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In this research we developed an object tracking algorithm suitable for perceptual 

encoding. Object based bit allocation can result in significant improvement in the 

perceptual quality of relatively low bit-rate video. However, a particularly 

computationally challenging aspect in the process is the video object tracking. This is 

because traditional algorithms are based on classical object detection techniques. In this 

thesis we present an algorithm particularly designed for perceptual video coding. The 

algorithm is optimized for minimum decoding and uses only motion information and 

detail case analysis that accounts for variety of cases that arise in motion vector coding 

due to relative scene and camera movements. The result is a fast yet highly effective 

perceptual region tracking algorithm that can operate in stream rate and track regions of 

perceptually significant object despite camera movements such as zoom, panning and 

translation. We have implemented this algorithm into a live MPEG-2 perceptual 

transcoder. We also share the performance of its MPEG-2 compliant real implementation. 

This fast object aware video rate transcoder is particularly suitable for live streaming and 

can convert a regular coded video into an object-based perceptually coded video stream.
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  Dynamic video transcoding – solution to highly asymmetric Internet for video 

servers 

The asymmetry in the Internet capacity- particularly at the egress networks is 

growing dramatically. With the adoption of digital video standards, deployment of 

broadband, and the availability of low cost cameras there is now an enormous flux of 

video content. However, at the same time the relatively slower increase of bandwidth at 

network edges and simultaneous flooding of small and mobile devices (such as Personal 

Digital Assistant) seems to indicate that the bandwidth asymmetry is also on the rise. The 

Internet servers are now increasingly facing severe streaming asymmetry. In one hand 

high performance networks such as Grid offers the opportunity to share live programs at 

unprecedented quality while in other hand the ubiquitous deployment of myriad of 

mobile devices has already created huge user base who would like to login to the same 

session from limited devices, even from mobile phones. 

Unfortunately, the current video server technology will not be able to meet such 

challenges of asymmetric access in the emerging new era of ubiquitous video. Video 

transport scalability profiles [1] designed in pre-web era also failed to provide effective 

solution to the problem. They are quite inflexible and support videos only in a few 

predetermined classes. With the exception of some specific rate combinations, their 
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coding efficiency also diminishes. Therefore they are hardly used. Consequently, almost 

all practical servers now prefer to use the naive method of pure duplication. Completely 

separated videos files are prepared and stored ahead of time in a few popular rate classes.  

Then viewers are asked to select the class they want. However, this strategy is static, 

wasteful and will not scale too long. 

Therefore it is necessary to streamline again the video server and streaming 

infrastructure in the face of this new reality. A new generation of dynamic video 

transcoding scheme has to be integrated into the video communication infrastructure in 

the coming era. 

  

1.2  Object-based perceptual transcoding – low bit-rate but still good QoS 

Transcoding is an important step to adapt the video to user requirements. The 

major effort is devoted to a bandwidth reduction, especially for new terminal types 

(PDAs, HCCs, smart phones, etc). There are various ways to classify transcoding. Vetro 

et al [2] classify transcoding into bit-rate conversion or scaling, resolution conversion and 

syntactic conversion. The first type copes with bandwidth limitation. The second type is 

used for device limitation, as well as for bandwidth limitation. The third type deals with 

syntactic conversion for protocol layer. 

The current video transcoding techniques are principally based on re-quantization [3-9]. 

Unfortunately, re-quantization alone does not have enough capability to down scale a 

video to the very low bit-rate required by the emerging internet scenarios, while still be 

able to provide acceptable quality. 
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Psychological research on human vision has revealed that different regions of a 

video frame contribute differently to the overall perceptual quality. Human eyes are more 

sensitive to details of interested moving objects, while still background quality does not 

affect perception much. Research has shown that object based encoding can be an 

important tool for creating perceptually pleasant video at lower rates [10-13].  However, 

the conversion of a regular video to an object-based stream remains computationally very 

challenging. Some research on object-based video encoding has been conducted, but little 

or no research has been conducted on real-time object-based video transcoding. 

 

1.3  Related works in object detection and tracking 

Object detection in videos involves verifying the presence of an object in video 

frames - a sequence of images taken at closely spaced time intervals, and possibly 

locating it precisely for recognition. Object tracking monitors an object’s spatial and 

temporal changes during a video sequence, including its presence, position, size, shape, 

etc. This is done through solving the temporal correspondence problem - the problem of 

matching the target region in successive frames. These two processes are closely related 

because tracking usually starts with detecting objects, while detecting an object 

repeatedly in subsequent frames is often necessary to help and verify tracking. 

Object detection and tracking have a wide variety of applications in computer 

vision, such as video compression, video surveillance, vision-based control, human-

computer interfaces, medical imaging, augmented reality, and robotics. Additionally, it 

provides input to higher level vision tasks, such as 3D reconstruction and 3D 
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representation. It also plays an important role in video database, such as content-based 

indexing and retrieval. 

Although it has been studied for dozen of years, object detection and tracking remain an 

open research problem. A robust, accurate and high performance approach is still needed. 

A large number of approaches have been proposed in the literatures. All of those 

efforts focus on several different research areas, each of which deals with one aspect of 

the object detection and tracking problems, or a specific scenario. Most of them use 

multiple techniques and there are combinations and intersections among different 

methods. The diversity of techniques makes it difficult to have a uniform classification of 

existing approaches. However, these approaches can be classified into three groups: 

feature-based, template-based and motion-based. 

 

1.3.1  Feature-based object detection 

In feature-based object detection, standardization of image features and 

registration (alignment) of reference points are important. The images may need to be 

transformed to another space for handling changes in illumination, size and orientation. 

One or more features are extracted and the objects of interest are modeled in terms of 

these features. Object detection and recognition then can be transformed into a graph-

matching problem.  

1.3.1.1  Shape-based approaches  

Shape-based object detection is one of the hardest problems to tackle due to the 

difficulty of segmenting objects of interest in the images. In order to detect and determine 
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the border of an object, an image may need to be preprocessed. The preprocessing 

algorithm or filter depends on the application. Different object types, such as persons, 

flowers, and airplanes may require different algorithms. For more complex scenes, noise 

removal and transformations invariant to scale and rotation may be needed. Once an 

object is detected and located, its boundary can be found using edge detection and 

boundary-following algorithms. The detection and shape characterization of the objects 

becomes more difficult for complex scenes where there are many objects with occlusions 

and shading [14, 15]. 

1.3.1.2  Color-based approaches  

Unlike many other image features (e.g. shape), color is relatively constant under 

viewpoint changes, and it is easy to be acquired. Although color is not always appropriate 

as the sole mean of detecting and tracking objects, the low computational cost of the 

algorithms proposed makes color a desirable feature to exploit when appropriate [16].   

Grove et al [17] developed an algorithm to detect and track vehicles or pedestrians in 

real-time using color histogram based technique. They created a Gaussian Mixture Model 

to describe the color distribution within the sequence of images and to segment the image 

into background and objects. Object occlusion was handled using an occlusion buffer. 

Fieguth [18] achieved tracking multiple faces in real time at full frame size and rate using 

color cues. This simple tracking method is based on tracking regions of similar 

normalized color from frame to frame. These regions are defined within the extent of the 

object to be tracked with fixed size and relative positions. Each region is characterized by 

a color vector computed by sub-sampling the pixels within the region, which represents 
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the averaged color of pixels within this region. They even achieved some degree of 

robustness to occlusion by explicitly modeling the occlusion process. 

 

1.3.2  Template-based object detection 

If a template describing a specific object is available, object detection becomes a 

process of matching features between the template and the image sequence under 

analysis. Object detection with an exact match is generally computationally expensive 

and the quality of matching depends on the details and the degree of precision provided 

by the object template. There are two types of object template matching, fixed and 

deformable template matching. 

