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Abstract The active harness we have developed is a scalable and versatile 
means for deep probing of network local states. Harness makes a clear separation 
between the “communication”  from the “ information”  part of the probing process. 
The composition of the “ information”  component is handled by means of network 
embedded harness plug-ins. Harness supports a variety of group communication 
and distributed data synthesis patterns among a large set of nodes. It has been 
show to be capable of solving variety of messaging optimized efficient distributed 
algorithms used in advanced routing including shortest path, optimum clientele 
multicast stepping etc. In this report we illustrate how it can also solve another 
important problem is advanced routing—the minimum spanning tree problem. 
This report does not contain any performance simulation.  

1.Introduction 

1.1. Scalability 
Scalability, in a large network, is often severely limited in point-to-point mode of 
communication. For example, the requesting node is required to send individual SNMP 
messages to all intermediate nodes for measurement of path statistics causing 
redundant flow of information inside the network. This increases the overhead and 
hence severely reduces the transparency of the measurement process. With only a 
point-to-point communication means, dissemination/aggregation of information creates 
excessive traffic on the network severely limiting the scalability.  It appears that the 
inability to extract any intelligence from the intermediate nodes by SNMP causes the 
limitation. Hence, since there is no means for in network composition, all compositions 
must be done at the end-points, only after polling all state information there.  

1.2. Versatility 
On the contrary, though the specific probing kits provide greater scalability but can 
hardly be reused for other measurements. Nevertheless, the trend suggests that 
versatility of information is becoming equally important. Specifically, what 
measurement is useful depends on the optimization objective. For example, in a video 
server scenario, whether the jitter or the hard delay is more important is dependent on 
the specific video repair algorithm. In a different scenario, a server before sending data 
may want to poll information about the speed of only the last link to the home user’s 
computers. In some other circumstances the min/max of the path downstream delays 
and jitters from various junction nodes can help in strategically placing jitter-absorbing 
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buffers in a multimedia streaming virtual private multicast network.  Emerging tele-
interaction applications (such as tele-surgery, remote instrument control) will require 
handle on the delay incurred at the video frame level, which is exactly not the same as 
the packet delay. The trend suggests that as more advanced and complex net-centric 
applications are being envisioned more versatile network state information would have 
to be exchanged.  

1.3. Harness Approach 
Can scalability and versatility both be retained simultaneously? Apparently, there may 
not be any efficient answer in an end-to-end paradigm. In the general case, a network 
can choke with polynomial messaging at the end-points. However, the recent advent of 
Active Network technology seems to offer an innovative way out from this dichotomy 
[13,14,8]. Active network allows programmable modules to be embedded inside 
network junctions. In this research we are exploring an experimental dynamic 
mechanism for state information polling and propagation inside network with similar 
embedded information synthesizers, which seems to be both scalable and versatile. The 
approach first makes a clear separation between the “communication”  from the 
“ information” of the state exchange and propagation process. Communication is 
handled by the component called “harness”. Harness propagates all information via 
coordinated messaging. On the other hand the “ information” component of the process 
is controlled by a set of soft programmable plug-ins. These plug-ins decide the content 
of the messages propagated by the harness. In a recent work [16] we have 
demonstrated a tree-harness system which can work on a network with tree 
communication topology. 

 In this report we present a powerful generalization of the harness that now can operate 
over a general graph network. The system is capable of solving various graph problems 
such as shortest path, max-flow etc. based on customizable criteria (such as bandwidth, 
delay, jitter, power usage etc.). The report explains the operation of the harness via an 
important network algorithm-- finding the minimal spanning tree (MST). Compared to 
many other problems, solution to MST is not obvious in Harness paradigm. In this 
report, we therefore show a harness algorithm MST that creates a scalable and 
customizable solution by exploiting its power of concurrent network computation and 
node level aggregation. 

