providers and service
providers by distributing markers programs and filters programs between them. This

ASDL model provides a systematic environment for EDIP enabled fast filtering and

adapting.

2.1 Architecture and Components

The Active Service Didtribution and Locaization (ASDL) Model we propose
identifies the following entities, as shown in Figure 1.

1. Service Management Server (SMS)

2. Adaptation Router (AR)

3. Content Provider (CP) and

10

4. End-User-agent (EVU)
In this extended CSN infrastructure, the first two components play novel role. We

provide a short description of each:

End User

@ A daptation Fouter

Service
hanagement

Server
Fig 2.1: ASDL Architecture and Components

1. Savice Management Server (SMS)

SMS serves as the principle service provider. They act as the mediation center among
the end-users, adaptation router infrastructure providers and the content providers. The
SMS owns the program modules called switchlets that are dynamically deployable to the
ARs. These programs form the actual service. SMSs are responsible for the following

tasks:

11

(1) They maintain static and dynamic information about the service execution
environment and the locations of the gpplications

(2) They receive the service registration or cancellation requests from end-users,
adaptation routers or content providers

(3) Provide al authentication services

(4) Aggregate the information about usage, availability and location of each
deployed service, and then provide the information back to the deployment
requester

(5) Provide dynamic status visualization and monitoring, accounting and billing
functionalities to value added service participating parties who use ASDL as an
information exchange path

(6) Each SMS is responsible for collecting information about its domain and
periodically exchanges the information, such as registration and deployment
status, with other cooperating SMSs. These exchanges can be triggered
automaticaly if thereisa changein the sysem.

2. Adaptation-Router (AR)

The adaptation routers are sparsely distributed special networked computing
platforms, which, typicaly, will be deployed near the edge of the Internet. These can be

setup as a service overlay and be owned by certain I SPs (or overlay ISPs). These ARs can

12

be rented as computational platform to process data streams either on behalf of content
providers (CPs), the end users or even on behalf of the overlay ISP. Unlike the CSN'’s
application proxy servers [6], these ARs can have special TCP/IP layers, which can
enable them to fast intercept streams. The processing speed can be much higher than in
application level, because (1) much less decapsulation, encapsulation work will be
needed; (2) and simpler instructions in IP level will let us take advantage of RISC
technology; (3) and some of data streams may indexed or marked by the corresponding
|CP serverlet, for random access into the data stream. Chapter 3 describes the architecture
of such asystem.

3. Content-Provider (CP)

CP servers can be typical web servers. However, the protocol alows servelets to be
deployed at sender’s location, if required by any service. For example a serverlet may
pre-mark the outgoing data streams, when a particular service is active on the stream The
marker in a data dream can enable random access in adaptation routers (ARs), and
therefore dramatically reduces the computation burden of ARs. We will show an active
hyperlinking example in Chapter 3 and te saving and the cost will be shown and
andyzed in our example.

4. End-User-Aget

EUs are the sinks/terminals of data streams. They may be the norma desktop/laptop

13

computers, or maybe handheld or wireless devices, or wearable computers. These
terminals may have some kind of resource limitation, and therefore they need the
resource or service provided by the ISP/AR. End-user agents generally maintain a
resource-personalization specification, which can be polled by the SMS to determine the

type and extensions of preprocessing requirements.

2.2 Information Components

Any service arrangement will require various types of information to be exchanged
in various sequences among these parties.

The first form is the program elements (or the servelets and switchlets) those
together create the service. A single service may require switchlets and serverlets to be
deployed into multiple points.

These modules themselves also require additional parameters to run the service. The
model identifies two types of such parameters. The static adaptation parameters are those
can be received before the service begins. The dynamic adaptation parameters are those
required with every request. We call this kind of parameters as specifications, and the
party who send out the specifications as the specifier.

Example of static information includes personalization cookie box that contains a set
of tablets containing the user, user-agent, and user-environment specific constraint

informeation.

14

ASDL aso alows dynamic custom index based random stream access. A serverlet
running on the content provider's site is a program that can be designed to help the
service from the content source, such as source file indexing. An active application is a
program that provides the service directly to the end-user, and it is designed to run on an

adaptation router, which is normally controlled by some Internet service provider (1SP).

2.3 ASDL Contracting M ode

The complexity of application service management grows because these information
elements can come from variety of parties in various sequences based on the specific
application service scenario. Before we introduce the ASDL protocol let us consider the
issues: (1) who is going to supply the serverlet running on the side of content provider
and the active applications running on the side of service provider? (2) Who may be the

sarvice initiator? (3) Who are going to provide the parameter specifications?

Dedtination of specification
Specfier
EU CP AR(SP)
Yes, by HTTP| Yes, by HTTP
EU No extensions or web| extensons or web
forms forms
Yes, by XML or
CP HTTP meta | No Yes, by serverlet
extensgons
Yes, by HTTP meta | Yes, by active
AR(SP) No
extensons application program

Chart 2.1: Specification methods between different parties.

15

All the three parties (EU, CP and AR) can be initiators and parameter specifiers of the

ASDL services. However, when the initiator and the specifier are the same party, there is

no need for extra transmission. For example, if an end-user is requesting a bandwidth

adaptation service, he or she can include the bandwidth information inside the initial

request. However, transmission for dependent specifications between different partiesis

necessary. There are severa ways to transmit the specifications: (1) by tightly coupled

serverlet and active application programs (2) by XMLs or XML-like languages (3) by

meta tags. The specifications between a CP and a SP can be expressed by method (1),

because they share a couple of serverlet and active application programs, both of which

derived from SMS. Information can be exchanged freely between the coupled programs.

16

The specification from content providers to the end-users can be expressed by the XMLs
and HTTP meta extensions, while the specification from AR (SP) to the end-users can
only be expressed by the HTTP meta extension. The CP and AR can make up web forms
for the end-users convenience to provide the specification information. Chart 2.1

summarizes the discusson.

2.4 Classification of Active Services

From the service requesters’ view, we may classify the services into two categories:
(1) the single service request and (2) the group service request. A single service is
requested by a single user and it will work solely for one user to meet its specific request.
For example, a handheld device holder may request the adaptation router to trandate all
English web pages into German. This cannot be done at the handheld device, since it
lacks memory, storage or processing speed to finish that task. In this case, the end-user
may “buy” computation resource from the “net”. The other type of service is group
service, which is initiated either by the service provider or the content provider. For
example, a service provider may have some agreement with the third party and advertise
for them. The service provider then can analyze the web html files and put the ads at
appropriate places. The group service can also be initiated by content providers. For
example, a video source server may put special marks in the video stream and help the

adaptation routers to downscale the video gracefully and meet the bandwidth requirement

17

for al different users. The service examples and the modes they belong to are listed

below in chart 2.2.

Mode

Sngle Group Services

Example of active services
Service
EUI SPI CPI

Insertion of Ad Banners *
Multimedia adaptation for limited client i i i}
bandwidth
Multi-language adaptation for different user i i i
preference
Active hyperlinking * *
Activere-direction * *
Virus Scanning *

Stream data adaptation and optimization

Watermarking

Insertion of regiond data

Language trandation

Chart 2.2: A ligt of example services and their modes

25ASDL SCENARIOS

2.5.1 EUI Model

In this scenario, the end- user initiates the service. Fig-2.2 illustrates the communication

steps.

18

Setup Stage:

(1) The EU sends service request to SMS.

(2) SMS sends query to the participating |CP Source (ICPS) and AR to collect necessary

configuration data. The query iswith the identification of the SMS.

(3) The ICPS and the AR response with digital signature for authentication and other

necessary configuration information to SMS.

(4) SMS then delivers the application modules to ICPS and AR, with corresponding

security keys, which are required when ingdling the modules.

(5) The ICPS and the AR send back the acknowledgements.

(6) SM'S sends the response back to BJ with the certificates that EU may need when

sending requeststo AR and ICPS.

Data Trandfer Stage:

(A) EU sends request with certificates provided by SMS.

(B) 1CPS sends out data packages with EDIP headers.

(C) AR processes the packages with EDIP headers, performs vaue-added in

service, and sends result to EU with norma 1P packages

19

ICP
Sonrce

End (B EDIF) Selvice
User MManagement
L Server

e

9 ™~ Q.—\dapmﬂun Router TSP

N identification
O B digital signatures
application module

|::> Data without Data with B O security keys
active marker active marker -!I certificates

Application

Fg 2.2: End-user initiates Sngle service

2.5.2 CPI Model
In this scenario, the content-provider initiates the service. Fig-2.3 illustrates the

communication steps.

Setup Stage:

(1) ThelCP Source (ICPS) sends service request to SMS.

(2) SMS sends query to the participating ICPS and AR to collect necessary configuration

20

data. The query iswith the identification of the SMS

(3) The ICPS and the AR response with digital signature for authentication and other

necessary configuration information to SMIS.

(4) SMS then delivers the application modules to ICPS and AR, with corresponding

security keys, which are required when ingdling the modules.

(5) TheICPS and the AR send back the acknowledgements.

(6) SMS sends the response back to ICPS with certificates that ICPS may need when

sending requeststo AR.

Data Transfer Stage:

(A) End-user (EU) sends the data request

(B) ICPS sends out data packages with EDIP headers.

(C) AR processes the packages with EDIP headers, performs value-added in service, and

sends result to EU with norma | P packages

21

B o —
E """""""""""""""" 1 !
! (1 | i
v i E (5)
ICP \;\Q@\ L
Source "*m T E
Pmogt |
U | :
End SEeIvICe
User Management
i Server
(A ¥ =
N \m— ER = BT -
\’\\ ‘.f Ly /(5}/

i 7 W identification
¥
Application - B B digital signatures

e
() H‘\\\\xﬁdapmtiml Router ISP/ =~ P
)

apphication modole

|:I'> Diata without Diata with B O security keys
active marker active marker e

certificates

Fig 2.3: Content Provider initiates group service

2.5.3 SPl Model

In this scenario, the service provider itself initiates the service, and requests contracts

from the content provider and adaptation routers. Fig-2.4 illustrates the communication

steps.

