

Technical Report 2002-03-01
Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

FAST STREAM INTERCEPT FOR HIGH
PERFORMANCE FILTER APPLIANCES

Javed I. Khan & Yihua He

Media Communications and Networking Research Laboratory
Department of Computer Science, Kent State University, 233 MSB, Kent, OH 44242

 javed@kent.edu

March 15, 2002

1. Introduction

Stream interception is rapidly becoming a common

and important task in Internet appliances. Beginning

from cache, proxy, filters, firewalls, and gateways,

there are now host of new services including content

adaptation, content personalization, location-aware

data insertion, to security filters -- all are

fundamentally stream interception machines

requiring some form of intermediate access inside

transiting traffic’s content. By some very

conservative estimate almost 40% percent of the

delivered Internet traffic is now ‘ touched’ . Yet new

rush of intercepting applications will arrive with the

advent of emerging technologies such as

programmable or active networks.

However, if we look into the current protocol design,

particularly the protocol packet structures we wil l see

that it has little facil ity which enables efficient stream

intercept. While, fixed end-to-end applications can do

away with marginal treatment of this issue, indeed,

we believe right placement of protocol element inside

data stream and some form of random access wil l be

one of the most important factor for high

performance stream data processing appliances.

1.1 Potential Pay-off: Active traveler with a
jumbled up suitcase?

The problem can be illustrated by a traveler’s

analogy. Today, our traveler is packing his suitcase

by almost randomly throwing in objects, and closing

the overfilled suitcase by sitting on it (that’s

compression)! These intercepting appliances at stops

are asking him/her to open his overfill ed suitcase to

show specific things. At every stop he has to take all

the things out, put them back and recompress. To

make the matter even worse this poor traveler has not

just one but many suitcases, and the demanded items

are scattered all over! A performance meltdown is

inevitable. Imagine the jam in airport security check.

Few hints about the items to be demanded- and some

small organization in packing can enormously

speedup the process.

Most real-life content, particularly high performance

networked multimedia transport data carried over a

network packet are multi-level hierarchically

encapsulated (that means bags within suitcases). For

example access to a Dolby AC-3 component in a

standard audio stream may require as much other 5

different data elements before a particular fields can

be accessed in current arrangement. An H.261 video

element may require access to 16 pre-dependent

elements before the element of interest can be read!

The situation is also difficult for recent tag-delimited

content protocol standards (such as XML, HTML),

where this dependency is formally infinite. The

problem has enormous implication on the CPU cycle,

memory size, and overall performance of any

intercepting appliance system’s architecture. The

Technical Report 2002-03-01
Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

stream is the working data structure of these capsules.

It is perhaps as salient to appliance’s overall

architecture as the design of disk scheduling

algorithm or multil evel memory/cache organization is

to the conventional machine

architecture.

In this research we focus on this

important yet li ttle explored problem

and demonstrate a novel content

indexing scheme which can facilitate

dynamic index based random access

into streams and provide serious

performance boost to intercepting filter

like appliances. Though conceptually

the mechanism can be implemented in

layers above IP, we present an IPV6

based protocol called Embedded Data

Indexing Protocol (EDIP). It is an IPv6

extension header based content

indexing mechanics, which defines the how a Content

Provider (CP)’s serverlet can add special marks into

the data stream, and how an Active Router (AR) can

decode those marks from the data streams and gain

pattern dependent random access into the elements of

required data stream. In this extended abstract we

provide a brief summary of the system and its

performance. The full report will provide further

details of the issues.

1.2 Few Related Work

S. Blake discussed about the differentiated services

by adding marker field DS in IPv4 and IPv6 headers

[1]. Packets marked by this field will receive a

particular per-hop forwarding behavior on nodes

along their path. It is a close approach as this report’s.

However, they didn’ t investigate the possibil ity to

add indexing information into IP headers and utili ze

it in value-added service to make random access of

the data stream available. In other extreme Akamai

[3] and ESI [4] use a full application level XML-like

markup language to define web page components for

dynamic assembly and delivery of web applications

at the edge of Internet. Spatscheck et. al. [7] and D.

Maltz and E Bhagwat have separately presented two

TCP splicing mechanisms which would allow a filter

(connected by two TCP links at two ends), to shed-

off some TCP window maintenance functions, for

passive filters by splicing the two TCP stream at two

end-points.