1.3.2.1  Fixed template matching  

Fixed templates are useful when object shapes do not change with respect to the 

viewing angle of the camera. Two major techniques have been used in fixed template 

matching. 

1.3.2.1.1  Image subtraction  

In this technique, the template position is determined from minimizing the 

distance function between the template and various positions in the image. Although 

image subtraction techniques require less computation time than the correlation 

techniques described below, they perform well in restricted environments where imaging 

conditions, such as image intensity and viewing angles between the template and images 

containing this template are the same. 

1.3.2.1.2  Correlation  
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Matching by correlation utilizes the position of the normalized cross-correlation 

peak between a template and an image to locate the best match. This technique is 

generally immune to noise and illumination effects in the images, but suffers from high 

computational complexity caused by summations over the entire template. Point 

correlation can reduce the computational complexity to a small set of carefully chosen 

points for the summations [19]. 

1.3.2.2  Deformable template matching  

Deformable template matching approaches are more suitable for cases where 

objects vary due to rigid and non-rigid deformations. These variations can be caused by 

either the deformation of the object per se or just by different object pose relative to the 

camera. Because of the deformable nature of objects in most video, deformable models 

are more appealing in tracking tasks. 

In this approach, a template is represented as a bitmap describing the characteristic 

contour/edges of an object shape. A probabilistic transformation on the prototype contour 

is applied to deform the template to fit salient edges in the input image. An objective 

function with transformation parameters that alter the shape of the template is formulated 

reflecting the cost of such transformations. The objective function is minimized by 

iteratively updating the transformation parameters to best match the object [20]. The most 

important application of deformable template matching techniques is motion detection in 

video, which we will review in the following section [21, 22]. 

 

1.3.3  Motion detection 
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Detecting moving objects, or motion detection, obviously has very important 

significance in video object detection and tracking. A large proportion of the research 

efforts of object detection and tracking focused on this problem in last decade. The 

motion detection algorithms proposed can be classified into the following groups. 

1.3.3.1  Threshold technique over the interframe difference 

These approaches [23] rely on the detection of temporal changes either at pixel or 

block level. The difference map is usually binarized using a predefined threshold value to 

obtain the motion/no-motion classification.  

1.3.3.2  Statistical tests constrained to pixel-wise independent decisions 

These tests assume intrinsically that the detection of temporal changes is 

equivalent to the motion detection [24]. However, this assumption is valid when either a 

large displacement appears or the object projections are sufficiently textured, but fails in 

the case of moving objects that preserve uniform regions. To avoid this limitation, 

temporal change detection masks and filters have also been considered. The use of these 

masks improves the efficiency of the change detection algorithms, especially in the case 

where some a priori knowledge about the size of the moving objects is available, since it 

can be used to determine the type and the size of the masks. On the other hand, these 

masks have limited applicability because they cannot provide an invariant change 

detection model (with respect to size, illumination) and cannot be used without an a priori 

context-based knowledge. 

1.3.3.3  Global energy frameworks 
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The motion detection problem is formulated to minimize a global objective 

function and is usually performed using stochastic (Mean-field, Simulated Annealing) or 

deterministic relaxation algorithms (Iterated Conditional Modes, Highest Confidence 

First). In that direction, the spatial Markov Random Fields [25] have been widely used 

and motion detection has been considered as a statistical estimation problem. Although 

this estimation is a very powerful, usually it is very time consuming. 

 

1.3.4  Object tracking using motion information 

Motion detection provides useful information for object tracking. Tracking 

requires extra segmentation of the corresponding motion parameters. Existing approaches 

can be classified into two categories: motion-based and model-based approaches [26]. 

Motion-based approaches rely on robust methods for grouping visual motion 

consistencies over time. These methods are relatively fast but have considerable 

difficulties in dealing with non-rigid movements and objects. Model-based approaches 

also explore the usage of high-level semantics and knowledge of the objects. These 

methods are more reliable compared to the motion-based ones, but they suffer from high 

computational costs for complex models due to the need for coping with scaling, 

translation, rotation, and deformation of the objects. 

Tracking is performed through analyzing geometrical or region-based properties of the 

tracked object. Depending on the information sources, existing approaches can be 

classified into boundary-based and region-based approaches. 

1.3.4.1  Boundary-based approaches 
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Also referred to as edge-based, these types of approaches rely on the information 

provided by the object boundaries. It has been widely adopted in object tracking because 

the boundary-based features (edges) provide reliable information independent of the 

motion type, or object shape. Usually, the boundary-based tracking algorithms employ 

active contour models, like snakes [27] and geodesic active contours. These models are 

energy-based or geometric-based minimization approaches that evolve an initial curve 

under the influence of external potentials, while it is being constrained by internal 

energies. 

1.3.4.1.1  Snakes  

Snakes are deformable active contours used for boundary tracking that was 

originally introduced by Terzopoulos et al [28]. Snakes move under the influence of 

image-intensity forces subjected to certain internal deformation constraints. In 

segmentation and boundary tracking problems, these forces relate to the gradient of 

image intensity and the positions of image features. One advantage of the force-driven 

snake model is that it can easily incorporate the dynamics derived from time-varying 

images. The snakes are usually parameterized and the solution space is constrained to 

have a predefined shape. So these methods require an accurate initialization step since the 

initial contour converges iteratively toward the solution of a partial differential equation 

[29-31]. 

Considerable work has been done to overcome the numerical problems associated 

with the solution of the equations of motion and to improve robustness to image clutter 

and occlusions. Curwen et al [32] proposed a B-spline representation of active 
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contours. Dubuisson et al [33] employed polygonal representation in vehicle tracking 

problems, and Metaxas et al [34] proposed a deformable superquadric model for 

modeling of shape and motion of 3D non-rigid objects. 

1.3.4.1.2  Geodesic active contour models  

These models are not parameterized and can be used to track objects that undergo 

non-rigid motion. In Caselles et al[35], a three-step approach is proposed which start by 

detecting the contours of the objects to be tracked. An estimation of the velocity vector 

field along the detected contours is then performed. At this step, very unstable 

measurements can be obtained. Following this, a partial differential equation is designed 

to move the contours to the boundary of the moving objects. These contours are then used 

as initial estimates of the contours in the next image and the process iterates. More 

recently, Bertalmio et al described a front propagation approach in [36] that couples two 

partial differential equations to deal with the problems of object tracking and sequential 

segmentation. Additionally, Goldenberg et al reported [37] a new, efficient numerical 

implementation of the geodesic active contour model which was applied to track objects 

in movies. 

1.3.4.2  Region-based approaches 

These approaches rely on information provided by the entire region, such as 

texture and motion-based properties using a motion estimation/segmentation technique. 

In this case, the estimation of the target's velocity is based on the correspondence 

between the associated target regions at different time instants. This operation is usually 

time consuming (a point-to-point correspondence is required within the whole region) 
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and is accelerated by the use of parametric motion models that describe the target motion 

with a small set of parameters. The use of these models introduces the difficulty of 

tracking the real object boundaries in cases with non-rigid movements/objects, but 

increases robustness due to the fact that information provided by the whole region is 

exploited. 

Optical flow [38, 39] is one of the widely used methods in this category. In this 

method, the apparent velocity and direction of every pixel in the frame have to be 

computed. It is an effective method but time consuming. Background motion model can 

be calculated using optic flow, which serves to stabilize the image of the background 

plane. Then, independent motion is detected as residual flow, the flow in the direction of 

the image gradient that is not predicted by the background plane motion. Although 

slightly more costly to compute, this measure has a more direct geometric significance 

than using background subtraction on a stabilized image. This method is very attractive in 

detecting and tracking objects in video with moving background or shot by a moving 

camera.  

