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1 Abstract 
Object aware video rate transcoding can significantly 
improvement the perceptual quality of relatively low 
bit-rate video. However, precise object detection in 
arbitrary video scene is computationally extremely 
challenging. This paper present an interesting 
experimentation with live eye-gaze-tracker which 
suggests that object detection particularly for perceptual 
encoding may not have to be precise. Indeed, intelligent 
approximation can not only reduce the complexity of 
the detection process, but also result in improved 
perceptual quality and yield very fast transcoding 
algorithms.  

Key words: transcoding, perceptual encoding. 

2 Introduction 

Video rate transcoding is increasingly gaining 
importance in recent years. The asymmetry in the 
Internet capacity- particularly at the egress networks is 
growing dramatically. The emerging digital video 
standards such as DTV or HDTV will bring an 
enormous flux of high quality video content. However, 
the relatively differential of bandwidth at network 
edges and the advent of small devices (such as Personal 
Digital Assistant) seems to indicate that in near future 
the Internet applications have to deal with increased 
bandwidth asymmetry. Consequently, there will be 
increased need higher video transcoding ratio. Most of 
the current video transcoding techniques are based on 
frame wide requantization [5,7,9,10,11,12]. 
Unfortunately, frame-wide requantization very fast 
degenerate the perceptual quality of video. Research in 
first stage coding has already shown that object based 
encoding can play an increasingly important tool for 
creating perceptually pleasant video at lower rates 
[1,2,4,6]. MPEG-4 has been proposed to transport 
object-based coded video stream. However, conversion 
of a regular video to an object based stream is 
computationally challenging. [3,4] because of the high 

computational complexity of object detection. Thus 
live stream transcoding is still very difficult. It seems 
the first generation MPEG-4 systems will see most of 
its application in computer model generated synthetic 
video (where objects are already given), or for small 
format known content video [3] (such as head and 
shoulder video).   

2.1 Related Work 

Among the latest methods employed for object 
detection in video, Ngo et. al. [8] described object 
detection based on motion and color features using 
histogram analysis. This technique could process less 
than 2 frames in one second.  Unfortunately, many of 
the other techniques presented such as [15] did not 
provide evaluation of time performance. However, it 
depends on even more involved image processing 
methods such as active contour model which spends 
considerable effort to determine the shape boundary, 
and is thus likely to be slower. More recently some 
compressed domain techniques have been suggested 
such as by Wang et al [14]. This system achieved about 
0.5 sec/frame for the CIF size on a Pentium III 450 
MHz. It should be noted that the stream transcoding 
scenario has some notable difference from first stage 
video encoding. First of all, in transcoding object 
detection has to be performed extremely fast at the rate 
of the stream. Secondly, the transcoder receives an 
encoded video stream. An unprocessed input stream 
seldom contains pixels level information rather 
contains highly structured coded and refined 
information such as motion vectors, thus access to 
pixel level information means severe computational 
overhead. While, in first stage encoding the opposite is 
true. A stream transcoder thus must take advantage of 
the scenario for being effective. 

2.2 Computational Complexity 

It seems, except from the compressed domain 
techniques, most of the object detection techniques tried 
in video have been derived from image level algorithms 
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and targeted towards scene comprehension type 
applications. Current approaches, even when it uses 
compressed domain fields, mixes pixel level data in 
analysis for boundary approximation. Thus most are too 
slow to meet the need of live perceptual stream 
transcoding. It seems a major source of computational 
burden originates from contour estimation. While 
precise contour detection has been considered as a 
critical part of scene interpretation and image 
understanding research is it possible they have less 
importance in perceptual encoding?  To answer the 
question we have recently performed a live eye-gaze 
study to observe the perceptual effectiveness of several 
fast algorithms for perceptual coding incorporating 
contour approximation of various degrees.  

2.3 Perceptual Quality 

Over the years eye-gaze research has shed important 
light about visual perception. The retinal distribution of 
photoreceptor cells is highly non-uniform. 
Correspondingly, only about 2 degree in our about 140 
degrees vision span has sharp vision [1,2]. Scientists 
have identified several intricate types of eye 
movements such as drift, saccades, fixation, smooth 
pursuit eye-movement, involuntary saccades. The 
quality perception is known to be highly correlated 
with the image quality around the fixations. Visual 
sensitivity reduces exponentially with eccentricity from 
the fovea. 