Setup Stage:

(1) The Service Provider (SP) sends service request to SMS

(2) SMS sends query to the participating ICP Source (ICPS) and AR to collect necessary

22

configuration data. The query iswith the identification of the SMS

(3) The ICPS and the AR response with digital signature for authentication and other

necessary configuration information to SMIS.

(4) SMS then delivers the application modules to ICPS and AR, with corresponding

security keys, which are required when ingdling the modules.

(5) The ICPS and the AR send back the acknowledgements.

(7) SMS sends response back to ICPS with the certificates that ICPS may need when

sending requeststo AR.

Daa Transfer Stage:

(A) EU sends the data request.

(B) ICPS sends out data packages with EDIP headers.

(D) AR processes the packages with EDIP headers, performs value-added in service, and

sends result to EU with normal 1P packages.

B identification
L1 M digital signatures
' application module
B O security keys
certificates

End
Tlzer

. (&)

ICP
sonrce

(B: EDIF)

<

|:> Diata without
active marker

Adaptation Ronter/ ISP

[z

o

Applhication

Service
Management
Server

23

o

.
B

(6)

- Data with
active marker

Fig 2.4: Service provider initiates group service

CHAPTER 3

EDIP PROTOCOL

In this chapter, we propose Embedded Data Indexing Protocol (EDIP). We will first
introduce the concept of in route application service. Then we'll move to EDIP's
indexing mechanism and its header format. We are aso going to examine how the EDIP
is encapsulated and decapsulated at content providers and service providers, respectively.
A set of API is provided for easier user filter application developing. Finaly, we'll go
through a number of examples and see the result from some sample user plug-in

goplications.

3.11n Route Application Service

First we explain the service model. In the service model a content stream from
content provider's server (CP) flow to the end-user (EU). However it may also be
processed in an | SP application processing (AP) server in between during transit. The end
user initiates the content delivery by requesting content from the content provider via
Internet. The Application Service Provider (ASP) modifies the content and adds value to
the communication by application level intercept processing at strategically and/or

topologically located AP servers. In specia cases the CP and AP can be collocated in

24

25

gpplication service provider’sAP.

A special case of AP intervention is the passive filtering service where AP server
only monitors the stream without changing it. A further special case is the stedlth filters
where servers or end-users are not aware of the intercept service (and thus also not
helping). If the content provider is also willing to help we call it co-operative filtering
(for non-co-operative filtering some extra fast string matching operations are needed at

the AP serve).

The AP server additionally can provide “content cache’. The cache can connect at
either ‘pre’ or ‘post’ AP stage. Conceptually, caching is just another piped service that AP
can provide. AP server can be configured to provide multiple services piped on a specific
request/response stream-- caching can be one of them. The piping sequence is soft
configurable. Complex application service can be composed from simpler services by
service piping. The connection between EU, CP, and AP servers are provided by

point-to-point separate TCP/IP or UDP connections.

3.2 EDIP Indexing M echanism
The operation of application processing is expedited by two techniques. The first is
pre-marking the content stream and allowing fast access into to the stream. Second is the

selective decapsulation re-encapsulation of only the pertinent data segments. Finally, we

26

aso define alanguage to express and carry the marks between the parties involved.

The actual content intercept processing is performed by a program called the
application filter capsule, and it runs on AP server. The application service provider
generaly also sends a marking serverlets to the CP server for marking of the content
stream. Every Application Service Processing has a specified “scope segment” and a “key
segment” in it. Generaly a service is conditional. The data element which contains the
condition or key is aways intercepted and is decgpsulated and delivered to the
application capsule. The stream segment which is within the scope of an active key is
intercepted and buffered However, its decapsulation and delivery can be deferred based
on the key evaluation result. If the evaluation is false, it is directly forwarded. Fig-1
shows the example service with EDIP header, and Fig-3 and Fig-4 are the schematics of

the enhanced network layers that we have designed for the appliances machine.

3.3 EDIP Header Format

EDIP uses IPV6 extension header for content marking. It contains two parts: the
General Field (GF) and Key Blocks (KB). The Genera Field (GF) identifies that it is an
EDIP header, and contains general information in how to process the header. Each Key
Block (KB) represents a keyword in this IP package, with positions of the keyword

indexed by the offsets. Not every EDIP header has one or more KBs. Sometimes, an

27

EDIP header may only have a GF, representing that the current |P package belongs to an
indexed stream, while there is no key word appearance in this package. The total number
of KBs that an EDIP can have is only limited to the maximum size of an IP package. Fig

2.1 shows a possible EDIP header format.

Fig-3.1: EDIP Header Format

Fiddsin EDIP are defined as bdow:

---Generd Felds:

Next Header: Next Header Types

Version: Verson number of EDIP, the first bit indicating if it is encrypted or not

(1=encrypted, O=not encrypted)

28

Checksum: Standard Checksum

HDR Length: The length of this EDIP Header, in words(4bytes).

Stream 1D : Hash number of source port, destination port and sequence number from TCP

header.

NKw: Number of Keywords included in this EDIP Header, 16 maximum

Reserved: Reserved for future use (for example, longer keyword length)

---Key Block Fidds

Key Len: Keyword Length, in words, 16 maximum

Nidx: Number of Indexes for the keyword, 16 maximum

Content Length: The length, in bytes, of content immediate after the keyword, 256 bytes

maximum

Offset: Location of the keyword in the ipv6 package

3.4 EDIP Encapsulation by Servelets

After capsulated by TCP/UDP, data stream can pass through multiple markers in the

29

source's serverlet pipe. Each marker program is associated with exactly one keyword and
it examines the passing stream to see if there is any keyword appearance inside. If there
are one or more appearances, the marker generates a key block containing the offset
information about where the keyword is in the stream. Later, these key blocks join the
origina data stream in the general field generator, where a GF, as well as the key blocks,
will be added at the beginning of each package. The encapsulation process is shown

below in Fig 3.2.

| Application Level |

|TCPfU DP Encapsul ate|

Idem Buff Filters Fool

A o=
i Sernce
Management
Server

'J L _ Marker's Marker
— Marker 2| [T Code A dmin

— Marker n Encrypticn /

L1l 7

| General Field Generator |ac

<L EDIP Encapsulate
| IPv6 Encapsulate |

i ———— _._._._.___._._._._._._._J_.|: i s

e

Metwork Interface

Fg-3.2: EDIP Encapsulation

The markers' codes are registered and distributed by SMS. Each CP’s server running

30

the markers will have a marker admin (MA) to maintain the markers. After MA receives
markers deployment request from SMS and pass the authentications, MA will check if
there is available resource (such as available dots in markers pool, the size limit of a
marker, etc) to deploy the marker. To enhance the security, MA may provide an
encryption key to the genera field generator, who may encipher the GF, and only
authorized value-added service providers can decipher it. A possible marker and GF
generator’s pseudo codes are presented below in pseudo-3.1 and pseudo-3.2.

Marker Code:

« Example: search a keyword - "chess”

e Input: package-sized data from transport layer
« Output: a key block in memory buffer

Marleer_nm| //m: package-zized data
{

Kevblock kb,

kb keyword="cheza",

kb leeylen=sizeof“chess";

kb.contentlen=0 //zpecified by Coordinator

=0,

while [[lcb.offget|l| =nextpositionof{m, “chess”||==0] [++;

kb MNide=i+1,

write kb to next blank key block lot in memory buffer,;
i

Pseudo-3.1: Marker’s pseudocode

31

A real marker program example at source side is attached at the end of this thesis.

The program used in the sample introduced in section 3.8.1.

General Field Generator:

+ Input package-sized data from transport layer, memory
buffer for key blocks, encryption key from marker admin

+ Output: package-size data with encrypted EDIP header

GField{m, kb[], e_ley]
S /m package-zized data,
S /kb[]: key blocls in memory butfer
[e ke encryption ey
1
EDIF H ediph,
ediph. Niocw=num _of kb injkb[]],
ediph.hdrlen=gizeof [kb[]];

ediph.streamid=
hashecode{m.s_port, m.d_port, m.s_ip, m.d_ip|;

ediph.vergion=0,
ediph.nextheader=TCF/UDF,
ediph.kba=kb[],
M_AFFEND{ediph, m];

fill in checlczum{m];

encryptim, e ley],

Pseudo-3.2: Generd Fidd Generator's Code

32

3.5 EDIP Decapsulation and Indexing/Scoping

EDIP decapsulation and value-added services are executed in the ISPs Adaptation Router
(AR), which sit on the edge of Internet backbone. There are several tasks that an AR must
do. (1) Differentiate the IP packages that need special processing from those normal 1P
packages. (2) Retrieve the offset information from the special- marked streams to the
corresponding applications, which may use the information for value-added service. (3)
Negotiate with SMS and maintain the service statistics. The main components include a

stream controller, a keyword detector and a buffer controller.