 

1.4  Real-time object tracking – challenge for in-line video transcoding 

In all, object detection algorithms are generally quite computation intensive [40]. 

Several of the image processing based techniques have been generalized and applied for 

video encoding [41, 42].  Among the recent methods, Ngo et al [41] described object 

detection based on motion and color features using histogram analysis. This technique 

could process less than 2 frames in one second.  Other techniques are based on even more 
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involved image processing methods, including active contour model. There are also 

reports on using motion vectors for object tracking in compressed domain similar as in 

the transcoding scenario [43-45]. They usually achieve lower computational cost by 

predicting object’s position using motion vectors, and maintain tracking accuracy and 

stability through intermittent updating and adjustment on the object image by image 

processing techniques. Unfortunately, most of the other techniques described have 

provided little if any evaluation of their method’s time performance or tracking 

efficiency. 

The faster systems for moving objects extraction system are compressed domain 

technique, such as those described by Wang et al [43]. This system derives texture, 

spatial, temporal, and directional confidence measures from incoming stream based on 

DCT coefficients, motion vectors and spatial/temporal continuity of motion and buffering 

three adjacent frames. Based on the combined confidence score, they performed a hard 

cut on low confident macro-blocks that are very likely to be mismatched by encoders. To 

identify multiple objects, they performed k-means and/or EM clustering based on spatial 

and motion features. They then tracked the objects by their location and motion. The 

eventual goal of the system was to generate the description of objects in a video including 

appearance time, length, velocity, and object shape characteristics. This system too 

achieved about 0.5 sec/frame for the CIF size on a Pentium III 450 MHz. Because of the 

speed, these techniques are adequate for first stage object-based encoding of video. The 

reported performance of several other compressed domain approaches is also similar. 
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Perceptual re-encoding for video communication offers a set of new challenges 

compared to classical video coding. Despite the availability of many algorithms for 

object detection, not all can be applied. In stream transcoding the object detection has to 

be performed extremely fast at the rate of the stream. Also, in a streaming scenario, the 

entire bit stream is not available at any time (thus, techniques such as histogram can not 

be used). Transcoding the original pixel level frame images are no longer explicitly 

available. Instead, the information is organized in an encoded transform space. A 

transcoder generally may receive some refined information (such as motion vectors). 

Techniques for transcoding can generally be used in first stage encoding but the reverse 

in not always true. 

However, there are also few advantages. Although perceptual regions of 

importance are highly correlated to objects, the eye generally tracks areas surrounding 

objects beyond the exact object boundaries. We have confirmed this by direct eye-tracker 

analysis [46]. Thus, the problem of object detection and tracking is not identical to the 

problem of perceptual object tracking. Hence, it might be possible to design perceptual 

object detection algorithms that are much faster and thus suitable for perceptual 

transcoding. 

 

1.5  Distinctions: transcoding vs. encoding 

Notably most of the approaches investigated for video object detection use scene 

analysis. Even the compressed domain approaches mix multilevel information in filtering 
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phases. Consequently, it becomes very difficult for these approaches to be fast enough to 

be applicable in live transcoding scenarios. 

The transcoding scenario has some notable differences from first stage encoding. 

Most first stage encoding scenarios (except for live video) allow off-line processing. In 

contrast, in transcoding, the original frame images are no longer explicitly available. The 

transcoder receives an encoded video stream. Many algorithms presented in classical 

video tracking research have been designed from image understanding days and has no 

awareness about coding depth of the elements used. Many for example use lavish frame-

wide pixel analysis- where pixels have to be mined from deepest coding levels. This 

becomes overwhelming for coded stream analysis. Most modern streams are highly 

coded. Consideration to the cost of coding level can greatly leverage performance. 

Transform domain techniques such as DCT filtering do provide some relief. However, 

even the DCT coefficients generally reside at two levels deeper than motion vectors in a 

coded stream due to differential block coding and subsequent Huffman coding. 

Secondly, the object detection has to be performed extremely fast at the rate of the 

stream. A third distinguishing aspect is that generally the unprocessed input stream 

seldom contains pixels level information but rather contains highly structured coded and 

refined information such as motion vectors. Techniques for transcoding can generally be 

used in first stage encoding but the reverse in not always possible.  There have been very 

little work that explores techniques for object based perceptual transcoder for streaming. 

In this study we focus on this particular problem and describe a low computation 

based object tracking algorithm particularly suitable for focus region based perceptual 
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video coded stream recompression. The algorithm relies on motion vector analysis rather 

than on pixel analysis to gain speed. This algorithm optimizes against coding depth of 

element of information accessed. To our knowledge, this is the first algorithm that tries to 

optimize against coding depth sensitive stream access. However, to avoid sacrificing the 

efficacy of the object tracking, the algorithm uses complex case analysis that can 

accounts for various types of object movements, camera motion, and their resultant effect 

of motion vector coding. The result is a fast yet highly effective object-tracking algorithm 

that can operate in stream rate and detect object despite camera movements, such as 

zoom, panning and translation. The scheme is applicable for any content-based 

transcoding, such as MPEG-2 to /MPEG-2 perceptual transcoding or rate transcoding or 

MPEG-2 to MPEG-4 transcoding. 

 

1.6  Our approach 

In our approach we have restricted the problem so that no pixel level decoding of 

DCT or image components are allowed. This is to conform to the constraints of the 

transcoding scenario. Based on this scope, we showed that two characteristics of 

transcoding could be utilized to reduce the computational cost dramatically. 

First, we observed that region-based recompression usually does not need to 

perform precise boundary detection of the object boundary. Indeed, such approximation 

is rather more desirable. Because, in region based perceptual encoding, the human eye in 

effect scans both inside and outside areas near boundaries as opposed to only inside 

boundary. Notably, many of the previous approaches have been derived from image 
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based object detection or scene interpretation applications, and thus perform rigorous 

computation in perfecting the boundaries and shapes.  This cost is justifiable in 

application that targets complex scene understanding, but it seems that an object 

detection technique specifically for perceptual compression should not have to bear this 

cost [46]. 

Second, some useful information (such as motion vectors) has been made 

available in the stream by the original encoder’s computation. In this research, we 

therefore particularly focused on how much precise object tracking is possible from 

motion vector analysis. It is important to note that motion vectors are not simply codified 

information about block’s motion, as it may appear at first glance. Rather, motion vectors 

also contain highly refined color, texture and shape information. As we shall show, that 

through case by case analysis of this compressed domain information the algorithm can 

avoid a great amount of processing delay in raw image data, and yet remain very 

effective. 

Also, this frugal algorithm does not involved indiscriminate full frame scene 

analysis, and performs detailed tracking analysis in the vicinity of the object boundary. 

For initial detection of germinating object regions, it optionally accepts logical 

description of the expected target video objects in terms of high-level descriptors, such as 

approximate initial position, size, and shape. It then automatically detects and tracks the 

region covered by these objects for subsequent perceptual encoding. 

Our fast perceptual transcoding algorithm presented here has been implemented as an 

MPEG-2 based perceptual rate transcoder. We first describes the system architecture in 
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Chapter 2, and then present the object-tracking algorithm in Chapter 3. Chapter 4 

describes how the object information is combined with MPEG-2 rate control. Finally in 

Chapter 5, we present the performance of this system from the real MPEG-2 transcoder 

experiments.
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CHAPTER 2 

 

SYSTEM MODEL 

 

The overall architecture of the transcoding video stream (TVSS) shaper is shown 

in Figure 2.1.  For this experiment we have implemented a Video Streamer (VS) that 

accepts and produces MPEG-2 ISO-13818 [1] video stream.  Thus, it is fully transparent 

and does not require the switch of player or server while the rate transcoding is in effect. 