The technique we propose accelerates the actual

filtering operation and applications, as much as it

helps the networking layers. Also, the gain is not

restricted for passive mode of operation. It uses

network layer markup mechanisms to avoid

decapsulation of non essential application data

(stream segments). Also, a key difference is that we

include the case of cooperative application processing

in the service model where server side help may also

be available.

2. In Route Application Service

First we explain the service model. In the service model

a content stream from content provider’s server (CP)

flow to the end-user (EU). However it may also be

processed in an ISP application processing (AP)

server in between during transit. The end user

initiates the content delivery by requesting content

�����

�����
	���
��

� �����
� ����� � �

��������� �
!�"�#�$�% &
'�(�)+*-,

.0/21�3�4 563�4

7�8�9;:<76=-> ?�@�A+B C�@�A

Fig 1: Example Service with EDIP Header

D�E�E

7�@�F
G�A�?�H

7 7�I�J
7 7�I�J K 7

L�M�N�O�P Q
R M�N�O�P Q
S M�T+:-U

V0:2W�?�H X6?�H

7�8�9;:<76=-> ?�@�A+B C�@�A

D�E�E

7�@�F
G�A�?�H

7 7�I�J
7 7�I�J K 7

L�M�N�O�P Q
R M�N�O�P Q
S M�T+:-U

V0:2W�?�H X6?�H

7�8�9;:<76=-> ?�@�A+B C�@�A

Fig 1: Example Service with EDIP Header

Technical Report 2002-03-01
Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

from the content provider via Internet. The

Application Service Provider (ASP) modifies the

content and adds value to the communication by

application level intercept processing at strategically

and/or topologically located AP servers. In special

cases the CP and AP can be collocated in application

service provider’s AP.

A special case of AP intervention is the passive

filtering service where AP server only monitors the

stream without changing it. A further special case is

the stealth filters where servers or end-users are not

aware of the intercept service (and thus also not

helping). If the content provider is also will ing to

help we call it co-operative filtering1.

The AP server additionally can provide “content

cache”. The cache can connect at both ‘pre’ or ‘post’

AP stage. Conceptually, caching is just another piped

service which AP can provide. AP server can be

configured to provide multiple services piped on a

specific request/response stream-- caching can be one

of them. The piping sequence is soft configurable.

Complex application service can be composed from

simpler services by service piping. The connection

between EU, CS, and AP servers are provided by

point-to-point separate TCP/IP or UDP connections.

3. EDIP Indexing Mechanism

The operation of application processing is expedited

by two techniques. The first is pre-marking the

content stream and allowing fast access into to the

stream. Second is the selective decapsulation

reencapsulation of only the pertinent data segments.

Finally, we also define a language to express and

carry the marks between the parties involved.

The actual content intercept processing is performed

by a program called the application filter capsule, and

1 For non-co-operative filtering some extra fast string

matching operations are needed at the AP server.

it runs on AP server. The application service provider

generally also sends a marking servlets to the CP

server for marking of the content stream. Every

Application Service Processing have a specified

“scope segment” and a “key segment” in it. Generally

a service is conditional. The data element which

contains the condition or key is always intercepted

and is decapsulated and delivered to the application

capsule. The stream segment which is within the

scope of an active key is intercepted and buffered

However, its decapsulation and delivery can be

deferred based on the key evaluation result. If the

evaluation is false, it is directly forwarded. Fig-2 is

the schematics of the enhanced network layers that

we have designed for the appliances machine.

Fig-2 EDIP Selective Decapsulation System

4. EDIP Header Format

EDIP uses IPV6 extension header for content

marking. It contains two parts: the General Field

(GF) and Key Blocks (KB). The General Field (GF)

identifies that it is an EDIP header, and contains

general information in how to process the header.

Each Key Block (KB) represents a keyword in this IP

package, with positions of the keyword indexed by

the offsets. Not every EDIP header has one or more

KBs. Sometimes, an EDIP header may only have a

GF, representing that the current IP package belongs

to an indexed stream, while there is no key word

appearance in this package. The total number of KBs

Technical Report 2002-03-01
Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

that an EDIP can have is only limited to the

maximum size of an IP package.

Fig 3 Stream Edit API Operations.

4.1 EDIP Encapsulation by Servelets

After capsulated by TCP/UDP, data stream can

pass through multiple servelets in the servelet

pipe. Each filter is associated with exactly one

keyword and it examines the passing stream to

see if there is any keyword appearance inside. If

there are one or more appearances, the filter

generates a key block containing the offset

information about where the keyword is in the

stream. Later, these key blocks join the original

data stream in the general field generator, where

a GF, as well as the key blocks, will be added at

the beginning of each package.