Service
MManagement
Server App
e AR code) App1 [App2 [App3 [Appn
T Admin —* App Programming Interface
Keyword List - Modified
{Condition List : set adjustm B
| v =~ Data
Decryption | _ Feyword Detector Intermediate Layers
Key i Keyword#® Require/
Conteny Release
StreamlD 2
k4
Buffer Controller

Ontgoing [P
Packages

. 1
Stream H Buffer

Controller e

Incoming IP __,.ef"”_
Packages

Router

Fg 3.3 EDIP Sdective Decgpsulation System

33

Fig-3.3 shows a possible architecture of atypica selective decapsulation system running

on arouter. Its main components and functions are described as follows:

Stream Controller:

A stream controller’s input is mixed |P packages, which may be IP packages with
EDIP header, or just norma IP packages without EDIP header. A stream controller is
supposed to forward those IP packages without EDIP in normal procedures, and store
those with EDIP header into the Buffer for further actions. Further more, if the EDIP
header contains any key blocks, the stream controller will decrypt it with corresponding
decryption key from AR Admin, and send the keywords, contents and streamids to
Keyword Detector. A possible pseudocode of a stream controller is shown below in

Pseudo-3.3:

If (EDIF header doesn't exist)
Send IP package to regular routering; //3

If (EDIF header exists) [//1+2
If (EDIP header doesn't contain any key blocks)
Put IF package in the buffer;
Else { //EDIF header contains some key blocks
Decode the EDIP header with decryption key;
Send keywords contents and streamid to Detector;

Put IP package in the buffer;

Pscudo-3.3: Stream Controller’s Code

Buffer Controller:

The buffer controller is supposed to maintain two lists --- arequired_steamid_list and
a release_streamid _list. Periodically, the buffer controller will check if there are any IP
packages with the stream id listed in the two lists. Those in required list will be sent to
application level and those in release list will be forwarded to their destinations. Every 1P
package in the buffer has a timestamp. If timestamp expires, the IP package will be
released. A possible pseudocode of abuffer controller is shown below in Pseudo-3.4:

Eeguire (streamid)
if streamid is not Tisted in
required_streamid _Tlist[]
add streamid into
required_streamid_list[1;

Release {streamid)
if streamid is not Tisted in
release_streamid_list[]
add streamid into
release_streamid_Tist[1;

BEuffer_Check

If (IP package’s streamid iz listed
in required_stream_id[]2

Send IF package to
intermediate lewvel; /72
If (IP package’s stream id is
lizted in release_stream id[1)

Send IF package to regular
routing ; //1
If (IP package’s timestamp expired)

Send IF package to regular
routing ; //1

Pseudo-3.4: Buffer Controller’s code

35

Keyword Detector:

The keyword detector is supposed to check if the keywords sent by stream controller are
in the keyword list maintained by AR Admin. If not, the stream id will be added into
release_streamid _list in the buffer controller. If yes, the stream id can be added to the
required_streamid_list. Sometimes, Detector can do a little more. For example, each
keyword entry can have a condition on the corresponding content. If a package’s content
matches the corresponding condition, its stream id will be added in the
required_streamid_list in the buffer controller. If not, release it. A possible pseudocode of

a keyword detector is shown below in Pseudo-3.5:

DEtECtOF‘E !

GetFromIP (I_Keyword, I_Content, I_Streamid);

If (I_Kevword is not in Keyword_list))
release(I_Streamid);

elzseif (I_Content matches corresponding

entry in condition_list)

require (I_Streamid);
else release(I_Streamid)

Pseudo-3.5: Keyword Detector’s Code

If we look back, we will find that the existence of EDIP heeder, in fact, playstherole
of scoping facility, while the offsets in the EDIP heeder play the rale of indexing facility.

By having these two facilities, the performance of applications running at adaptation

36

routers will be improved sgnificantly, which will be shown in Chapter 4.

3.6 Application Processing

The application is armed with a set of specia services APIs to take advantage of the
marking processing.

These APIs can be viewed as two parts. (1) the administrative APl subset, which is
related to the start and stop of the service, and (2) the data manipulate APl subset, which
is related to editing the coming stream. An example of these two subsets of APIs is
illustrated below in table-3.1 and table-3.2. The application program can use the
administrative APl subset to edit, bypass, drop, or insert bytes with a sequence stream of
incoming data. The buffers are application buffers. Each of these operations is performed
within the context of an incoming and outgoing TCP socket stream pair. Fig-5 shows an
example of a stream-edit capsule and its edit operation on a stream. The stream offsets
are algebraicaly calculated from key indexes supplied by EDIP. The data manipulate AP
subset can enable/disable the tracking of keys by activating/deactivating the
marker/servelets and the intercept mechanism beneath. 1t can request for the next offset
for a particular key. If the key test is successful (or unsuccessful), it can request (or
release) delivery of the scope data. The AP capsules are aso given a set of fast string

search and protocol parsing routines (with potential hardware accelerators).

application
buffer

application
buffer buffer buffer

37

application

| L

sink

sink

InQ OutQ InQ

OouwtQ InQ OutQ InQ OutQ

Fig-3.4: Data Manipulate APl Operations

API

Comment

ActivateMarker(IP, M_ID)

Start the marker (serverlet) at source

side

DeactivateMarker(IP, M_ID)

Stop the marker (serverlet) at source

side

ActivateEditor(IP, E_ID, labellist, range) Start the editor at router’s side

DeactivateEditor(IP, E_ID, range)

Stop the editor at router’s side

ActivateTrap(E_ID, labellist)

Set the trapper in OS

Table—3.1: Administrative APl Subset

38

API

Comment

Associate (inQ, outQ)

Associate two streams

GetOffset (label)

Get the offset of the label in the stream

Bypass(sid, a, b)

Forward bytes fromato b

Drop(sid, c, d)

Drop bytes c to d (into trash sink)

Deliver(sid, e,f, &msgbuffer)

Deliver bytes from e to f with newcontent

Insert (sid, msgbuffer)

Insert the msgbuffer content to the stream.

Table—3.2 Data Manipulate APl Subset

After the serverlet and the filter have been deployed, a common procedure will be

taken at the adaptation router’'s execution environment to conduct the service. Both the

adminigrative APl and the data manipulate AP will be used in those procedures.

(1) Activate marker (in serverlet) at the source side. This step will activate the pattern

detector, which will search some specific keywords or labels.

(2) Activate system trap in the active router’s execution OS, telling the OS when some

keyword in the labellist comes, wake the service up.

(3) Gotodesp

(4) When waken up by the OS, request to deliver the stream within the specified range to

the gpplication

(5) The application will use data manipulate APIs, such as getoffset(), bypass(), insert(),

39

drop() and etc to modify the data stream if needed. An example of a content processing
using stream edit APl isshow in Fig-3.5.

(6) Goto step (3) until the editor is deactivated.

Trgnat 5 trearm

=langmge="en"= This 15 wntten in English =flanguagze=
=langmage="bn"= Lekhati Banglatei =/lanauaces
=lanouade="cn’= zhond qua hua=ilanauage=

Bezociate (Troomat O
Dnow (0. 567 Hidron Enslish

Bemass (57, 104 [ikeewn Bengali
Diowd 105, ECOF fidpon Chiness

=lanmmage="br'"= [ekhatl Banolaiel flanguace=

Chitpt Strearn

Fig 3.5 Example of Content Processing with stream-edit AF|

For example, if we want to process the stream shown in Fig-3.5 for language
translation, one possible procedure will be taken as shown in Pseudo-3.6. The labellist
used in the pseudo code is shown in table-3.3. The offset information in table-3.3 is

retrieved after * GetOffset’” API is excuted in pseudo-3.6.

M_ID Keyword Offset
1001 <language="en’> |0
1002 <language="bn"> | 57
1003 <language="cn’> | 105
1004 </language> 45, 93, 133

Table-3.3: The labdligt used in the example shown in Fig 3.6

40

41

ActivateEdi tor(localhost,

19342, labellist, Full_Rangel;
ActivateMarker(SourceIP, 10013;
ActivateMarker(SourceIrP, 10027;
ActivateMarker(SourceIrP, 100310;
ActivateMarker(SourceIP, 10047;
ActivateTrap(E_ID, labellist);

LOOP:

Sleep until waken up;
Getoffzet (labellist);
Associate(Input, Output);
Drop(D,5687;

Bypass (57, 1047;

Drop (105, EOFJ;

IT deact is true, exit LOOP;
END LOOP;

DeactivateTrap(E_ID, Tabellistl;
DeactivateMarker (SourceIF, labellist);

DeactivateEdi tor {localhost);

Pseudo-3.6: A pseudocode for processng examples shown in Fig-3.5

To get friendlier programming interface, these APIs may be wrapped for easier use.
At the end of the thesis, we attached a simple filter application, which adds links to some
specific keywords appeared in passing-by HTML streams, to show how the APIs and

wrap-up work. The result of thefiltering is going to be shown in Section 3.8.1.

42

3.7 An exampleillustration

The proposed mechanism accelerates the application level intercept process. The
advantage is derived essentially by three principal sources. (1)Only the byte segments
carrying ‘keys are unconditionally decapsulated. (2) The byte segments carrying ‘scope’
are conditionally decapsulated only when the key conditions are true. (3)Rest of the bytes
are never decapsulated.

There is aso another source of run-time performance boost. Stream is marked by the
servelet processes running at the content source. In cases, it is sometime possible to mark
with direct content knowledge by the content generator without any string search.
Otherwise, the marking can still be performed by sting search/ or parsing of the original
content as preprocessing. It till therefore can drastically reduce the run time cost. To
compare—current filters have to perform run-time full search and/or full parsing. The
scheme however has cost. It is the extra data that will be needed by the EDIP markers.
The actual saving therefore is the function of key density, and the key success probability
in the stream. Though, apparently it may seem that high key density can offset the
performance gain, but in practice the EDIP key density can always be controlled by using
agross key in EDIP and then using application level processing to find the real keys. This
is benefit of application level soft key definition ability. In practice, only a small part of

data stream is generadly modified. Consequently, the expensive part is way too

43

inconsequential compared to the saving made by bypassing the costly decapsulation/
reencapsulation of the rest.

Here we introduce an active hyperlinking example, which will add a corresponding
hyper link when it meets some specific word. It involves three parties: (1) an end user,
who is requesting several files from content provider via Internet; (2) a content provider,
say, CNN.COM, which provides the origina data and runs the serverlets on one of its
servers generating the EDIP header; (3) a value-added service provider, normally known

asan ISP, say, AOL.COM, which ownsthe ARs. The scenario is shown below in Fig 3.6.