The rate transcoder has a full-logic decoder and re-encoder embedded in it. In between 

the BOF (Bird-of-Flock tracking unit) unit performs the perceptual object detection 

tracking and provides object specific information to the re-encoder.  The re-encoder is 

capable of dynamically adjusting the incoming bit-rate to an outgoing piece-wise 

constant bit-rate (pCBR) [47, 48]. The rate controller is a double loop feedback 

mechanism, which is similar to the MPEG-2 TM-5 algorithm. Besides the pCBR 

operation, the system can modulate the sample density both in temporal as well as spatial 

dimension based on the detected objects. More details of the rate control algorithm were 

previously described [47].  Here we will principally describe the BOF unit that is the 

research work directly related to this thesis, and will briefly describe the corresponding 

MPEG-2 recoder. 
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CHAPTER 3 

 

PERCEPTUAL OBJECT DETECTION AND TRACKING MODEL 

 

Since the tracking algorithm relies solely on motion vector (MV) analysis, it uses 

macroblocks (MBs) as the basic image unit instead of pixels. We view a video frame as a 

collection of MBs which are organized into a rectangle. An object is described by a 

subset of this MB collection which we call the representation set of this object. One MB 

is considered to belong to an object’s representation set, if any pixels of this MB are part 

of this object’s image. Under this description, the size of an object is actually the number 

of MBs belonging to this object, and the shape of the object becomes a region of 16 by 16 

pixel squares that covers the object image. Given an object whose representation set is O  

in a frame, the purpose of tracking is to find a set of MBs W  that will match O as closely 

as possible, i.e., the resulting set of the following equation will be minimal: 

W)(OW)(OE ∩−∪=  ….(1) 

We call W the tracking window of this object. Of course, the size and shape 

description of a tracking window follows the same way as with object description using 

MBs. So the ultimate purpose of tracking an object in a video is to discover a series of 

tracking windows in the frame sequence. 

The overall algorithm is a process composed of two alternative processes: 

prediction and update (Figure 3.1), which is repeated once for each frame. To generate W 

of an object in frame f, we first predict its initial MB composition from the motion 
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properties of W' in the previous frame f'. Then, we update W through analyzing its MVs 

and those of surrounding MBs. Again, this updated W will be used to predict the initial 

tracking window in again next frame. 

 

 

 

 

 

 

 

 

 

 

3.1  Prediction overview 

The motion properties of a tracking window W are described by a tracking 

window speed vector V , which has two components, xV  and yV , representing the 

horizontal and vertical speed of W, respectively. Once a real world object has been shot 

into a video, its actual movements are reflected by the position displacements of its image 

in consecutive frames. This position displacement can be quite different from the real 

object’s speed in the real world. It is determined by several factors: the real object speed 

and direction, its distance and orientation with respect to the camera, and speed and 

direction of camera movement, and zooming. The V  of a frame actually represents the 

i 
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position displacement of the tracking window W in pixels between the current frame and 

the previous frame. It is obtained through analyzing MVs of W. Assuming a real-time 

frame rate and gradual change of object and camera movement, we can predict that the 

position displacement of W between the current frame and next frame will be close to V . 

So we can predict the approximate position and MB composition of W in next frame 

based on V . 

The prediction of initial W usually introduces some errors due to three reasons: (i) 

MB alignment, (ii) object image displacement speed change and (iii) object image 

changes. Although V  describes position displacement in pixels per frame interval, one 

can only match a MB in current frame to a MB in next frame, which is aligned in the 

frame. So unless V  is multiples of macroblock size (16 pixels in both horizontal and 

vertical directions for most coding scheme), some pixels of distance has to be truncated 

from the displacement to align MBs, which will result in a W prediction error. This error 

is very limited. It can only result in incorrect inclusion or exclusion of MBs along the W 

boundary within one MB distance. The object image displacement speed change depends 

on the video frame rate and the smoothness of the movements of object and camera. In 

most cases with real-time frame rate and reasonable camera stability, the speed change is 

also very limited. Object image changes are caused mainly by four factors: object size 

change, distance change between object and camera, object posing change, and camera 

zooming. The first three factors usually change gradually in most cases, but camera 

zooming can have greater effect on the object image. 
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3.2  Update overview 

The update process is to remove the prediction errors as much as possible. Once 

the initial W is predicted, we will recalculate V  based on MVs of current W. Then, we 

will examine the MBs in W and its surrounding region that may have been incorrectly 

classified into W or background, comparing their V ‘s distance from V  with that from 

the background to re-determine their belongingness. The result is that some MBs may be 

removed from W and some may be taken into W. This update process is based on a four-

layer MB model. We classify all MBs in a frame into four layers according to their 

relative position with the boundary of W: (i) core layer (Lcor), (ii) shell layer (Lshl), (iii) 

buffer layer (Lbuf) and (iv) background layer (Lbkg) (Figure 3.2).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2  The four layers of macroblocks of the 
tracking model. Inset shows the neighborhood filter.  
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First, along the edge of W towards its center, we specify a layer of MBs of certain 

width in MBs (dshl) to be Lshl. The rest MBs of W  belong to Lcor . So Wj is actually the 

union of Lcor and Lshl .  Then along the edge of W but away from its center, we specify a 

layer of MBs of certain width in MBs (dbuf) to be Lbuf . All other MBs beyond Lbuf consist 

of Lbkg . Each of these four layers plays a different role in our tracking algorithm. Lcor is 

stable during update process of W. That is we do not remove any of its MBs out of W. 

Only the MBs in Lshl will be subjected to a qualification test during update process. 

Failing of this test will result in being removed out of W. So, only Lshl is really dynamic 

for updating. Similarly, only MBs in Lbuf are possible to be taken into W by meeting 

certain criteria during update process. MBs in Lbkg are also used in MV analysis, but they 

are never taken into W. In general, both Lcor and Lbkg stay the same for updating, dynamic 

changes occur only in Lshl and Lbuf. 

This four-layer MB model is based on the few assumptions we mentioned above, 

i.e., real-time frame rate, gradual change of object and camera movement, and gradual 

object image change. Obviously, this model can be adjusted by setting up two 

parameters, dshl and dbuf, by the user. Based on our experience, dshl = dbuf  = 1 MB wide is 

good for most cases. They need to be increased to 2 or 3 MBs wide if the object image 

position displacement between two consecutive frames is very large and/or the object 

image size changes dramatically. Parameter values more than 3 are never useful because 

those cases are very rare. 
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1. DETECT INITIAL TRACKING WINDOW(S)  W[0]  

a. Either the User specifies W[0] or 
b. Using the Automatic Germination Parameters (GSCP, GSZ, GSPD, GDIR) 

 
2. For each frame f  iterate the process 
 
3. ESTIMATE V [f]  FROM W[f] 

 
a. First estimate V x[f] 
b. G0 =G0 +  {mx} if |vx|≤ 1 
c. G+ =G+ +  {mx} if vx > 1 
d. G– =G– +  {mx}  if vx< 1 
e. If |G0| < 0.8 (|G0|+|G+|+|G-|) then V x[f]=0 
f. If |G+| > |G-| V x[f] = median { vx of G+} 
g. Else V x[f] = median {vx of G-} 
 

4. Repeat the above steps 3.a-g to estimate V y[f] 
 

5. WT [f+1] = TRANSLATE(W[f], V [f]). 
6. ESTIMATE THE FOUR LAYERS FOR W’[f+1] 

a. Let dx is the distance from boundary of W’[f+1]. + for inward and – for outward. 
b. If dshl<dx<0, mx∈Lshl[f+1] 
c. If 0<dx<dbuf,  mx∈Lbuf[f+1] 
d. Lcor[f+1] = WT[f+1] – Lshl[f+1] 
e. Lbkg[f+1] = Frame[f+1] – Lcor[f+1] – Lshl[f+1] – Lbuf[f+1] 
 

7. DETECT BACKGROUND MOVEMENT 
 
8. If there is no background movement i.e. |vx| ≤ 1 and |vy| ≤ 1 

a. If | V x|=0 and | V y|=0 then  W[f+1]= WT[f+1]. 
b. If | V x|>0 or | V y|>0 check all mx ∈ Lshl U Lbuf.  

i. If |vx|>1 or |vy|> 1 include mx in W[f+1] 
ii. Else exclude mx from W[f+1]. 

c. Proceed to STEP-13. 
 