1.4. Applications of MST in Networking 
Interestingly MST is finding many applications in networking. In various custom forms 
its use has been applied quite prominently in recent networking research.  Some routing 
algorithms [34,35,36,37] in mobile wireless networks have used shortest-path routing 
where the number of hops is the path length. However, more recently researchers are 
suggesting that the optimum routing in wireless and mobile networking with minimum 
energy constraint, is a MST problem rather than shortest path [27,28,29,30,31,32,33].  
Chang and Tassiullas [38] have shown that MST can be used (in inverse form) to 
distribute wireless traffic among various paths so that batteries of the nodes drain-out 
in a uniform way. Optimum mirroring based on network load reduction in web caching 
is also an MST problem. 

MST also applies in data aggregation and distribution. Several researchers in sensor 
networking area have recently investigated means for scalable data aggregation [39]. 
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The researchers used various approximations of MST. In [40] aggregation has been 
done based on Center at Nearest Source (CNS), Shortest Paths Tree (SPT), or Greedy 
Incremental Tree (GIT). PEGASIS [41] creates a chain path between network of 
sensors to gather and fuse data as data passes over the chain. Then fused data is sent to 
base station by one of the randomly chosen sensors located in the chain. Concast [52] 
has been proposed to merge collected feedback in multicast application. Wolf and Choi 
[53] proposed an aggregation algorithm similar to concast with the provision of 
detecting packet loss and avoidance of indefinite waiting. 
 
MST is also central to DDBMA (Dynamic Delay Bounded Multicasting Algorithm), 
which is concerned about delay in multicast tree. Zhou and Hac [43] proposed a 
heuristic algorithm for constructing minimum-cost multicast trees with delay 
constraints. Other heuristics have been developed by [44,45,46]. In congestion control 
topology information has been used in multicast tree [47]. In Topology Aware 
Grouping (TAG) [48] the shortest path information is used to build efficient overlay 
networks among multicast group members. 

2.Harness Architecture 
The harness is in charge for initiating, propagating and responding to a series of well-
coordinated messages between the nodes in a network. The harness once installed in 
network nodes, can act in three roles-- session initiator, state synthesizer, and 
terminals. The initiator acts as the communication agent in the network layer for the 
application that actually requires the information. The synthesizer propagates the state 
requests and processes the returning states from the terminals. 

The harness controls the communication pattern and thus deals with the efficiency of 
messaging. Harness system accepts a set of plug-ins, which determines the content of 
these messages, and how they are propagated and aggregated at the junction points. 

2.1. Messaging 
The harness system has been designed to operate with a novel request-reply-update 
messaging scheme. It has three types of messages request, reply and update. A request 
message may contain fields indicating what data is needed,  information dictating how 
far down the network the probing session should propagate either by specifying 
probing depth or by explicitly listing terminal nodes, and any information needed by 
the receiver to compute required data, e.g. to compute jitter a receiver needs to know 
the time stamp of sending successive data. In addition to this, for a graph structured 
network we need to uniquely identify a session by the combination of initiators id and 
some unique session id. Since in a graph structure a synthesizer might receive request 
for multiple sessions from adjacent nodes, the synthesizer can use the initiators id and 
session id to distinguish multiple sessions. The session initiator decides how often a 
request is generated in case of gathering property of a topology which changes over 
time. The request messages are sent to the terminals if they are immediately connected, 
or to synthesizers for further downstream propagation. A synthesizer upon receiving a 
request, propagates the query by generating a new request message to the down-stream 
nodes. However, at the same time it might also generate an immediate reply for the 
requestor. The replies from synthesizers may contain current local state and/or past 
remote states. The reply might also be used to acknowledge receipt of a request 
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indicating that the receiver will generate request further down-stream. The terminal 
nodes send replies to their respective requestors. The terminal reply contains locally 
retrieved current states. The terminals or update initiators initiates return trip of 
information by generating update messages. In the return trip of information, the 
synthesizer nodes aggregate the information and at each stage generate update 
messages for their requestors. Once a node receives all or specific number of update 
messages from its immediate down-stream nodes or on timeout, it updates the network 
local state variables and generates a new update message. The update message contains 
a synthesized summary of information calculated from all its immediate downstream 
nodes. 