Clontent
I.HTML [E R Provider

(E':;nrice
Prowvider

Fg 3.6 An example service
Assumptions:

® A user of AOL isrequesting two HTML files and one JPG file from CNN.COM.
® AOL’sonline mall is selling motherboards, and they want to put hyperlinks on where

the word “motherboard” appearsin HTML file.

® AOL has an agreement with CNN.COM --- CNN will put a marker where the word
“motherboard” appears.

® The first HTML file is divided into 2 IP packages, the second HTML file is divided
into 3 1P packages, the JPG fileis divided into 3 IP packages

® The first HTML file has an EDIP header with keyword “shirt”, requested by other
entity. AOL issupposed to ignoreit.

® The second HTML file has an EDIP header with keyword “ motherboard”, which is
the keyword target, appearing in its second | P package

® The JPG file does not have any EDIP header

Mission:
The AOL adaptation router modifiesall HTML files with “motherboard” by adding a

link to itsonlinemal. All other files are not supposed to change.

45

IPv6e Header IPv6 Header
EDIP Header
The Fist EDIP Header Rean D o]
e Eeyword = “shirt
HTML Stream ID = 10031, NEw=0 Content Length=0
File Uffcet= 00
TCP Header TCP Header
HTTP Header HTTP Header
40k bytes Data 40k bytes Data
IP Package 1-1 IP Package 1-2
IPv6 Header IPv6 Header IPv6 Header
EDIP Header
The EDIP Header Stream ID = 10078, NEw=1 EDIP Header
Second Stream ID = 10078, NKw=0 Keywotd:- "motherboard” Stream ID = 10078, NEw=0
Content Length=0
HTML Offset = 342
File TCP Header TCP Header TCP Header
HITP Header HITP Header HITP Header
40Kk bytes Data 40k bytes Data 40k bytes Data
IP Package 2-1 IP Package 2-2 IP Package 2-3
| IPv6 Header IPv6 Header IPv6 Header
‘;rplé TCP Header TCP Header TCP Header
) HTTPFP Header HTTP Header HTTP Header
File 40k bytes Data 40k bytes Data 20k bytes Data

IP Package 3-1

IP Package 3-2

IP Package 3-3

Fig3.7: IP packages encoded with EDIP headers

Fig 3.7 shows the result after the 3 files have been processed by CP's serverlets.
Each of the two HTML files has a keyword, (“shirt” for the first one, “motherboard” for
the second one.) and each of them is carrying an EDIP header. The JPEG file does not
have any keyword, and therefore no EDIP header is added. Both keyword “shirt” and

“motherboard” appear in the second IP package in their own HTML files, and each of

46

these IP packages is carrying a general field and a key block. All the other IP packages
from those two HTML files are only carrying genera fields, which indicate they belong
to a stream with keywords, but those keywords do not shown in the current package.

Chart 3.1 shows the EDI-Filtering (EDIF) process actionsin AR for each IP package
in our example. |P packages with EDIP headers (1-1, 1-2, 2-1, 2-2, 2-3) will be sent to the
keyword detector, but only those match the requirement from applications will be
decapsulated and sent to upper level for further processing. All the other IP packages will
be forwarded as norma packages.

Chart 3.2 shows the processing actions in AR without EDIP header, i.e., the Full
Search Filtering (FSF). In this schema, each IP packages coming into the AR will be
decapsulated, tested, encapsulated, and forwarded, which is computation resource
consuming compared to EDIF model. The gray blocks in Fig 7 and Fig 8 show the net
saving of EDIF over FSF in our example. The yellow blocks in Fig 7 show the possible
net cost, which is the task to detect if key words are matched. However, in FSF model,
the task has also to be done, but it is often done in the application level. Based on that, we

can amost neglect the cost of detector’sin our future quantity andysisin performance.

47

Actions and Destinations (EDIF mode)

Package Router App Router
Intermediate I ntermediate

Level Level L evel
1-1[E] To buffer Forward
1-2 [E+K] To detector Forward

To buffer
2-1[E] To buffer Decapsulate Encapsulate Send
Modify
2-2 [E+KT] | To buffer Decapsulate Encapsulate Send
Add alink

2-3[E] To buffer Decapsulate Encapsulate Send
31 To forwarder Forward
3-2 To forwarder Forward
3-3 To forwarder Forward

Chart 3.1 Actionsin EDI-Filtering (EDIF)

48

Package

Actions and Destinations (FSF mode)

Router App Router
Intermediate Intermediate
L evel L evel L evel
1-1 Send up to| Decapsulate | Search Encapsulate Forward
Inter Layers Not Match
1-2 Send up to| Decapsulate | Search Encapsulate Forward
Inter Layers Not Match
2-1 Send up to | Decapsulate Encapsulate Send
Inter Layers Search
2-2 Send up to | Decapsulate Match Encapsulate Send
Inter Layers Modify
2-3 Send up to | Decapsulate Add alink | Encapsulate | Send
Inter Layers
31 Send up to| Decapsulate | Search Encapsulate Forward
Inter Layers Not Match
3-2 Send up to| Decapsulate | Search Encapsulate Forward
Inter Layers Not Match
3-3 Send up to | Decapsulate | Search Encapsulate Forward
Inter Layers Not Match

Chart 3.2: Actionsin Full Search Filtering (FSF) Mode

49

Actions EDIF FSF

Decapsulate | 3 pkgs (2-1, 2-2, 2-3) 8 pkgs (dl)
Encapsulate | 3 pkgs (2-1, 2-2, 2-3) 8 pkgs (al)
Search 2 index searches (1-2, 2-2) | 8 sequentia searches (al)

Chart 3.3 Different Actions between EDIF and FSF mode

Chart 3.3 shows the difference in how much the computational resource is consumed

between EDIF model and FSF model for our example.

3.8 Some Sample Plug-in Applications
In this section, we' |l show three sample applications, which are implemented in our
experimental adaptation routers, using EDIP indexing scheme for fast content

interception and adaptation.

3.8.1 Active Hyperlinking

Active hyperlinking is adding hyperlinks to some specific patterns appear in certain
web pages to draw the attention or provide more information to potential interested
readers. The web pages are adapted neither at the content providers servers nor at the end

users computers, but at the adaptation server in between. Using this scenario, it will be

50

easer to locdize or persondize the web pages the end users are going to see.

Fig 3.8 and Fig 3.9 illustrate the example. Note that before adaptation (Fig 3.8), the
authors' names are plain text in “Publications” section. The plug-in program on top of the
adaptation router then takes the authors names as keywords, and changes the web pages
by adding their corresponding email addresses wherever the keywords appear. Now, web

page readers just need to click the links to send emails to the authors. (Fig 3.9)

51

/3 Yihua He - Microsoft Internet Explorer N ol x|

| «FE -=» - QQ A Qs mew 35 | B-SEEr LHrB R

| T @EE ZEY e TAD #EBW [« |

JHﬂi_IJ:(Q) I@ fepsfyihe@trident mes. kent, edufkhan simufedifshow findes:. hienl j R |J-§E

Yihua He

MS Candidate and
Graduate Assistant of
Department of Computer Science,
Kent State University
Kent, OH 44240

Office: Room 355 in M3EEB, Eent State Thiversity
Emal: yihe@es kent edu

Research & Thesis:

I'm currently followmg Dr. Javed Ehan, i the research field of active & programmable networking, sponsored by
DARPA Here iz our Metwork & Media Communication Research Lab (hfedianet).

Publications:

Javed L Khan, Fhua He "FAST INTEECEPT OF A PASSING STEEAW FOE HIGH PERFORMANCE FILTEE.
APPLIANCE", accepted by IEEE 5th International Conference on High-Speed Networles and Multimedia
Communications, July 3-5, 2002, Jeju City, Eorea

Javed L Khawn, fhua He "4 FEAWMEWORE FOR UBIQUITOUS APPLICATION SERVICES NETWOREING',
accepted by 6th TASTED International Conference on Internet and Multime dia Systems and Applications, August 12-14,
2002 Eavai. Hawan. TSA

&1 l_ I_ln Inkernet
Fig 3.8 A Web Page before adaptation

52

=3 Yihua He - Microsoft Internet Explorer y _|I:I|5|

| e RE SEW ke TED BB | = |

|«FE-=»-QRB | Qux mtw Fix |- SHEETHrBAR

Jiﬂiﬂ:(m IL§_:| ftp:ffyihe@trident. mes kent, edufkhanisimu) sinkshowindes:. html j EE |Jﬁ]§
-]

Yihua He

MS Candidate and
Graduate Assistant of
Department of Computer Science,
Kent State University
Kent, OH 44240

Office: Boom 355 n MSB, Eent State University
Etnail: yhe@cs kent.edu

Research & Thesis:

I'm currently followang Dir. Javed Ehan, in the research field of active & programmable networking, sponsored by
DARPA Here iz our Networls & Media Communication Research Lab (hfedianet).

Publications:

Javed I, Khan, Fhua He "FAST INTERCEPT OF A PASSTNG STREAM FOR HIGH PERFOEMANCE FILTEE
APPLIAMCE", accepted by IEEE 5th International Conference on High-Speed Metworlkes and Multimedia
Communications, Tuly 3-5, 2002, Tem City, Keorea

Javed I, K}'zazs, Tibua He "4 FRAWEWORE FOR UBIQUITOUS APFLICATION SERVICES NETWORKETNG",
accepted by 6th TASTED International Conference on Internet and IMultimedia Systems and Applications, August 12-14,
2002 Eanat, Hawan, T54

|ie] 558 [[|4 mntermet

El
4

Fig 3.9: A Web Page After Adaptation

53

3.8.2 Advertisement Filtering

Today most content providers are bringing commercials to the web pages. Some
people may not want to see those commercials, or they want to see more local news. By
submitting the service to adaptation routers, the end users may get ad-free web pages, or,
if ISPswish, local advertissment can be inserted.

Fig 3.10 shows a Y ahoo page before adaptation. The shaded areas are commercials
marked by Y ahoo. Fig 3.11 shows the web page after filtered. The indexing information
in EDIP headers directs the filter which part should be deleted from the stream in order to
get an ad-free page.