9. If there is background movement: 
a. CALCULATE LOCALIZED BACKGROUND SPEED U [f+1] 
b. A = FILTER( Lshl, Pre-remove, V [f], U [f+1]) 
c. B = FILTER( Lbuf, Pre-uptake, V [f], U [f+1]) 
 

10. W[f+1]= WT[f+1] – A + B 
 
11. CHECK THE EXTENT OF CHANGE IN WINDOW SIZE 

a. k = |B| – |A| 
b. if |B| – |A| > SSZ  

i. SORT-Rear (B, V ),  
ii. W[f+1]=W[f+1] – SELECT (k- SSZ, SORT-Rear (B)) 

c. if  |A| – |B| > SSZ 
i. Sort-Front (A, V ) 

ii. W[f+1]=WT[f+1] + SELECT (k- SSZ, SORT-Front (A)) 
 

12. CHECK SHAPE CONTIGUITY. Check W region.  
a. If mx ∈W, but surrounded by macroblocks in W then add mx in W[f+1]. 
b. If mx ∈W, but surrounded by macrblocks not in W then remove mx from W[f+1]. 
 

13. END-OF-FRAME 
14. VOD Termination Check (Tspd, Tdir, Tsz) 
15. Proceed to next frame iteration in STEP-2. 
 

Figure 3.3  Pseudo Code 
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3.3  Tracking algorithm 

The system can track multiple objects simultaneously and independently. 

Tracking of each object is one iteration of the same algorithm but with different 

parameter data structure. Figure 3.3 above shows the pseudo code of this algorithm. The 

following is the description of the algorithm using one arbitrary object whose 

representation set is O and tracking window is W, as an example. We assumed a 

sequence of P frames only and the direction of MVs has been reversed for ease of 

explanation. 

 

3.3.1  Initialization: automatic birth of an object 

The algorithm starts with an initial tracking window W[0]. We allow two ways to 

start. The user can generate W either directly by specifying its MB set, or automatically 

by specifying some starting parameters. Since the analysis does not go down to pixel 

level, it relies on some motion features, such as speed, direction and features that can be 

represented by MB sets to identify an object. 

The search process used to detect the birth or appearance of a perceptual object in 

the frame is modeled by four values called germination parameters. These are searching 

scope (Gscp), size (Gsz), speed (Gspd) and moving direction (Gdir). The algorithm searches 

automatically for such a continuous region of MBs in each frame that satisfies these 

parameters until W is established. Gscp is a rectangle region of MBs within which the 

algorithm will search for a potential object.  The search scope not only reduces the 

number of MBs processed, but also helps to capture the interested object more easily by 
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eliminating those objects with similar features outside of the searching scope. Gsz defines 

the size range of O set in MBs. Gspd gives the range of how many pixels an object moves 

in the picture from one frame to the next. Gdir describes object’s moving direction in the 

picture. We defined nine values for Gdir: none, north, northeast, east, southeast, south, 

southwest, west and northwest. 

 

The following are the default values of these parameters. The default value of Gscp 

is the entire frame. Default for size and speed is 4, 4. None is the default for direction 

which means that there is no preference about object’s moving direction. 

The algorithm searching for an object satisfying above start criteria works as 

follows: 

1. Check each MB mi within Gscp for candidate MBs which satisfies the following 

criteria: 

a. It does not belong to any existing tracking windows. 

b. The direction of its MV follows Gdir if specified. 

c. Its speed V calculated as following falls into Gspd. 

 22
yx VVV +=  

 where Vx and Vy are the horizontal and vertical components of MV. 

2. If the total number of candidate MBs is greater than the lower boundary of Gsz, do the 

following: 

a. Group all candidate MBs into continuous regions. The four continuous 

neighbor MBs of a specific MB are shown in Figure 3.2 inset. 
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b. Calculate the MB size of each continuous region. 

c. Select the first continuous region whose MB size falls into Gsz as qualified 

region. 

3. All MBs in this qualified continuous region compose the initial W. 

There are two modes of user customization. User can modify the default values of 

the germination parameters to control the description of the perceptual object. Or the user 

can specify the W[0]  set directly on any starting frame F[0] based on one’s knowledge 

about the video image of the interested object in the stream. In either mode, the user 

approximation does not have to be accurate. User can specify the initial W using an 

approximate rectangle of MBs. Of course, most of the time, the O set of an object on the 

MB grid is not a rectangle shape. But the shape and size of W is updated automatically to 

be closer to O through the tracking process. 

 

3.3.2  Tracking window prediction 

3.3.2.1  Speed vector estimation 

The tracking of an object is composed of two alternative processes: prediction and 

update. First we explain the prediction stage. If an object is found and the corresponding 

W is established, it calculates the speed vector V  to describe its moving properties, 

which is used later to predict the future composition of W. This is also conducted after W 

is updated in each following frame. 

Although these calculations rely on the analysis of MVs of W, the average or 

median values of all MVs can not be used. Instead, we developed the coded stream case 
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based a slightly more complicated but much more accurate way to calculate object 

motion based on following observations about MVs: 

1. If an object image is not moving in the scene, then the MVs of its corresponding MBs 

should be zero. 

2. If an object is poorly textured, i.e., there are some uniform areas within the object, 

some MBs may have a zero MV value even if the object is actually moving. 

3. Even if there is no movement in the scene, one can still has some random MBs whose 

MV magnitude is 1 occasionally. This might be due to the slight vibration of the camera 

imperceptible to human. So we treat the MV magnitude 1 the same as 0. This causes 

problem only when the object is really moving at the speed of 1 for a considerably long 

time, which is very rare. 

4. Some MBs can have severely deviated MV values from the majority, especially when 

the object is not well textured. Part of these MBs can be recognized easily if its MVs 

have different direction from the majority. Since most of the MBs in a well textured 

object have very similar MVs that correctly reflect the movement, it is better to choose 

the median value as the object speed vector. Otherwise, those deviated MV values will 

lower the reliability of the speed vector if an average is taken. 

The followings are our algorithm to calculate W’s horizontal speed vector xV .  

The calculation of yV follows exactly the same algorithm. 

1. Classify Vx of all MBs in W into three groups: zero, positive and negative groups as 

follows: 

zero group (G0) :  |Vx| <= 1 



 

 

31

positive group (G+):  Vx > 1 

negative group (G-):  Vx < 1 

2. When the number of MBs in the zero group is overwhelmingly large (a threshold 

factor of 0.8 was used) of the total number of MBs, set xV = 0. We assume the non-zero 

values are either from deviated MVs due to poor object texture, or from falsely included 

background MBs in W. 

3. Otherwise, choose either the positive or negative group which has more MBs, then sort 

all Vx in that group into increasing order and set xV  to be the median value of that group. 