In this paper we will therefore present a direct 
comparison of these techniques based on live eye-gaze. 
The study suggests indeed approximation not only 
significantly reduces the complexity of the object 
detection process, but also results in improved 
perceptual quality. The schemes can provide dramatic 
speed improvement in MPEG-2/MPEG-2 or MPEG-2/ 
MPEG-4 object based perceptual transcoding. 

   

3 Contour Approximation Appraoch 
We started with a fast base BOF algorithm [13]. The 
algorithm itself is not the focus of this paper. However, 
we will describe it here briefly. This is a strictly 
compressed domain method which tracks object with 
only motion vector analysis. It estimates the projection 
of various scene objects, background motion, and 
camera motions on the motion vectors in the coded 
stream. Thus by observing the motion vectors it then 
detects and tracks video objects. It is important to note 
that motion vectors are not simply codified information 
about block’s motion, as it may appear at first glance. 
Rather these also contain highly refined color, texture 
and shape information. However, what it cannot 
contain is precise shape information beyond block 
boundaries. Using Kalman filter prediction this fast 
algorithm automatically detects, and tracks the region 
covered by the scene objects for subsequent perceptual 
encoding. A detail of the algorithm is given in [13]. To 
study the impact of contour approximation we 
incorporate three contour approximation techniques 
with this algorithm. To measure the impact of the 
approximations on perceptual efficiency, we then play 
the live video to a subject and directly observe the eye 
gaze fixations on the video frames.  

3.1 Approximated Tracking Window 

The BOF algorithm for each object provides an object 
window called WTW. This window tracks the moving 
blocks corresponding to a moving object in the scene. 
We consider three versions of the algorithm. The first 
is the raw object window and the other two 
approximations are explained below. 

3.2 Rectilinear Approximation 

The first is the rectangular approximation. All the 
points in WTW are sorted and the window WRTW is 
constructed using the min max corners. WRTW= { (xmin, 
ymax), (xmin, ymin), (xmax,ymax), (xmax, ymin)} , where xmax = 
max { xi} , xmin=min(xi), ymax=max{ yi} , ymax=max{ yi} , 

where: all TW
ii Wyx ∈, .  

3.3 Circular Approximation  

The other form of approximation of WTW is circular 
approximation shown in Figure 3.4.2. This 
approximation is built in the following way. Let (xi, yi) 
is the macroblock center.  We determine: 

22 )()( iijiij yyxxD −+−=   

Let   
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Fig.1 Rectilinear WTW approximation 
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Where, ][ , kkk yxMB  and ][ , mmm yxMB are the ones 

which have the biggest distance from each other. Let 
there distance is 22 )()( mkmkkm yyxxD −+−= , then 

WCTW is defined as a circle with radius R=0.5D, and 
center at (
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containment varies from 70% to 85%. As we will see 
in most cases, it performs much better than TW gazes 

containment. 

4 Experiment 

4.1 Setup 

We have implemented the system with integrated 
Applied Science Laboratories High speed Eye tracker 
Model 501. The eye position video capturing camera 
worked at the rate of 120 samples per second. For this 
experiment we defined fixation when the eye does not 
move more than 1 degree in 100msec. We modified the 
Percept Media Transcoder in a way that it can generate 
Reflex Window, track the object and use this both 
methods for creating Perceptual Object Window. All 
are videos were 720x480 and were captured with Sony 
TRV20 digital camera at high resolution with more 

than 500 lines at a frame rate of 30 frames per second. 
Number of frames per GOP is 15. Number of “B”  
frames between any give two “P”  frames is two. The 
video was projected on the wall of the dark room. The 
projected physical dimensions of the image are width 
60 inches, height 50 inches, and the distance between 
subject eyes and the surface of the screen is about 100-
120 inches. 