The same scenario can be used in parenta control.

-3 Yahoo! - Microsoft Internet Explorer ;Iﬂlll
J IHHE) dRmRE) BEON WA LA & |
| eFE - = - @ | @z mkw 5 | B-SEETLEYRE R

JHﬂiIJ:(_) I@ ftp:ffyihe@trident . mcs. kent, edufkhan)simufedifshawz v ahoo! htm

@ & § YaHoO!

Finance Meszenger Check Email ‘Llll'hat = Neu.l

— =
rFersonalize =

| Search | advanced search

Yahoo! Sports - U.3 Open, World Cup, NHL Flayoffs, NBA Finals, Major Leazsue Baseball

Shop Auctions - Autos - Classifieds - Eeal Estate - Shopping - Travel - Yellow Pgs - Maps Media Finanee - Hews - Sports - Weather
Connect Careers - Chat - Geolities - Greetings - Groups/Chibs - Liail - Members - Messenger - Llohile - Personals - People Search - Photos
Personal AddiBook - Briefeasze - Calendar - My Vahoo! - PayDirect Fun Games - Horoscopes - Eids - Mlovies - Music - TV more...

—

In the News
» 1.3, military plane crashes near Gardez

- New al-Oaida warnings cited overseas

- Senate rejects repesl of estate tax
= Firefighters battle hugze Colo. hlaze

- Fashion designer Bill Blass dies
» Astronauts set space endurance record

- Lakers sweep Mets for threepeat

Mote...

2 Fifih 'WONLE (P Yahoo! - d
RE'\}'\P“,\N Hews Video quhllths Schedule * Teams * more...

Arts & Humanities News & Media

Literature, Photographsr.. Full Coverage, Mewspapers, TV ..
Business & Economy Recreation & Sporis
BZE. Finance, Shopping, Jobs... Spotts, Travel Autos, Cutdoors...
Computers & Internet Reference

Internet, WOATW, Software, Games .. Libraties, Dictionaties, Ouotations..

il mmkian D onminmnl Broadcast Events Ll
v

2] l_ l_ | Imternet
Fig 3.10: Before Adaptation: A Y ahoo web page with commercids

55

Yahoo! - Microsoft Internet Explorer 1Ol x|
| wHE ®EE ZEY G@Ew TAD BB [« |
|« - = - QA Al Qe Gvw 35 |B-SEEY HrREQ2
| HitE(D) |1 ftp:/yine@irident.mes.kent .edufkhanfsimufsink/ shoo! .htm x| o3 | | i

@ @ © 0! @ @ @
Finance Messenger Lheck Email Wihat's Hew Personalize Help
| Search |advanced search

Yahoo! Sports - .3 Open, World Cup, NHL Flayoffs, IMB.A Finals, Major Leasue Baseball

Shop Auctions - Autos - Classifieds - Beal Estate - Shopping - Travel - Yellow Pgs - Maps Media Finance - Mews - Sports - Weather
Connect Careers - Chat - Geollities - Greetings - Groups/Clubs - Llsil - Members - Messenger - Mohile - Personals - People Search - Photos
Persomal AddrBook - Briefrase - Calendar - My Yahoo! - PayDirect Fun Games - Horoscopes - Kids - Movies - Music - TV more...

In the News

- 1.3, military plane crashes near Gardez
+ Mew al Qaida warnings cited overseas

Yahoo! - Official partner of 2002 FIFA World Cup
F I(@RE"\P\P",\N Mews + ¥Wideo Highlights ' Schedule * Tearms * more...

News & Media

Arts & Humanities

Literature, Photographe...

Business & Economy

Full Coverage, Hewspapers, TV..

Recreation & Sports

BEZE, Finance, Shopping, Jobs..

Computers & Internet

Sports, Travel, Autos, Cutdoors. ..

Reference

Internet, WWWW, Software, Games. ..

Libraties, Dictionaries, Quotations. ..

Education
College and University, K-12..

Entertainment
Picks, Movies, Humor, IMusic. ..

Government
Elections, Military, Law, Taves ..

Health

Mledicine, Diseases, Diugs, Fitness...

Regional
Counties, Regions, U3 States...

Science
Amimals, Astronomy, Engineeting. .

Social Science

Archaeology, Economics, Lahguages ..

Society & Culture
People, Environment, Feligion..

- Benate rejects repesl of estate tay
+ Firefighters battle huge Colo. blaze

+ Fashion designer Bill Elass dies

- Astronauts set space enduranice record
« Lakers sweep Nets for threepeat

more...

Broadcast Events

+ Artist of the Month - Papa Reach
« Watch World Cup wideo highlights

oy

+ Mew Trailers & Clips - Blue Crush,

Abandon Minority Feport, more

Inside Yahoo!

+ GeoCities - build your own web site
» Hot Tobs - find your dream job
+ Make Vahoo! your home page

Local Yahoo!s

Europe : Catalan - Denumark - France - Germany - [taly - Horway - Spain - Sweden - UK & Ireland

A e s 5 PR TR BT T o T Trre T4 T

& 5 I_I_lﬂ Internet
Fig 3.11 After Adaptation: An ad-free Y ahoo page

N

3.8.3 Screen Size Adjustment and Re-layouting

Microsoft Internet Explorer = B3]

jﬁle Edit VYiew Favorites Tools Help ‘“

| #mpack - = - @D [| Disearch GFevortes (Hstory | 55 S5 B - 5
| adshess [£7 Cypocuments and settings\admir x| 6o Hs&& e | aAE & 43

YaHQO! @ @ @

Finance Meszenger What's New Personalize Help
TopBanRnek. ... s F1rswortdcup,cor RREERSIEE Tay the heta version of
Firaworldcup, com RS Seate! o
First Month Free e 'j.,r Vahoo!'s new home page

I Search | sivanced search SearchBox

Yahoo! Sports - U2 Open, World Cup, MHL Playoffs, HBA Finals, Major League Baseball

Shop Auctions - Autos - Classifieds - Real Estate - Shopping - Travel - Yellow Pgs - Maps Media Finance - News - Sports - Weather
Connect Careers - Chat - GeoCities - Greetings - Groups/Tlubs - Iail - Merbers - Messenger - Idobile - Personals - People Search - Photos
Personal fiddr Book - Brieftase - Calendar - Wy ¥ahoo! - PayDirect Fun Games - Hi Kids - Mowies - blusic - T¥ ~ more...
EIGPPfiTS Comuputers - Electronics - Apparel - More Inthe News
- 115, military plane crashes near Gardes
Shop by + Mew al-Oaida wrarmings cited overseas

» Senate rejects repeal of estate tax

oent: [Gits = B - Firefighters battle huge Colo,
Store: ISuny ~| Go = - Fashion designer Bill Blass

== - Astronauts set space endurance record

Search: I (Go| HEW Sony WEGATW! Only $2#/manth + Lakers swreep Hets for threepeat
Plus FREE In-Home Deliver e
Barnes & Moble - Free Shipping on 2 Iterms or More Marketplace

« DVD Players - multidisc, portable,

PR WAL T Yahoo! - Official partner of 2002 FIFA World Cup progressive soan, under $100, & more
LUFNIENR (1. o: . video Highlights - Schaduls - Teams - more.. - Buy a Pelm m500 handheld and get o FREE
10105 havndheld
A + Polarnid Digital C: - only §75.99
s News & Media - S
Literature, Photographey... Full Coverage, Newspapers, TV.. "y Polaroid Photahtes
ETature. 0: V] ewspapers, Lv. 'ﬂ = ‘?’JI e M? et
i " card, case, oal e‘s,&
Business & Economy Recreation & Sports 1|2 adapter-and mare. ou
A
B2E, Fmance, Shopping, Jobs... Sports, Travel, Autos, Outdoors .. e save 63%.
Computers & Internet Reference fitanl s Jonen e
Internet, WWW, Software, Games. . Libraries, Dictionaries, Cuotations Broadcast Events
- &rtist of the Ionth - Papa Roach
Education Regional + Watch World Cup video highli n'l
College and University, K-13.. Countries, Regions, US States. - New Trailers & Clips - Blue CrEL

Lbandon, Minority Report, more
Emenainmeﬂ ata oryScience Inside Yahoo!

Picks, Movies, Humor, M. Animels, Astronory, Engineering... - GeoCiiss - bl yourowmweb e
- HotJobs - frd yow drearot |NIS I

Government Social Science . Make Vahaa! i
Elestions, Military, Law, Taues Archasalngy, Eoonomiss, Languages e
Health Saociety & Culture

Idedicing, Diseases, Drugs, Fitness... People, Envivornrment, Relizion..