3.3.2.2  Interframe translation 

First we predict the initial WT in the next frame f+1 from W of current frame f 

based on its ][ fV . Then we update W through analyzing its MVs and the MVs of those 

MBs surrounding the window. 

If the speed vector of current tracking window W[f] with respect to previous 

tracking window W[f-1]  is ][ fV , we will assume that this tracking window is going to 

move with that speed until the current frame and the window shape and size will not 

change significantly. So we can obtain the motion predicted window WT[f+1] in the next 

frame by shifting W[f]  horizontally and then vertically by respectively 












 ′

w
Vx  and 
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h
Vy  

MBs, where hxw is the macroblock dimension.  This step deals with the major movement 

and defines the WT[f+1] set that will be used for analysis in the following update phase. 

 

3.3.3  Tracking window update 
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The purpose of this phase is the case-based update of the deviations of the 

prediction WT[f+1] from the O set and obtain the corrected window  W[f+1]. These 

adjustments usually happen around the edge of WT if it is large enough. 

1. Group all the MBs in the frame into four layers as described in the tracking model 

section, core layer (Lcor), shell layer (Lshl), buffer layer (Lbuf) and background layer (Lbkg). 

2. Detect movement in background. Examine the MVs of the inner most layer of MBs 

belonging to Lbkg. Check for MBs whose MV component Vx and Vy satisfies the 

following condition: 

a. |Vx| > 1 or |Vy| > 1 

b. If such a MB is found, we will consider that there are some movements in the 

background. Otherwise, we consider the background is still. 

c. A still background occurs when the camera is fixed and there are no moving 

objects in the scene surrounding the tracked object, which is a fairly common 

video scene. Identifying of these cases can reduce its MV analysis cost and 

increase its tracking accuracy. A moving camera or a moving object surrounding 

the tracked object usually results in a moving background in which case a much 

more complicated motion case analysis would be needed. 

3. If there is no movement in the background, we will need to discriminate two cases: 

a. If | xV | = 0 and | yV | = 0 , which means the tracked object is not moving either, no 

adjustment to the initial tracking window will be needed. 
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b. If | xV | > 0 or | yV | > 0 , we will examine the MVs of all MBs in Lshl and Lbuf. Take the 

MB into W set if its MV satisfies |Vx| > 1 or |Vy| > 1. Otherwise, move the MB out of W 

set. 

4. If there is any movement in the background, more complicated motion case analysis is 

needed to modify the tracking window. As discussed in the tracking model section, only 

MBs in Lshl can be removed from W, and only MBs in Lbuf can be taken into W. This is 

decided by comparing the distance of the MV of observed MB to V , and its distance to 

the MVs of its surrounding background MBs. 

a. Calculate a ‘localized’ background speed vector U ( xU , yU ) for each MB 

belonging to either Lshl or Lbuf. First, starting from the MB under consideration, 

examine all MBs which are one MB away from it, then all MBs two MBs away 

from it, etc. Identify those MBs that belong to Lbkg as candidate local background 

MBs, until the total number of these MBs are more than 5 after a around. Then 

apply the algorithm of section 1.3 on this collection of local background MBs to 

determine U . 

b. Pre-removal of MBs from Lshl. If a MB satisfies at least one of the following 

conditions, it will be pre-removed from Lshl and from W. 

i)  0<× xx VV or 0<× yy VV  

ii)  if xV > yV , then 
xxxx VUVV −>−  

iii) if 
yx VV ≤ , then 

yyyy VUVV −>−  
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c. Pre-uptake of MBs from Lbuf into W. If a MB satisfies all of the following 

conditions, it will be pre-uptake from Lbuf into the W. 

i)  0≥× xx VV and 0≥× yy VV  

ii)  if xV > yV , then 
xxxx VUVV −≤−  

iii) if 
yx VV ≤ , then 

yyyy VUVV −≤−  

d. If the net size change of W after pre-removal and pre-uptake is less than a size 

change sensitivity parameter (SSZ) specified by the user, accept the modification 

made in step b and c. Otherwise, do either step e or f. SSZ is a percentage of W 

with a default value 20%. This guards against drastic change to W caused by false 

MVs. 

e. If net size increase exceeded SSZ, then remove some of the MBs pre-uptaken in 

step c, starting from the rear side of the moving tracking window, until the size 

increase is within the SSZ limit. 

f. If net size decrease exceeded SSZ, then recover some of the MBs pre-removed in 

step b, starting from the front side of the moving tracking window, until the size 

decrease is within the SSZ limit. 

 

3.3.4  Shape integrity adjustment 

Check W region, if any MBs not belonging to W but are surrounded by MBs 

belonging to W is found, then take them into W. Remove any isolated MBs from W. The 

purpose is to make the tracking window into one continuous and solid region of MBs. 
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3.3.5  Tracking termination 

Tracking of an object can be terminated unconditionally or conditionally. 

3.3.5.1  Unconditional tracking termination 

This is signaled by the user through the control interface. The tracking window is 

dissolved and tracking of this object is stopped. 

3.3.5.2  Automatic death of object detection 

The conditions under which tracking of an object should be terminated is also 

defined using a set of termination parameters. The parameters set we implemented is very 

similar to those tracking window generation parameters. These include speed (Tspd), 

direction (Tdir) and size (Tsz). Their meanings are same as defined in the automatic 

tracking window generation. After tracking window W is updated in each frame, it is 

checked against the following conditions: 

1. The moving speed of W calculated as 22

yx VV + falls into the range of Tspd. 

2. The direction of speed vector V  follows Tdir. 

3. The size of W set falls into the range of Tsz. 

If any of the above criteria is satisfied, the W will be dissolved and the tracking of 

this object is stopped. These parameters can be set by users as well.
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CHAPTER 4 

 

RATE CONTROL 

 

4.1  Transcoder rate control mechanism 

Once the objects are detected, the active sets are fed into the following spatial rate 

control mechanism of the re-encoder.  MPEG-2 TM-5 has already defined a quantity 

called activity factor for taking into account of perceptual significance of the 

macroblocks. Instead of reinventing, we refine this handle to perform the spatial varying 

coding. The proposed mechanism is also a double-loop feedback control mechanism 

where the output bit-rate is continually sensed to determine overall piecewise constant 

rate, with appropriate accounting for variations in frame/picture type like TM-5. A 

second internal feedback loop further tracks the efficacy of key conversion 

factors/constants for additional stability.  Here, the perceptual content and activity in a 

particular picture area dictates the inherent amount of bits that may be required to encode 

it. Also the bit requirement per macro-block is dependant on the picture type (I, B or P) 

as well other subjective factors.  Like TM-5 the bit-rate is controlled by the 

requantization-step of the DCT coefficients. The quantized output for intra-and non-intra 

frames are respectively given by: 

mquant2
mquant.75)quant_stepf(x,y

×
×+

=  ……(2) 

mquant
stepquantxfy )_,(16×

=   
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Here x is the DCT coefficient, y=f(x, quant_step) is determined from ISO/IEC 

13818-2 tables [ISO96]. As mquant increases, the effective quantization steps become 

larger, more information is lost, the encoding requires lower bits, and the quality of the 

picture degrades, and vice verse.   

 

4.2  Quantization factor determination 

To account for few of these factors, in the topmost level the value of mquant for 

each macroblock is calculated as a product of two primary factors (a) the buffer fullness 

and (b) the macroblock activity. The mquant for the jth frame is computed as a product of 

two parameters:.  

jjj actNQmquant _×=  ….(3) 

The final value of mquantj is coded either in the slice or in the macroblock.  Qj is 

determined based on the frame and macroblock type, and uses standard TM-5 model 

header [ISO96]. The part that is relevant for this experiment is the N_actj. The motivation 

behind the original TM5 activity factor is that human visual perception is less sensitive to 

distortions in noisier textured areas and more sensitive to distortion in image areas with 

uniform texture. We used enhanced region based activity assignment algorithm for 

estimation of N_actj, based on the object tracking results. It allows spatial distribution of 

the bits to be controlled for a given allocation of frame bits. 