This three-part request-reply-update communication model, if needed, allows the 
information to be collected without working in lockstep. Even if a downstream node is 
delayed or silent, it does not hold the entire system; the estimation process can proceed 
for remaining nodes. The update phase is further equipped with optional and 
configurable timers to avoid update lockup. In essence, the request-reply phase allows 
collection of local immediate states. The reply mechanism allows immediate probing 
into current local states and past synthesized remote states, while the update message 
retrieves latest remote states. 

2.2. State Composition 
Harness system accepts a set of six-plug-ins which are called request generator, reply 
generator, update generator, request aggregator, reply aggregator, and update 
aggregator. These modules together determine the content of these messages, and how 
they are aggregated at the junction points. They work via a virtual slate. A copy of 
which is maintained in each of the nodes. The slate works as the local abstract data 
structures. The slate is programmable and is defined at the session initiation phase. The 
request generator specifies the request message describing the fields it wants from the 
slate of its down-stream node. At individual nodes the model supports MIB-II and thus 
acts as a superset of SNMP. The terminal nodes can read/copy MIB variables (or their 
processed combination) existing in the local slate into variables marked for reply. The 
harness then invokes the reply messages with the designated slate variables. Reply 
aggregator (or update aggregators) in a similar fashion is invoked each time a reply 
(or update) is received by the harness. They perform domain specific processing of the 

Fig. 1 Components of Active Harness 
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reply message fields and similarly update their own slate variables. The update 
generator is invoked when a special trigger variable becomes true. The trigger variable 

is a set of conditions such as all, any, or a specified number of down-stream nodes have 
requested/updated/replied, or a timer fires. The update generator sends the slate 
variables synthesized by the update aggregators to the upstream node. Fig. 1 describes 
the architecture of the proposed harness system. It shows the typical locations of the 
plug-in modules and the direction of the messages. In fig. 2, the event diagram of the 
harness is shown.  

At the heart of the composition ability is the transfer functions of the intermediate 
synthesizers. The request and update phase can be represented by equations: 
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E
�

is the update forwarding filter (UFF), F
�

 is the update receiving filter (URF). Pt
-,j,k 

is the arrived update from child k, 

and Pt
i,j,- is the propagated update to parent i. While the filters determined the 

information propagation rules, composition functions ()Φ and ()Ψ  together 
determine the message content. While, in principle each of these components for each 
of the individual harness sites can be programmed differently, however the associated 
management will be intractable. In this harness we divide the network nodes into 
subsets based on their role in the topology. Nodes in the topological subsets then 
inherit uniform programmed behavior. Thus, we need only six distinct programmed 
modules (plug-ins) to be supplied by the harness programmer.  

3.Harness Execution Model 
The harness operates through 9 states. Fig 4 shows the state transition diagram. The 
oval shaped boxes describe activities and the square boxes indicate plug-in modules 
used for those activities. The dotted path is taken only by a session initiator. A session 
initiator has states 1-4-5-6-5-7-8-1 if reply and update is expected. An update initiator 
since waits for U=0 updates, has states 1-2-3-5-3-7-9-1. Synthesizers (if both reply and 
update is expected) have states 1-2-4-3-5-2-5-6-5-7-8-7-9-1. As fig 4 suggests, other 
combinations are possible depending on whether reply and/or update is expected or 
not. 

4.Example Probing: Minimal Spanning Tree 
Problem Definition: G(V, E) is a connected, undirected graph where V is the set of 
nodes and E is the set of edges and for each edge (u,v) ∈ E, � (u,v) is cost of edge (u,v). 
We need to find an acyclic subset, T ⊆ E, that connects all the vertices and whose total 
weight �  (T) =                    is minimum [54].  
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We will map the three phases of the harness to find the minimal spanning tree of a 
graph topology. The first phase is request generation phase. During the request 
generation phase, reply phase takes place concurrently. 

 

 

� A session initiator initiates a session of finding minimal spanning tree (MST) of a 
network with graph topology. How deep the probing should take place, should be 
determined by the session initiator. This can be done by identifying one or more 
terminal nodes (which can be thought as the leaf node of the topology) during the 
initiation of session. Another way of determining how deep probing should take 
place is the depth (or level) from the session initiator. However, this might lead to 
redundant flow of request messages across network. The session initiator sends 
request messages to its adjacent synthesizers.  