800 PIX

Local Yahoo!s
Europe : Catalan - Denmark - France - Germany - [taly - Morway - Spain - Sweden - K & Ireland
Acin Basifia boia bustwelia & WT Mhine HE Tndia Tanen Frses Swmeness Taimen -

Fig 3.12: A web page from Y ahoo before adjusting the Size and relayouting

57

|t} [fepejjyne@irident =] (3630 || HEE
=
Yahoo!
A Adapted page of Yahoo - Micto: =100l Finance Mlessanger Check Fmail What's
| zete) ®EE =BG GEe - Mew Personalize Help
T = In the N
]hﬁ:&-#v@@ﬁ|-@j§§ » n the News
it o - = (O%EJ e - I3, military plane crashes near Gardez
I o |h35] Ftp:,l',l'ylhe@trldentj : | I + Mew al Olaida warnings cited overseas
I » Aenate rejects repeal of estate tax
Yah ool - Firefighters battle buge Colo. blaze
y - Fashion designer Bill Blass dies
aﬂmm;ﬂ;es %ﬁn%el - Astronauts set space endurance record
+ Lakers sweep Mets for threepeat
mote...
Search | advanced search Marketplace
P
Inside Yahoo! - D¥D Players - multidise, portable,
3 ; : progressive scary, under $100, & more
+ GeoCities - build your own web site . Buy a Palm 1500 handheld and get &
- Hot Jobs - find your dream job FEEE ml05 handheld
- Make Yahoo! your home page . Polaroid Digital Camera - only $79.99
In the News _ e— : | Folaroid Fhotohas,
£ \g @ ~ 1 = includes 8MB memony
- 1.3, military plane crashes near Garder : ﬂ’ ' card, case, cables, AC
- Hew al Olaida warnings cited overseas '3 g~ 2dapterand more. You
i e sawe GE%.
» Benate rejects repeal of estate tax -
- Firefighters battle huge Colo. blaze + Yahoo! Travel - Airfare Specials
- Fashion designer Bill Blass dies Arts & Humanities
- Astronauts set space endurance record Literature, Photography...
» Lakers sweep Nets for threepeat =
Yidie... Business & Economy
Broadcast Events B2E, Finance, Shopping, Tobs.
sAenistinf the Moath - Eaj s Ha el Computers & Internet
- Watch World Cup wideo highlights now Internet, WA, 3oftwrare, Games. ..
. New Trailewy & &'l
iy REpr Education
ILI s Maera s o T Eoiispapaibes BT 1 =
4 I 4| | »
t3] [[[mkemet & & [| |4 mternet Y

Fig 3.13a After Sze adjustmentl Fig 3.13b: After 9ze adjustment2

Wireless devices are getting more and more popular. PDAS, pocket PCs, and even
cell phones now can be used to surf the Internet. With limitation in dimensions, the
viewable screen size of a hand-held device cannot be the same as that of a desktop or
laptop computer. A mobile user will have difficulties in viewing a normal 800* 600 page
on a 240* 320 screen size PDA. Nowadays, content providers often keep specia “small

screen” versions for mobile users. But with rapid growing diversity of hand-held devices,

58

this solution cannot meet all users needs. Fig 3.12 shows a Y ahoo page before screen
resizing. The shaded areas are marked by specia markers, which are keywords the
adaptation router is looking for. Fig 3.13 shows the page after screen resizing. Note that
the layout could be changed according to user’s preference. For example, in Fig 3.14, the
appearance and the sequence of appearance of memory blocks are different from those in
Fig 3.13, dthough they are originating from a single source file and the adaptation

plug-in doesn’'t change. (The user preference submitted to the adaptation router changes.)

CHAPTER 4

THE PERFORMANCE

An experimental test bed is designed to verify the functions and exam the
performance of the adaptation router and the EDIP protocol we proposed above. We' Il
first introduce the hardware and software environments, on which we build the test bed.
Then we' ll investigate several performance benchmarks and compare them with those of
conventional adaptation mode. Finally, we examine EDIP's extra space cost and the

potentia performance boost by using RISC technology and dedicated chips.

4.1 The Environments

The source code of the test bed waswritten in standard C language. The test bed has
been successfully functioning in some of the magor UNIX environments in the
Department of Computer Science and Network & Media Communication Research Lab

in Kent State University. The tested sysemsinclude:

(1) TRIDENT, HP-UX B.11.00, Hewlett-Packard 9000/785
(2) AEGIS, HP-UX B.11.11, Hewlett-Packard 9000/770

(3) FORRESTAL, Redhat 7.1, AMD Athlon 800MHz

59

60

(4) IOWA, Redhat 7.1, AMD Athlon 800MHz

(5) AWAGATEWAY, Redhat 7.2, Intd Pentium 166MHz

(6) DAVELINUX, Redhat 7.2, Intel Pentium 166MHz.

When we exam the performance of the adaptation router, we choose Linux Redhat 7.2
(Kernel 2.4.7-10) which runs on an Intel Pentium 166Mhz system. The reason we choose
such a system to exam the performance of our adaptation router is described in the

following sections.

4.1.1 Software Environment

The software environment we choose in the performance test for the adaptation
router is Linux Redhat 7.2 (Kernel 2.4.7-10). At the time the test bed was built, version
7.2 was the latest distribution of Redhat Linux (now Redhat 7.3 has just landed), which
included the 2.4.7-10 kernel. It supports up to 64GB of RAM, far more than the 4GB
limit in the 2.2 kernel series. While the 2.2.x kernel can't take full advantage of servers
with more than four CPUs, the 2.4 series is much more scalable, with SMP (symmetric
multiprocessor) support for machines with as many as eight CPUs. From personal
production to basic web serving, Red Hat Linux contains everything needed for a stable
and secure working environment. With its powerfulness and versatility, we believe

building our test bed on such a system has generd and comparable meaning.

61

4.1.2 Hardware Environment

The hardware we use in the test bed is generally IBM-compatible PCs including Intel
Pentium CPU and AMD Athlon CPU. The computer running adaptation router in the
performance test has a single Intel Pentium 166MHz CPU and 64Meg SDRAM, with a
conventional 3COM 10/100 network adapter. Other computers playing the content
providers and the end-user agents include one Intel Pentium 166 MHz, one Intel Pentium
IV 1.6 GHz and two AMD Athlon 800 MHz machines. The reason we choose arelatively
dow system as our adaptation router is that, the times() function, which returns the
processor time used when a process calls it, only has a resolution of 1/100™ second. In
this case, a slower system will produce less relative error. Further more, a fast system
may produce too much data in too little time for a conventional 10/100M network adapter.
The adaptation router will spend corsiderable resource on congestion control and make
the execution time unpredictable. Using a slower system can avoid such unpredictable

factors.

4.2 Test Application and Sample Used

The application used in this performance test is active hyperlinking. Two sample
files are used. The first one is an HTML file, in which there are two keywords in our
adaptation router’s service range. Two hyperlinks will be added into the HTML file when

it passes the adaptation router. This HTML file represents streams that need to be

62

serviced. The second is a JPG file, which represents streams that need not to be serviced.
It will not be changed when it passes the adaptation router. Both files are trimmed to
50.0k bytes in size for easier performance calculation. Keeping same tota number in
amount, these two files will be sent repeatedly to adaptation routers in various ratios,

amulating different service dengties.

For comparison purpose, we aso built two other models besides the Embedded Data
Indexing Filtering (EDIF) mode. They are Full Search Filtering (FSF) service model and
Normal Router (NR) mode, which is without any adaptation service. To make the result
more comparable, these three models are built using the same programming strategy ---in
fact, they share most codes in common parts, such as encapsulation, decapsulation,

regular routing dgorithms and so on.

4.3 Performance Test

4.3.1 CPU usages for EDIF service:

In this section we provide the performance of the EDIF filtering. We found that the
CPU usages is closely related to the amount of data that in service range. We define
“service density” as the percentage of data volume that needs adaptive service (i.e. in
service range). In this experiment, we send total 5M bytes data through the adaptation

router with variety of service densities. We plotted x axle as the service density ranging

63

from 0% (idle) to 100% (full). Fig 4.1 plots the absolute value of CPU time cost by EDIF
schemes for major components in the adaptation router, and Fig 4.2 plots each
component’s relative CPU cost percentage, which is the ratio of CPU time used for this

component to the total CPU time used by the adaptation router.

We can see from those graphs that with the increase of service density, the CPU time
used by each mgjor component is increased. The encap/decap time increases because the
more |P packages in service range, the more IP packages need to be decapsulated and
encapsulated for searching and modifying. The similar reason applies to the explanation
why user application CPU time increases while service density increases --- thisis due to
more packages are in service range, the more packages need to be searched and modified.
The routing time does not start from 0 when the service density is 0%. This is because the
adaptive router has to spend CPU time in regular routing. When service density increases,
more packages have to be routed to buffers and queues and delivered to user application
for adaptation purpose. Those packages take more routing time than the packages that
just need regular routing to their network destinations. That explains why the routing time

a s0 increases when the service dendity increases.

CPU Time in

A

millisecon

16000

12000

:

— : . |

0 25 S0 75

=]

Service Density %

Fig 4.1 CPU Time Cost in EDIF Service Mode

—— encap/decap

routing

4 user app

other

overheads

= total

100

In Fig 4.2, we can see that routing takes amost all CPU time used by the adaptation

router. The percentage decreases as service density grows, because the time used by user

applications and encap/decap of network capsule grows faster than that by routing.

65

Ouser app
100

5% B encap/decap
S50%
254 B routing

0%

0% 22% 20% T0% 100% B other
Service Density overheads

Fig 4.2 Rdative Percentages of CPU Time Cost in EDIF Service Mode

4.3.2 CPU usages for FSF sarvice:

In this section we provide the performance of the Full Search Filtering (FSF). We
still send total 5M bytes data through the adaptation router with variety of service
densities. Fig 4.3 plots the absolute value of CPU time cost by FSF schemes, and Fig 4.4
plots the relative CPU cost percentages for each component.

We can see from those graphs that the CPU time used by most components amost
remains the same regardless of the change of service density. CPU time used by user
applications does increase a little bit while the service density increases. This is due to
streams in service range will be adapted after targets have been found. In this test, the

adaptation is to substitute the keyword with a hyper link. The higher service dersity, the

66

more actions will be taken, and thus more CPU time will be consumed. However, user
applications spend most of their CPU resource in sequential searching the keyword. The

substitution only takes little CPU time. That's why the user application CPU does not

increase much.
20000 -
J —— encap/ decap
£ 16000
- reg routing
=
= 12000
E user app
-
{r 8000 - other
Ei overheads
E‘ T - -
= 4000 —oreral
oy
]
[I 3 i i
0 25 20 75 1010

Service Density %

Fig 4.3 CPU Time Cost in FSF Service Mode
If we compare Fig 4.4 with Fig 4.2, we will find out one of the reasons why EDIF
mode is much faster than FSF mode when service density is low. In FSF mode, when the
service density is bw, the user application and encap/decap procedures take more than
80% in relative CPU cost, which is totally unnecessary in EDIF mode. When the service
density grows, the time for user application and encap/decap procedures grows naturally

in EDIF mode, but we' Il see the relative CPU cost for user application is still less than

67

that of FSF mode. The is because sequential search, which has O(n) complexity, is used

in FSF mode, while EDIP enabled indexing search, which has O(1) complexity, isused in

EDIF mode.
[user app
100%
75%
B encap/decap
50%
25% [reg routing
0%
0% 25% 50% 75% 100%
W other
. . overheads
Service Density

Fig 4.4 Rdative Percentages of CPU Time Cogt in EDIF Service Mode

4.3.3 CPU Time Comparison among EDIF, FSF and NR Mode

In this section we put performance data from EDIF and FSF mode together, plus the
CPU time used by a simulated normal router without any service. The performance of NR
mode represents the best possible performance we can achieve.