 

4.3  Object based activity factor determination 
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The relative bit allocation factor of the various objects and backgrounds detected 

is specified as an object resolution parameter iα for each macroblock i. We maintain total 

per frame bit-allocation fixed. Thus:  

i
i

i
ified

i
actNactN _log_log mod ∑∑ ≈  ……(4) 

The macorblocks in the boundary set is assigned a macroblock resolution factor 

iα  (-8,0,+8).  Based on the overall distribution of the iα  over a frame the N_activity(i) 

of a blocks is then calculated as: 

∑
⋅⋅=

−
n

iii
ified

i

actNactN
α

α
log

mod 2__  
……(5) 

The log normalized value ensures that the bit distribution over the frame remains 

close to the original allocation of the TM-5 model. 
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CHAPTER 5 

 

EXPERIMENTS 

 

We have performed extensive evaluation of the algorithm under various 

scenarios. In this section we provide some results about the algorithms characteristics. 

We have evaluated both the time efficiency and tracking effectiveness of the algorithm. 

For time efficiency we also provide the analytical complexity of the algorithm for better 

appreciation of its scalability. 

 

5.1  Tracking effectiveness 

We define two criteria for the evaluation of the motion-tracking algorithm. That is 

to see if the tracking window W covers the object representation set O completely and 

nothing else. 

Coverage: This is the zonal fraction of the actual visual object successfully 

covered by the active set. Object coverage factor is the ratio of O covered by W.  

Best case obviously should be 100%.   

O
WOerage ∩

=cov  …..(6) 

 

Mis-coverage: This is the factor of W that is not covering O but the background 

compared to the actual window size. The ideal situation of course is 0%.  
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W
WOWeragemis )(cov ∩−

=−  …..(7) 

 

These two criteria are illustrated in Figure 5.1.  

 

 

 

 

 

 

 

 

 

 

 

There is, however, no automatic method to determine the reference actual object 

O. Therefore the following manual method was used. In the output stream the transcoder 

drew a visible grid to indicate the MB boundaries and the tracking window boundaries on 

every frame. The algorithm also provided the size of the tracking windows. Then we 

played back these new MPEG-2 videos on regular media player. Once every second we 

paused and evaluated the object size in MBs manually and observe their overlap with the 

tracking window. Then we calculated coverage and mis-coverage. 

Figure 5.1  Calculation of object coverage and tracking 
window mis-coverage. 
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Perceptual encoding is highly dependent on the video content. Therefore, we 

avoided providing any ‘average’ performance. Rather we have used case videos each 

carefully selected to offer a special challenge to the system interms of number of objects, 

camera motion, etc. Here we present analysis of eight representative cases.  These 

sequences represent several groups with various types of objects and motion 

combinations, which can impact the effectiveness of our object tracking algorithms. First 

Table 5.1 provides the format parameters of these sequences. Column two of Table 5.2 

describes their motion properties. Figure 5.2 and Figure 5.3 plot the coverage and 

miscoverge factors as a function of frame sequences for all of them. 

The first four described in Figure 5.2 (a)-(d) were shot with a fixed camera. Under 

this condition, only absolute object movements can result in non-zero MVs. As visible in 

the results the MCB algorithm can track objects with high effectiveness, regardless 

whether they are well textured or not. The coverage remains more than 90%, and the 

miscoverage is 2-8%. Two-tractors and Walking_people have multiple objects moving in 

the scene. Two objects can be discriminated even if their speeds are close such as in the 

Two_tractors sequence. It can even track objects with deformable shapes like people. 

The last four sequences shown in Figure 5.3 (a)-(e) were shot with a moving 

camera, where the irregular MVs in the background complicated the tracking a great deal. 

In these situations, the tracking effectiveness relies heavily on the object’s texture and the 

regularity of camera movements. For example, the object in 

tractor_with_moving_camera sequence is well textured and the camera moved smoothly 

towards one direction for a short time, the tracking is as good as in the first four videos. 
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The tracking of a plane in the plane video was also successful because the uniform blue 

sky background cancelled out the camera movements. But tracking was interrupted more 

frequently in the last two videos which were taken with much more irregular camera 

movements. Between these two, the tracking of the mower was relatively more stable 

than the tracking of van in the shaking_camera video because of its good texture. Despite 

the interruptions the system was able to get back to tracking.  Overall in stable state the 

coverage was also 80-90% and miscoverage was 5-10%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1350 704x4805Shaking_camera 
2850 352x2405Mower 
300 352x2404Plane 
483 704x4804Tractor_with_moving_camer

153 704x4804Walking_people 
472 704x4805Two_tractors 
663 704x4805Mycar_in_parkinglot

300 704x48010Toycar 

Duration 
(frames) 

resolutionbit-rate 
(mbps)

 
Name 

Table 5.1  Sample Video Sequences 
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Irregular camera movement, poor-textured 
background, one object tracked, poor-textured, 
fast-moving 

Smooth camera movement, well-textured 
background, one object tracked, well-textured, 
slow-moving, exclusion 

Smooth camera movement, poor-textured 
background, one object tracked, poor-textured, 
irregular-moving 

Fast smooth camera movement, well-textured 
background, one object tracked, well-textured, 
slow-moving, partial exclusion 

Fixed camera, still background, three objects 
tracked, well-textured, deformable shape, slow-
moving, illumination change 

Fixed camera, some movements in background, 
two objects tracked, well-textured, slow-moving, 
partial exclusion 

Fixed camera, some movements in background, 
one object tracked, poor-textured, slow-moving  

Fixed camera, still background, one object tracked, 
well-textured, fast-moving, heavy shadow 

Content description 

Tracked through 
entire sequence 

Tractor_with_ 
moving_camera  

Tracked until object 
is too small 

Plane 

Lost tracking only at 
complete or near 
complete exclusion 

Mower 

Lost tracking multiple 
times due to sudden 
camera pulsation 

Shaking_camera  

Tracked through 
entire sequence 

Walking_people  

Tracked through 
entire sequence 

Two_tractors 

Tracked through 
entire sequence 

Mycar_in 
_parkinglot 

Tracked through 
entire sequence 

Toycar 

Tracking result video name 

Table 5.2  Video Content Description and Their Tracking 
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Object 2  
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Figure 5.2  Results on tracking effectiveness evaluation on sample videos 
without camera motion. 
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Figure 5.3  Results on tracking effectiveness evaluation on sample videos with 
camera motion. 
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5.2  Object-based quality transcoding 

The purpose of object tracking in video transcoding is to provide objects’ position 

information to the transcoder so that the region covering the objects and background can 

be processed separately in transcoding. These processing can be versatile limited only by 

the video format and the functions available in the transcoder. For our case, we have used 

rate/quality transcoding as per region based rate allocation technique given in chapter 4. 

Here we provide a sample case of rate/quality improvement by the technique for the 

Two_tractors video sequence as processed by our object-based quality MPEG-2 

transcoder. The original MPEG-2 stream has a bit-rate of 5mbps and the file size is 

9844KB. It is downscaled to 500kbps by our transcoder using both object-based and non-

object-based quality transcoding, resulted in a file size of 1001KB and 1012KB, 

respectively.  We present the result in all three forms. 