� A request message sent by session initiator includes its id (i.e. session initiators 
id), id of the terminal node, i.e. the update initiator, and a unique session number. 
Each session can be distinguished by a session number and id of the session 
initiator.  

� When a request message is received by a synthesizer from the session initiator it 
becomes child of the session initiator. This synthesizer then propagates request 
message to its adjacent synthesizers. The new request message consists of id of the 
update initiator sent by session initiator, session initiator's id, session number and 
its own id. This means that the new request message can be constructed from the 

Fig, 4 State Transition Diagram of The Active Harness

Process Request
2

Idle Node
1

Gen Req
4

6

Process 
Update

8

Wait for 
Update

7

On
 R

ec
vin

g
a 

Re
q

Req
Generator

Gen Update

8 Update 
Generator Update 

Aggregator

Process Reply

On Rep Rcvd

O
n 

Re
cv

ing
Up

d

On U Upd
or T

imeout

Request 
Aggregator

Reply    
Aggregator

On R Req Or 
Timeout

Wait for 
Rep/Req

5

On Req Rcvd

On P Rep And/Or Q Req or 

Timeout

9

Generate Rep
3 Rep 

Generator



 
Technical Report 2003-01-02 
Internetworking and Media Communications Research Laboratories 
Department of Computer Science, Kent State University 
http://medianet.kent.edu/technicalreports.html 

 
 

 8

request message sent by the session initiator by changing sender and receivers' id 
and appending it own id to keep track of the path of the request propagation.  

� Once a request message is received from a synthesizer, say x, then the sender, x, 
becomes the parent of the receiving synthesizer, say y, provided the receiver of the 
request message , i.e. y, has not sent a request earlier to x.  Then the receiving 
synthesizer, y, propagates the request to its adjacent synthesizers, say z, from 
which it did not receive a request yet and z is not in the path of request message. 
On the other hand, if the receiver, y, before receiving the request message from x, 
has sent a request message to x, then we need to resolve the ambiguity of both 
being one another's parent and child. This can be resolved by following the 
convention that the synthesizer whose id is higher becomes the parent of the other 
synthesizer. This will insure that every adjacent synthesizer is either parent or a 
child of any other adjacent synthesizer. 

� The reply message can be used to resolve/acknowledge parent-child relationship. 
There can be provisions so that a reply message contains previously computed 
MST. This can be used in situations where the synthesizers are mobile or inactive 
incase of energy sensitive nodes. 

� As the request propagates down the links, the request messages will give the path 
through which request messages propagated from the session initiator to a 
synthesizer. During the request generation phase a synthesizer does not send a 
request message to a synthesizer which is in the path of request propagation. This 
can be used to avoid deadlock during update phase. 

� The initiator designates a terminal which we will call update initiator. An update 
initiator does not send any request to any adjacent synthesizers and hence does not 
have any child. It initiates the update phase. However, there can be incidents 
where a node receives request messages from its adjacent node and becomes a 
child of all its adjacent synthesizer. Such a node, by definition, becomes update 
initiator even though the session initiator has not specified that node as an update 
initiator. We can prove that the algorithm of finding minimal spanning tree works 
correctly even if we have more than one update initiator. 

� An update initiator initiates the update phase upon receiving request messages 
from its adjacent synthesizers. Update message generated by the update initiator 
includes the cost of the link between it and its parent. Essentially this is the 
minimal spanning tree of the sub-graph which consists of update initiator and its 
respective parent. 

� During the update phase all the parent synthesizers expect an update message from 
each of their children. A synthesizer does not generate an update message until it 
receives update messages from all its children.  On receiving update messages 
from its children a synthesizer finds the updated MST of the sub-graph which 
consists of that synthesizer and all its children and their children down to the 
update initiator. This can be found by merging the MST sent by its children in the 
respective update messages and then removing any cycle that is created by the 
merge operation. A cycle can be removed by eliminating the link that has 
maximum cost among the links in the concerned cyclic path. Once the synthesizer 
finds the MST of the graph below it, it chooses one of its parent synthesizers, say 
m, whose cost is the minimum among all its parent synthesizers. An update 
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message is sent to that synthesizer, m, adding the cost of that synthesizer with the 
newly computed MST. 