As Fig 4.5 shows, the EDIF incurred much smaller cost than FSF throughout.
Particularly interesting is the points with a low service density. Here smple FSF incurred

a cost about 14 times higher than that of a normal router. However, the EDIF performs

68

almost as good as the normal router. This is because of two reasons: (1) the marking
mechanism alows EDIF to avoid decapsulations and encapsulations; (2) no sequential
searching happens. In contrast the FSF has to decapsulated the entire stream and
sequentially search whether there is a serviceable packet or not. Naturaly, with the
increased service dengity, the cost of service is increased in both the schemes. Notably,
even when service density=100%, the EDIF mechanism could perform better. This is
because EDIP header enabled index searching is much faster than sequential search that

FSF must take.

20000 |)

16000

—4—EDIF

cond

120000 |

o

FSF

8000

CPEU Time 1in

millis

ME.

I] | 1 I 1 |

] 25 . S0 _ 75 100
Service Density %

Fig 4.5 CPU time comparison among EDIF, FSF and NR mode

69

4.3.4 Throughput Comparison among EDIF, FSF and NR Mode

CPU time is not al for a system. People may concern more for overall performance than
CPU time cost only. The difference here is, the system spend considerable amount of
resource on system calls, which is not counted in previous comparisons. System calls
include receiving a package from network, sending a package to network, print messages
on the screen and so on. Most system calls are inevitable (such as receiving/sending 1P
packages), and they take significant amount of system resourcesin all of the three service
modes. This fact neutralizes some benefit we gain from less CPU cost in EDIF mode.
However, as shown in Fig 4.6, EDIF remains strong when service density is low (over
50% higher throughput when service density close to 0), and still better than FSF even

when service density is 100%.

0 100 200 300

K Byte per second
Fig 4.6 Throughput comparison among EDIF, FSF and NR mode

70

O EDIF
B FSF
B NR

71

4.3.5 Average Package Delays
If one can say the adaptation server administrator cares more about the system throughput,
what the end users concern more is the package delays. No one wants to view a web page
half a minute later after (s)he clicks a link. Although real delay time for an end user also
depends on network conditions, we recorded incoming ard outgoing time for packages
flow through our experimental adaptation router. Then we average the difference between
each pair as the average package delay on our adaptation router. Fig 4.7 plots the result.
We can see that EDIF mode is aimost as good as NR mode when service density is low,
whileit gill has advantages over FSF mode even when service dendity grows to 100%.

110 |

104

90
80 r

70 - P

=

)

+—EDIF Mode

econd

o | FSF Mode
S0 -

40 L
. / NP Mode
20

10
0

kg Delay Tim

in milli

Avg
{

’ 2B 100
Service Density 3

Fig 4.7 Average Packages Delays

72

4.4 Further Analysis
4.4.1 Space Cost

In this analysis, we inspect the space cost of EDIP headers. We assume a stream with
EDIP header is divided into pknum IP packages; each one ispksize bytesin size. We also
assume that there are n keywords inside this stream, and the i"" keywords will appear at
the frequency of f; times/byte, which we call key density of the i"" keyword.. The
frequency for any keyword that will appear is F time/byte. Let A; be the total number of
indexes, and B be the total number of key blocks for the i"™ keyword. Since each key
block contains at least one index for a key, we have Bi<=A;. Sngex denotes the size of an
index in bytes. Since we use 16 hits to express an offset (an index), Sngex=2. S denotes
the size of a key block in bytes, excluding the indexes. We have Si,=4. Sy denotes the
size of a genera field in bytes, ad S;=12. Seara iS the extra space needed for EDIP
headers, Syriginal iS the Size of the original stream. E denotes the extra percentage of space
needed to accommodate EDIP headers. We summarize the discussion with equations

from EQ 4.1t0 4.6. Theresult of E isexpressed in EQ 4.7:

n

[e]
F=a f (EQ 4.1)

i=1

A = fi" pksize" pknum (EQ 4.2)

B E£A (EQ 4.3)

2 & 38 o
Setra = aa Shdex + aa Sor + a (EQ 4.4)
i=1 j=1 i=1 j=1 i=1
Svrigina = pksize” pknum (EQ 4.5)
E= Sedra
- EQ 4.6
S;)riginal (EQ46)
, Sy
pksize
4%
m
on
i
4! ——F=1/a00
£ 30
l’l'l
0
0
i
oy
’ F=1/1000
2 2% |
i
(el
tn
RS "R R A S R S R A — F=1/4000
4 : B . H L H H H :
. ;
i |
0% : ; : : 5 : E :
i 2 4 6 8 10

FPackage Size (K bytes)

Fig 4.8 Extra Space Percentage Caused by EDIP Headers

74

The result for EQ 4.7 is plotted in Fig 4.8. Here Sngex=2., Sw=4.and §=12. The
extra space cost is below 2% when the average package size is larger than 1500 bytes?,
even if f=1/600, which is considered a very high key density*. When the package size is
larger than 5k bytes, the extra space percentage will remain small, but will not be
significantly reduced. Note that we assume the service density is 100%, which means
each stream has EDIP headers and it is the worst case. In real world, service density

should be kept low, which makes even lower the extra space percentage for EDIP

headers.

2MTU: Maximum Transmission Unit, which is the largest size frame, specified in bytes, that can be sent in
aframe-based network. Normally, 1P packages with content are divided into multiple frames to transmit via
network. 1500 byte is the suggested value of MTU size by most 1SPs.

3In practice, key density can always be controlled, by using fewer gross keys and application level
processing to find the real keys.

75

4.4.2 Impact on Different Processor Speeds

It is important to note that in the entire operation the computation is performed in
three levels. These are (i) IP level (stream controller, routing, buffering, etc.), (ii)
intermediate level (encapsulation, decapsulation, etc.) and (iii) application level
(searching/indexed jump, filtering, etc.). In order to examine the computational

ServiceMode

complexity, we use Ccj ey t0 denote the Complexity for Component in ServiceMode.
For example C:2'F denotes the complexity of user actions (adding links to web page in
active hyperlinking example) in EDIF service mode. Note that in EDIF service mode, the
complexities for routing® are different for IP packages in service range from those out of
service range. Suppose P% is the service density, which means how many percentages of
IP packages are in service range. EQ 4.8 and EQ 4.9 describe the total complexity for

EDIF service mode and FSF service mode, respectively.

CEDIF = P%' (CEDIF +CEDIF +CEDIF+CEDIF +CEDIF)+(1_ P%)' CEDIF (EQ48)

act search encap decap routkey routnokey

CFSF:P%fCaI;SF +CFF 4 CFF 4 CFF 4CF¥F (EQ 4.9)

search encap decap routing

However, the average time to process a package is not only decided by processing

complexity, but also by the speed of processor. We assume PPapp, PPintER @0d PPp are

“Here “ routing” includes two tasks: (1) choosing paths among nodes in network (regular routing) (2)
choosing the paths inside adaptation router (routing among buffers, stream controllers)

76

the power of processors for user application level, intermediate level ad IP level,
respectively. EQ 4.10 shows the average time to process an |P package in EDIF service

mode and EQ 4.11 shows the average time to process an | P package in FSF mode.

P%/ (CaitDlF +CED|F .\ P%’ (CEDIF +CEDIF) N P%’ (CEDIF _ CEDIF)_I_CEDIF

T EDIF — search encap decap routkey routnokey routnokey
I:)F)APP I:)F)I NTER I:)F)I P
(EQ 4.10)
. FSF FSF FSF
T FSF = P% C;;?F + CsFei:zch + Cencap + Cdecap + Crouting (EQ 411)

PPAPP IDF)I NTER IDF)I P

In the tests we conducted in previous several sections, we use a single processor for
all three levels of processing, which means PPapp=PPinter =PP\p. However, in redity, we
could use RISC technology in lower levels, which contains ssimpler instructions. Some
vendors made chips dedicated to routing or IP decoding/encoding, which makes
PPp>PPnter >PPapp. For simplicity, we assume that each lower level is a (a>=1) times

fagter than itsimmediae higher leved. We Il have EQ 4.12:

I:)F)IP :aPPINTER =a ? PPAPP (a‘ 3 1) (EQ 412)

Let Rfy" betheratio of speed of EDIP over FSF service mode. From EQ 4.10, EQ

4.11 and EQ 4.12, we'll get EQ 4.13, shown as following:

7

FSF 0/ FSF_ 2 FSF 2 FSF FSF FSF
REDIF _ T — PA) Cact a +[Csearcha + (Cencap +Cdecap)a + Crouting]
FSF = +EDIF — 4 EDIF EDIF 2 EDIF EDIF EDIF EDIF EDIF
T P% [(Cact + Csearch)a + (Cencap + Cdecap)a + Croutkey - Croutnokey] + Croutnokey
(EQ 4.13)

For a given system, a and all complexities are fixed values. For example, in our
tested system, we have a=1. The complexities values can be derived from the data of Fig

4.1 and Fig 4.3. For example, in our experimenta system, we have:

Coa =7 Car' *Coaren =50
Crs =100 Ceenp +Coeony =61
Ceop TCloep =57 Crotrokey = 22
Claring =29 Clty =40

Fig 4.9 now plots the EDIP scheme's relative speedup for three different speed
differentials (a=1,2, and 3). We could see that the speed differential among these three
levels can significantly affect the overall performance of the system. As can be noted that

advantage of EDIP increases with large alpha. The time saving is particularly dramatic if

service dengty remainssmdl.