First, Figure 5.4 provides the bit distribution of the transcoder stream. It shows the 

bit distribution per macroblock separately for the object and background regions for each 

frame. For comparison it also shows the corresponding bit-distributions when object 

unaware regular transcoding was used. The I frames has usual larger bit allocation. 

However, the non-object based transcoding indiscriminately reduces bits everywhere. 

Indeed it is interesting to note that unaware scheme in places took away more bits from 

regions of object resulting in severe perceptual quality loss. In contrast the object-aware 

scheme has been able to allocate more bits in the object area. However, it should be 

noticed that although relatively large amount of bits can be provided into the object 

region, the overall bit at the background is slightly smaller than that of unaware scheme. 
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This has been possible for typical small size of objects of perceptual significance.  The 

resulting drastic improvement of SNR quality is shown in Figure 5.5.  Figure 5.5 plots the 

average macroblock SNR quality for these same four cases. As can be seen the object 

region’s SNR drastically improved in the coding.  This diagram also shows how a 

‘unaware’ transcoding scheme can severely damage video quality by inadvertently 

reversing the perceptual quality of background and object by classically activity analysis. 

We also provided two screen shots from two transcoded streams in Figure 5.6 for visual 

demonstration of the result of perceptual encoding. Obviously, the one obtained from 

object-based transcoding is more perceptual pleasant than the one from non-object-based 

transcoding. These improvements are much more perceptually pronounced in the actual 

movie. 
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Figure 5.4   Bit distribution comparison between object and background 
region MBs after object-based vs non-object-based quality transcoding.  
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Figure 5.5   Comparison of SNR between object and background regions after 
object-based vs non-object-based quality transcoding. 



 

 

49

Figure 5.6   Perceptual quality comparison between non-object-based (upper) and 
object-based quality transcoding. In object-based transcoding, the two objects 
indicated by the color window have higher quality than in the non-object-based 
transcoding. 
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5.3  Algorithm complexity 

The algorithm can track multiple objects in parallel. Each object repeats the major 

part of the algorithm once. Since the main task of the algorithm is to analyze MVs, the 

computing cost certainly is related with the number of MBs to be processed. Here two 

numbers matter, the number of MBs in a frame or the frame size, the number of MBs in 

each object or the object size. We use Sfrm to indicate frame and si. to indicated the side of 

object i both in MBs. If the number of objects simultaneously under tracking at any point 

is Nobj, the algorithm complexity grows linearly with Nobj The overall complexity of our 

tracking algorithm is as following: 

)]log([ 321 iii

N

frm ssCsCSC
obj

⋅⋅+⋅+⋅ ∑  …..(8) 

C1 and C3 are small and less than 10. C2 is at the order of tens. The only non-linear 

item si lg(si) comes from the quick sorting algorithm which used to sort MVs of an 

object’s MBs. However, the complexity of the algorithm does not grow indeterminately 

with the increase of the number of objects or the size of the objects. In either case the 

product si. .N obj is limited by Sfrm which is only 8100 even for HDTV format, lg(si) 

actually is no more than a small constant around 10.  

)log.()log( 321 frmfrmfrmfrm SSOSCCCS =⋅++  .....(9) 

For example, when the sizes of objects increase, although the cost of processing 

individual object increases but the number of objects that could exist simultaneously Nobj 

decreases towards 1. So in general, the complexity of the algorithm is linear with the 

object size for most scenes, but in the limit grows linearly along with the frame size. 
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5.4  Observed speed 

We ran our object tracking system on a single AMD 1.3 GHz processor Linux 

machine with several sample MPEG-2 videos and collect data about CPU time spent on 

each functions using the gprof utility. The processing time for tracking after MVs 

extraction for each frame and video sequence information are given in Table 5.3. 

These results show that the time used for tracking one object is only about 0.47 

milliseconds per frame for 704x480 video resolution. With normal frame rate of 30fps, 

only 14.1 milliseconds is spent on tracking an object for every one second of MPEG-2 

video. This surpasses the real-time requirement with a large margin. According to our 

algorithm complexity analysis, the estimated tracking time for HDTV resolution 

(1920x1080) is 2.88 ms/frame, which is also far beyond real-time. 

0.42 69 704x480 4 Tractor_with_moving_camera 

0.60 24 704x480 4 Walking_people 

0.24 31 704x480 5 Two_tractors 

0.42 35 704x480 5 Mycar_in_parkinglot 

0.69 82 704x480 10 Toycar 

Tracking time 
(ms/frame) 

Object size 
(MB) 

resolution Bitrate 
(mbps) 

Sequence name 

Table 5.3  Time Costs for Object Tracking 
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CHAPTER 6 

 

CONCLUSIONS 

 

In this research we have implemented a perceptual region detection algorithm 

specifically designed for fast perceptual encoding. The algorithms presented in 

contemporary research are generally based on classical object detection that use varied 

mix of input information from various coding levels. As we move into the era of massive 

video stream processing, it is now important to look into the fundamental cost or raw 

information used as ingredient by various algorithms. 

In a dynamic rate transcoding scenario, the cost of raw information used is 

remarkable. It is most expensive to obtain back the pixel level information. Even the 

DCT coefficients used by transform domain techniques also reside at two levels deeper 

than motion vectors in a coded stream due to differential block coding and subsequent 

Huffman coding. The proposed technique can avoid a great deal of raw image data 

processing, and yet remain very effective. Our steady-state system is able to operate with 

80-100% coverage and less than 5% mis-coverage.  A fundamental question is whether 

additional DCT or pixel level information used by other algorithms can provide 

additional tracking efficiency? Unfortunately, no qualitative measure of tracking 

efficiency was given by other comparative techniques in the literatures. It would be 

interesting to determine actually how much detection and tracking accuracy can be 

gained (or lost), if any, by the additional computational complexities involved in those 
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methods? Motion vectors indeed contain implicit information about color and shape 

besides the motion. Thus, motion vectors are possibly the richest single coding element in 

terms entropy of perceptual information. Additionally, it is important to note in this 

context that for perceptual coding, the use of detail object boundary sought by the extra 

computations by several other techniques may not be very useful and may actually reduce 

the perceptual quality, if it is not again repealed by wide boundary approximation [46]. 

Thus, there are strong reasons to believe that the use of deeper information might bring 

only diminishing return. 

Several extensions of this work can be contemplated. Currently, we have 

implemented an MPEG-2/MPEG-2 transcoder - a fully transparent transcoding system 

for a streaming video. The advantage of this specific system is that it will not require any 

other video distribution component - player or server to be aware of the rate adaptation. 

However, the algorithm can also be applied for other stream combination/interchange 

such as MPEG-2/MPEG-4 transcoding. 

Another particularly interesting usage of the algorithm is video screening. The 

logical POP descriptors can be dynamically configured to detect and track specific 

perceptual objects and events. The descriptors can be further used as a basis set for a high 

level language. In more automated implementation, a descriptor can be added into 

standards’ private stream (MPEG-2 and MPEG-4 already has the mechanism). Or adhoc 

mechanisms are possible where XML type object schema’s can be downloaded 

transparently. Such extension can help in resolving the subjective ambiguity inherent in 

video object detection problem. 
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Yet another interesting are of application area of such fast perceptual object 

detection is the human augmented target detection. It is extremely difficult to surpass the 

target detection ability of human in quality and perceptual noise/blunder avoidance.  

Recently, there are interesting researches being conducted in man machine coupled target 

detection.  The coupling has been attempted both at neurological and motor control level. 

Roughly, any human augmented target detection system precludes the use of any 

algorithm that takes more than milliseconds to process a frame. We are currently using 

this algorithm in a human augmented eye-tracking coupling based target detection system 

that requires machine processing in sub-millisecond range [49]. 
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