� Other synthesizers which are not chosen are notified via the update message with a 
null path. 

� Gradually, update messages reach the session initiator and, it computes the MST 
of the graph. 

5.Proof of Correctness of Algorithm 
Theorem: Given, G(V, E) is a connected, undirected graph where V is the set of nodes 
and E is the set of edges and for each edge (u,v) ∈ E, � (u,v) is cost of edge (u,v). 
Above Harness-MST algorithm gives a minimal spanning tree i.e. an acyclic subset,    
T ⊆ E, that connects all the vertices and whose total weight �  (T) is minimum. 

 

Lemma 1: No edge is left out without considering it.  

Proof: Since through each edge a request is propagated and since a node when sending 
an update compares the cost of edge from which it receives a request, so all edges are 
considered.  

Lemma 2: No less costly edge is left out (i.e. holds minimal property.) 
Proof (by contradiction): Given G =(V, E), V= 
{u, v, z, y, x} and E={uv, vz, xy, yz, ux}  and 
T={ uv, vz, xy, yz}  is the minimal spanning tree of 
graph G. We need to show that there is an edge 
uy with � (uv) <� (uy) or � (xy) <�  (ux).  

Now, there can be two scenarios, either u is the 
child of y or y is child of u. If u is child of y then 
while u generated an update message as per 
algorithm u chooses the link which has minimum 
cost hence weight of uv is less than weight of uy. 
Similarly, we can show if y is child of u weight 
of yz is less than uy. In both cases it’s a 
contradiction. So there cannot be an edge uy 
whose weight is less than uv or yz.  

Lemma 3: It is a spanning tree.  
Proof: Since at every node during update generation, existence of any cycle is checked 
and eliminated if any, so at the end we get a tree. 

Directly from lemma 1, 2, and 3, the theorem is proved. 

6.Example:  
In the following figures we show snapshots of finding minimal spanning tree. The 
numbers next to a link is the cost associated with that link, e.g. cost of node connecting 
nodes a and b is 4. Fig 6(a) shows the topology with cost of different links. Node a is 
the session initiator and a designates g as the update initiator (terminal node). Fig 6(b) 
shows the parent-child relationship between different adjacent nodes after all the 
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request messages have propagated down to 
the update initiator. The direction from one 
node to another shows the propagation of 
request message and parent child relationship, 
e.g. an edge from a� b. indicates propagation 
of request from a to b and that b is a child of 
a. 
The update initiator, g, on receiving requests 
from all its neighbors, initiates the update 
phase sending update message to its parents 
(requestors) f, d, e, and h. The update message 
sent to f includes path gf and cost 11. 
Similarly, update messages to h include path 

gh and cost 12. Node f upon receiving update message it was expecting from its child, 
i.e. from g, generates update message 
augmenting fd to gf and sends it to d. Node d 
on receiving updates from f and g, merges 
the paths, i.e. the respective MST, received 
from f and g which gives { gf, fd, gd}  and 
checks if there is a cycle. If there is a cycle, 
it eliminates the edge with maximum 
weight. In this case since there is a cycle (fig 
6c), it eliminates the edge gf whose cost is 
higher (i.e 11) than other two edges in the 
cycle. Now, remaining edges, i.e. { fd, gd}  is 
the MST of the subgraph whose root is d. 
Node d after eliminating cycles, finds the 
edge db (6) from the edges connecting d to 
its parent which has minimum weight, and adds that to rest of the MST. This gives { fd, 
gd, db}  and sends that to b. The other parent of d which is c is notified by sending 
another update message with null path indicating c that dc was not chosen.  This is 

shown if fig 6(c). Similarly, e sends update     
message to b with the path {gw, he, eb} . When 
node b receives update messages from its 
children d and e, it detects a cycle { gd, db, eb, 
ge}  and eliminates ge the edge with maximum 
weight in the cycle giving the path { fd, gd, db, 
he, eb} . After receiving update message from c 
which has {cb}  and merging it with that which 
has been received from d, the MST of the 
subgraph whose root is b becomes { fd, gd, db, 
he, eb, cb} . Finally, a computes the overall 
MST of the topology once it receives updates 
from b and c which is { fd, gd, db, he, eb, cb, 
ba} .  
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7.Messages and Modules 