4.2 Sample Shots 

First we will share some actual example. Fig-3 and 
Fig.4 show some actual test shots from the live system. 
These figures show sample frames 233 and 1343. The 
video has original encoding at 10 Mbps. Fig-3 and 
Fig.4 show the rectangular and circular approximation 
correspondingly. After approximation frames are 
perceptually encoded based on the corresponding 
approximation method. We reduced bit-rate about 10m 
times to 1 Mbps. In the rate reduction full resolution 
was maintained at the approximated window macro-
blocks. The MPEG-2 TM-5 rate control was used to 
determine the quantization of the remaining blocks. 
The actual perceptually video samples as per all three 
window models, including the originals can be 

Fig. 3.  Video 1. Frame number 233. Circular
tracking window build explanation scheme. 
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obtained for direct visual appreciation from [16].   

4.3 Video Sets 

For the system we have tested a large number of video 
scenes. Perceptual encoding is highly dependent on the 
video content. Therefore, we avoid providing any 
‘average’  performance. Rather we use case videos each 
carefully selected to offer a special challenge to the 
system. In this paper we present three cases.  (a) 
“Video 1”  contains car driving in a parking lot. The 
object speed is smooth and continuous. (b) “Video 2”  
has two radio controlled toy cars moving at different 
speeds with rapid unpredictable movements. In this 
video we asked subject to concentrate on just one car. 
(c) “Video 3”  has two relatively close up toy cars 
offering much larger area of focus. Cars move in 
different directions inconsistently. Subject is asked to 
concentrate only on one car. 

4.4 Containment Efficiency  

The ideal perceptual encoding requires all the fixations 
to be contained within the object window. Ideally, if all 
gazes are within the window then it is possible to 
design optimum perceptual encoder. Thus, we defined 
the quantity gaze containment as the fraction of gazes 
successfully contained within the window: 

)(

)(S
 

w

tS

t
=ξ

 

…(5.1) 

Where, S(t) is the entire sample set and 

)()( tStS W ⊆ be the sample subset contained within 
the object tracking window W(t).  

The right y-axes of Fig 5(a), (b) and (c) show the 
results of gaze containment for WTW WCTW and WRTW 
for the three videos. Compared to the strict object 
boundary based TW, both of these approximations 
increases the containment significantly. For Video 1, 
containment increases from 49% to about 70% for 
rectilinear approximation and to about 89% for circular 
approximation. Same tendency we can see for Video 2 
and Video 3. It is interesting to note that the base BOF 
algorithm itself uses block approximation. Thus a true 
object contour is expected to contain less than 50% of 
the eye-gazes! 

4.5 Coverage Efficiency 

With larger visual windows more gazes can be 
contained, however, there will not be any perceptual 
redundancy to extract. Therefore, we were also curious 
to see how tight was the windows. We define a second 
performance parameter called “perceptual coverage”.  

))((

))()((
)( 

tF

tFtW
t

∆
∪∆

=χ
 

….(5.2) 

Where, F(t) is the size of the total viewing frame, and 
W(t) is the method provided perceptually encoded 
window (delta for area or volume). 

The bars plotted on the left y-axes of Fig-5(a), (b) and 
(c) show the coverage factor for all the cases. It can be 
noted that the approximated window increases very 
slightly--1.8% to 2.7% of the frame for Video 1, or 
4.2% to 6.8% for the most difficult video 3.  

It seems that circular approximation slightly 
outperforms rectilinear one in number of gazes 
contained and the increase in the area size for the 
circular approximation is negligible comparing to the 
total frame size.  

5 Conclusions & Current Work 
Many of contemporary object-based perceptual coding 
techniques are based on the implicit assumption that 
the object area inside the object contour should be 
coded with higher resolution. The assumption is 
perhaps imperfect. It is highly likely that mental 
process of visual perception drives eye to scan areas 
beyond particularly the area slightly outside. The high 
emphasis on object boundary has lead to many 
involved schemes for video object detection. It seems 
the efforts spent in exact contour extraction, is perhaps 
counter productive in perceptual coding. The proposed 
approximations can lower cost and improve 
performance effective. Without significant increase of 
the perceptual coverage we were able to achieve 
around 90% gaze containment in the proposed simple 
approximations. Clearly, other approximations 
techniques to suit the video coding constraint can also 
be designed.  

This research has been supported by the DARPA 
Research Grant F30602-99-1-0515. 
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