EDIF Speed/ FSF Speed

50

40

30

20

78

a=1

a=z

a=3

ik
1 ! 1 ! 1 J 1

-

L

0 20 40 60 80 100

Service Density %

Fig 4.9 EDIF's Speedup Over FSF Mode with Different a Vdue

CONCLUSION

Fast intercept of streamed data is a growing concernin networking. The application
level embedded processing is rapidly increasing and can be a potential bottleneck in
Internet traffic carriage. The network protocols and packet data structures have been
designed mostly for end-to-end processing. In this thesis we have presented a part of our
research, which looks into mechanisms that can provide scope and indexing information
to intermediate network hubs to enable random access in a stream. As shown in the
experiment, these mechanisms expedite process of passing stream significantly under
common conditions. And with potential hardware acceleration, much better performance
could be achieved.

Another important provisioning is the sharable and mobile code servers inside
network. In recent years some advances have been made in programmable networks.
Among them active networks [21][22][23] initiative proposes the generalization of the
traditional router concept— where transiting packets can be modified amost in any way
with custom embedded program modules in the network elements. Several other attempts
are underway, where standal one processors are being added with routers.

One of the top issues here is the security. Since program codes are mobile, a loca

system has to make sure such “alien” codes are not harmful, no matter caused by careless

79

80

programmers or malicious cyber attackers. Although this problem can be partialy solved
by verification or authentication among participating parties, it seems the complete
solution is designing a highly dynamic runtime environment[24][25][26].

One of the other issues is the filter programs management. When an adaptation
service server is running a number of filter programs from different sources, we have to
prevent them from collision and dead locks. If we look into these problems, we may find
that most of them have counterpoints in a conventional OS, such as user management,
sharing, deadlock prevention, security check and so on. This arose the idea of designing
special purpose active network operating systems or execution environments that can
systematically support adaptation services over the Internet. Several research groups are
working on these issues, such as ANTS[11] and Janos JavaNodeOS [15] .

We believe a commercialized fast content adaptation network will appear n near
future. However, alot of effort has to be made before such a system can be put into wide

useinlarge scde.

[1]

[2]

[3]
[4]

[3]

[6]

[7]

REFERENCES

S. Blake, D. Black and etc., RFC 2475 “An Architecture for Differentiated
Services’, 1998

“ Annotation-based web content transcoding”, M. Hori, etc, The 9" Www
conference, 2000, available at: http://mwww9.org/w9cdrom/169/169.htm [Last
accessed on Jun 30, 2002]

Akamai, http://www.akamai.com [last accessed on Jun 30, 2002]

S.J Lee, W. Y. Ma, and B. Shen, Interactive video caching and ddivery using
video abstraction and summarization, Proc. International Workshop on Web
caching and Content digtribution (WCW’ 01), Jun 2001

S. Deering, R. Hinden, “Internet Protocol, version 6 specification”, RFC 2460,
1998

Wei-Ying Ma, Bo Shen and Jack Brassil, “Content Services Network: The
Architecture and Protocols’, Int. workshop on web caching and content
distribution, June 2001.

Oliver Spatscheck, J. S. Hansen, J. H. Hartman and L. Peterson; Optimizing
TCP forwarder performance, IEEE/ACM Trans. Networking 8, 2, Apr. 2000,

pp146 - 157.

81

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

82

D. Mdtz and E Bhagwat, "TCP splicing for gpplication layer proxy
performance,” IBM, ftp://ftp.cs.cmu.edu/user/dmaltz/Doc/splice- perf-tr.ps, Mar.
1998.

Open Pluggable Edge Service (OPES), http:/Mmww.ietf-opes.org [Last accessed
on Jun 30, 2002]

“A Modd for Open Pluggable Edge Services’, G. Tomlinson, €c.,
draft-tomlinson opes-model- 00.txt

ANTS http:/Aww.cs.washington.edu/research/networking/ants/

“Developing Web Applications for Pervasive Computing Devices’, Steve Imes,
IBM webserver studio document, Jan 2001

“Ubiquitous Internet Application Services on Sharable Infrastructure’, Javed I.
Khan and Yihua He, technica report, avalable at:

http://briti.facnet. mecs.kent.edu/~javed/medi anet/techreports TR2002-03-02-asp
-KH.pdf

“OPES Architecture for Rule Processing and Service Execution”, Lily Yang,
Marcus Hofmann, draft-yang-opes-rule- processing-service-execution 00.txt
Janos Java NodeOS hitp://www.cs.utah.edu/flux/janos/jnodecs.html [Last
accessed on Jun 30, 2002]

Spyglass-Prism. http:/Amww.spyglass.com. Last accessed on Jun 30, 2002

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

83

J. Smith, R. Mohan, and C. Li, “Scaable multimedia ddivery for pervasive
computing,” ACM Multimedia 1999.

Fox, S. D. Gribble, Y. Chawathe, and E. A. Brewer, Adapting to network and
client variation using active proxies: lessons and perspectives, |EEE Persond
Communication, Vol. 5, No. 4, pp. 10-19, August 1998.

O. Angin, A.T. Campbdl, M. E. Kounavis, and R. R.-F. Liao, The Mobiware
Toolkit: Programmable support for adaptive mobile networking, |EEE Persond
Communications, Val. 5, No. 4, August 1998, pp. 32-43.

Jeremy Elson and Alberto Cerpa, Editors, ICAP, The Internet Content
Adaptation Protocol, 2001

Javed |. Khan, S. S. Yang, A Framework for Building Complex Netcentric
Systems on Active Network, Proceedings of DARPA Active Network Confrence
and Exposition 2002, | EEE Press, San Francisco, May, 2002.

Wetherdl, David, Active Network Vison and Redity: Lessonsfrom
capaule-based System, Operating Systems Review, 34(5): pages 64-79,
December 1999.

Jonathan M. Smith, Programmable Networks. Selected Chalengesin
Computer Networking, Computer, January 1999 (Vol. 32, No. 1), pp. 40-42

S. Murphy, E. Lewis, and R. Watson: Secure Active Network Prototypes,

Proceedings of DARPA Active Network Conference and Exposition (DANCE),
pages166-181, May 2002
[25] S Krishnaswamy, J. Evans, and G. Minden: A prototype Framework for
Providing Hop-by-Hop Security in an Experimentdlly Deployed Active
Network, Proceedings of DARPA Active Network Conference and Exposition
(DANCE), pages 216-223, May 2002
[26] M. Hicks, A Keromytis, and J. Smith: A Secure PLAN (extended version), ,
Proceedings of DARPA Active Network Conference and Exposition (DANCE),
pages 224-237, May 2002
[27] Javed |. Khan and Yihua He: Fast Intercept of A Passing Stream For Hig
Performance Filter Appliances, accepted by 5th International Conference ¢
High-Speed Networks and Multimedia Communications HSNMC'02 July 3-!

2002, Jgju Idand, Korea

GLOSSARY OF TERMSAND ABBREVIATIONS

AR Adaptation Router

ARAdmIn Adaptation Router Adminigtrator (at service provider's Sde)
ASDL Active Service Digribution and Locdization (Moddl)
CDN Content Ddlivery Network

CP Content Provider

CPl Content Provider Initiated (Service)

CSN Content Service Network

EDIF Embedded Data Index Filtering (mode)

EDIP Embedded Data Indexing Protocol

EU End User (Agent)

EUI End User Initiated (Service)

FSF Full Search Filtering (mode)

GF Generd Field (in EDIP header)

KB Key Block (in EDIP header)

Key Dendty The frequency of key word appearance

MA Marker Adminigtrator (at content provider' Side)

NR Norma Router (mode without any service)

85

Service Dendty The percentages of data volume that in service range
SMS Service Management Server

SPI Service Provider Initiated (Service)

86

A SAMPLE USER FILTER APPLICATION

(Active Hyperlinking)

int userapp()

int Sreamid;
Sruct searchresult t searchresult;
int I;
int gringOlen, stringllen;
char gringQ[]="<i>YihuaHe</i>";
char gringl[]="<i>Y ihua He</i>";
gringllen=grlen(stringl);
gringOlen=strlen(string0);
for(:)
{
streamid=getstreamid();
if (O>keysearch(streamid, O, string0, stringOlen, & searchresult))

printf("keyword not found\n");

87

88

dse

printf("keyword %s found at: \n", searchresult.keyword);
for (i=0; i<searchresult.numofindex; i++)

printf("%d ", searchresult.offset]i]);
printf("\n");

for (i=searchresult.numofindex- 1; i>=0; i--)

{
temp=searchresult.offs&[i];
deletebyte(temp, stringOlen);
insertbyte(searchresult.offset[i], stringl, stringllen);
}
}
sendstream(streamid);

}

return(0);

A SAMPLE MARKER PROGRAM AT SOURCE SIDE

int markerl (char *in, int in_len, struct searchresult_t * searchresult)

{

char kwd[]="<i>Yihua He</i>";
int offst;
strepy(searchresult->keyword, kwd);
searchresult->keylen=strlen(kwd);
searchresult->numofindex=0;
for (offset=0; offset+gtrien(kwd)<in_len; offset++)
{
if (bcmp(intoffset, kwd, strlen(kwd))==0)
{
searchresult->0ff setf searchresul t->numofindex]=off s;
(searchresult->numofindex)++;
if ((searchresult->numofindex)>=MAXNUMOFFOUND)
{
printf("too many keyword found! \n");

return (-1);

89

}

return (Searchresult->numofindex);

90