 

 

 

 

 

 

 

var MsgType : type HarnessVar, var SessionNo: type SessionID, var InitiatorID: 
type NodeID, var UpdateInitiatorID: type NodeID, var RequestPath : type NodePtr 

var MsgType : type HarnessVar, var SessionNo: type unsigned int, var InitiatorID: 
type NodeID, var Ack: type Bool 

var MsgType : type HarnessVar, var SessionNo: type SessionID, var InitiatorID: 
type NodeID, var Path: type (var PathHead:type NodePtr + var TailNodePtr: type 

NodePtr, var MaxLink: type NodePtr, var MaxLinkCost:unsigned int) 

var LinkCost: array unsigned int, var PathMST: type tree 

Fig. 7(d) Slate 

var RequestRecvd: type array bool, var RequestSent: type array bool, var 
UpdateRecvd: type array bool, var UpdateSent: type array bool, var ReplyReceived 
: type aray bool, var ReplySent: type aray Bool, var ParentNodePtr: type NodePtr, 
var ChildNodePtr: type NodePtr, var RequestRecvdFromNode: type NodePtr, var 
RequestSentToNode: type  NodePtr,  var UpdateRecvdFromNode: type NodePtr, 

var UpdateSentToNode: type NodePtr  

Fig. 7(e) Harness Variables For a Node 

Request Generator Module: 
    For each adjacent node j 
        if (j not in requestMsg.RequestPath OR j has not sent request) 
            Set SessionNumber, InitiatorID, UpdateInitiatorID 
            Path �  append (requestMsg.RequestPath , parentNode) 
               >> Send request message to j << 

Request Aggregator Module: 
    For each adjacent node j 
        if (r=1 request received) 
                signal (activate Request Generator Module) 

Fig. 7(a) Request Message 

Fig. 7(b) Reply Message 

Fig. 7(c) Update Message 

Fig. 7(f) Request Generator Module 

Fig. 7(g) Request Aggregator Module 
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8.Analytical Complexity 
MST is one of the oldest known graph problems having an illustrious history. Textbook 
algorithms run in O(E lg N) time, where N and E denote, respectively, the number of 
vertices and edges in the graph. A distributed algorithm was presented in [49] that 
construct the minimum-weight spanning tree in a connected undirected graph with 
distinct edge weights. The total number of messages required for a graph of N nodes 
and E edges is at most 5NlgN+2E. As we will show that the proposed harness 

Reply Generator Module : 
      if (request not sent to either to  j OR to node in RequestPath )  

             set replyMsg.Ack �  True 
      otherwise 

            set replyMsg.Ack �  False  
 >> send reply message to j << 

Reply Aggregator Module: 
       if (reply msg from j.ack = False ) 

  set ParentNodePtr (next) �  j 
        otherwise 

  set ChildNodePtr (next) �  j 

 
Fig. 7(i) Reply Aggregator Module: 

Update Generator Module: 
          For each parent node  j of current node i 
                 set MsgType, SessionNo, InitiatorID 
     if (j.Linkcost = min)  
             update message.Path �  cons (j, Slate.PathMST)   
          else 
              update message.Path �  NULL 
               >> send update message to j <<  

Fig. 7(j) Update Generator Module: 

Update Aggregator Module: 
      For update message from j 
            Slate.PathMST �  merge (Slate.PathMST, update message.Path)   
                   if (cycle in Slate.PathMST) then 
                         Slate.PathMST �  remove (Slate.PathMST, maxLink 
(Slate.PathMST) 

Fig. 7(k) Update Aggregator Module: 

 
Fig. 7(h) Reply Generator Module 
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algorithm will use much less number of messages, at most 3E. On average total number 
of bits on all the messages will depend on number of bits used to identify nodes.  
For a graph G = (E, V) maximum number of request and reply messages is same which 
is 2|E|. The number of update message is |E| during update phase from update initiator 
towards the session initiator. 
During request generation, a request generator need has complexity O(db) in worst 
case where d is the depth of that node and b is the average branching factor. It takes 
O(b2), in worst case, in order to detect a cycle for an update generator. So for an update 
phase if depth of update initiator is O(d) then it takes O (db2).  
In classical solutions by Kruskals, Prims etc for the MST problem assume that the 
graph topology in known and hence the complexity O(m lg n) is estimated only on the 
basis of the computation of MST. Such centralized solution however ignores the cost of 
data collection, which can be substantial O(nd) in a network environment with n nodes. 
Our approach drastically reduces the amount of information propagated. This is 
important in large scale Internet environment where communication is much significant 
cost factor than the small computations involved. 
 

Table-1 Link Traffic Impact 
Type Byte Max 

Msg 
Msg/link Bytes/link 

Request r=O(d) |E| 1 r=O(d) 
Reply p= O(1) |E| 1 p= O(1) 

Update u=O(d) |E| 1 u= O(d) 
 

Table-2 Node Processing Impact 
Node          Request  Reply Update 

 Generator Aggregator Generator Aggregator Generator Aggregator 

Initiator O(b) O(b) 0 O(b) 0 O(b2) 
Synthesi
zer 

O(bd) O(b) O(1) O(b) O(b) O(b2) 

Terminal 0 O(b) O(1) 0 O(b) 0 

 

Above we have provided estimates of the impact on the links and on the nodes due to 
the harness operation respectively for one execution/propagation wave. Here, as 
mentioned before, d and b stand for a maximum probing depth and average branching 
factor of the context network respectively. The sizes of the Request, Reply, and Update 
messages are of r = O(d), p = O(1), and u = O(d) bytes respectively and computational 
impact in a synthesizer due to request generator, request aggregator, reply generator, 
reply aggregator, update generator and update aggregator are rg = O(db), ra = O(b), 
pg= O(1), pa = O(b), ug = O(b), and ua = O(b2) respectively. Table-1 shows the network 
wide traffic, message per link and the byte density. The potential scalability of the 
system is indicated by the message density per link which is 1. Table-2 shows the 
computational impact on the network nodes due to the plug-ins. It can be noted here 
that, a particular state-probing session may be launched with a subset of capabilities 
(such as no reply, but update). The design objective is to provide the least impact 
communication for the given application scenario. With the timeout feature we can 
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approximate MST of a graph in O(d) time which can be good enough for many 
practical purposes. 

9.Conclusions 
The report presents the Harness system via an example of its use in solving MST. The 
key to the system’s scalability and versatility are the embedded aggregators. Since 
local state dependent aggregation is performed inside a network, it reduces 
communication and thus enhances the system’s scalability. Aggregators also provide 
the ability to compute network relative deep composite statistics, over the elementary 
MIB-II variables, thus enhancing the versatility of its ability to collect network states.  

The network implementation is non-trivial nevertheless can be realized at user space as 
deamons. Embedded implementation can cut down some overhead and will be critical 
for sub-second range probing cycles. Implementation on some form of active platform 
[8,13,14] can further facilitate matters such as remote deployment, and seamless 
secured execution of the plug-ins. The harness plug-ins require very limited form of 
programmability compared to general active net paradigm. Also, the read-write 
suggestions are through local slate variables only. These characteristics assuage many 
of the security concerns. The proposed harness is perhaps one of those cases where 
provisioning even very low-grade programmability can be highly rewarding. The 
harness increases state visibility of network. In effect it facilitates high pay off smart 
optimizations for numerous applications, which are not easily realizable today due to 
the black box nature of current network. Interestingly, such a network layer utility is 
not only crucial for building a new generation of network aware applications but it is 
also vital for many of the current problems internet is grappling with. Interestingly 
many of which are arguably artifacts of the opacity of current network design.  
Currently, we are exploring its active network based simulation. The work is being 
supported by the DARPA active network Research Grant F30602-99-1-0515. 
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