4.2 Decapsulation and Services APIs

EDIP decapsulation and value-added services are

executed in the ISPs Filter Server (FS), which sit

on the edge of Internet backbone. There are

several tasks that an FS must do. (1) Differentiate the

IP packages that need special processing from those

normal IP packages. (2) Retrieve the offset

information from the special-marked streams to the

corresponding applications, which may use the

information for value-add-in service. (3) Negotiate

with SMS and maintain the service statistics. The

main components include a stream controller, a

keyword detector and a buffer controller.

API comment

Associate (inQ, outQ) Associate two streams

Bypass(aid, a, b) Forward bytes from a to b

Drop(aid, c, d) Drop bytes c to d (into trash sink)

Deliver(aid, e,f,
&msgbuffer)

 Deliver bytes from e to f with
newcontent

Insert (aid, msgbuffer) Insert the messagebuffer content to
the stream.

Table-1 Stream Edit API Subset

4.3 Application Processing:

The filter programs are armed with a set of special

services APIs to take advantage of the marking

process. With a scope data it can edit a stream using

the stream edit APIs. Fig-3 explains them. The

application program can use them to edit, bypass,

drop, or insert bytes with a sequence stream of

<language=“en”> This is written in English </language>
<language=“bn”> Lekhati Banglatei</language>
<language=“cn”> zhong guo hua</language>

<language=“bn”> Lekhati Banglatei </language>

Associate (Input, Output)
Drop (0, 56) //drop English
Bypass (57, 104) //keep Bengali
Drop(105, EOF) //drop Chinese

Input Stream

Output Stream

Fig-4 Example of a content processing using stream
edit API

<language=“en”> This is written in English </language>
<language=“bn”> Lekhati Banglatei</language>
<language=“cn”> zhong guo hua</language>

<language=“bn”> Lekhati Banglatei </language>

Associate (Input, Output)
Drop (0, 56) //drop English
Bypass (57, 104) //keep Bengali
Drop(105, EOF) //drop Chinese

Input Stream

Output Stream

<language=“en”> This is written in English </language>
<language=“bn”> Lekhati Banglatei</language>
<language=“cn”> zhong guo hua</language>

<language=“bn”> Lekhati Banglatei </language>

Associate (Input, Output)
Drop (0, 56) //drop English
Bypass (57, 104) //keep Bengali
Drop(105, EOF) //drop Chinese

Input Stream

Output Stream

Fig-4 Example of a content processing using stream
edit API

Technical Report 2002-03-01
Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

incoming data. The buffers are application buffers.

Each of these operations is performed within the

context of an incoming and outgoing TCP socket

stream pair. Fig-4 shows an example of a stream-edit

capsule and its edit operation on a stream. The stream

offsets are algebraically calculated from key indexes

supplied by EDIP. There are additional setup APIs,

with which it can enable/disable the tracking of keys

by activating/deactivating the servelets and the

intercept mechanism beneath. It can request for the

next offset for a particular key. If the key test is

successful (or unsuccessful), it can request (or

release) delivery of the scope data. The AP capsules

are also given a set of fast string search and protocol

parsing routines (with potential hardware

accelerators).

5. Benefits

The proposed mechanism accelerates the application

level intercept process. The advantage is derived

essentially by three principal sources -- (i) Only the

byte segments carrying ‘keys’ are unconditionally

decapsulated. (ii) The byte segments carrying

‘scope’ are conditionally decapsulated only when the

key conditions are true. (iii) Rest of the bytes is never

decapsulated.

This is also another source of run-time performance

boost. Stream is marked by the serve let processes

running at the content source. In cases, it is sometime

possible to mark with direct content knowledge by

the content generator without any string search.

Otherwise, the marking can stil l be performed by

sting search/ or parsing of the original content as

preprocessing. It still therefore can drasticall y reduce

the run time cost. To compare—current filters have to

perform run-time full search and/or full parsing. The

scheme however has cost. It is the extra data that will

be needed by the EDIP markers. The actual saving

therefore is the function of key density, and the key

success probability in the stream. Though, apparently

it may seem that high key density can offset the

performance gain, but in practice always the EDIP

key density can be controlled, by using a gross key in

EDIP and then using application level processing to

find the real keys. This is benefit of application level

soft key definition abil ity. In practice, only a small

part of data stream is generally modified.

Consequently, the expensive part is way too

inconsequential compared to the saving made by

bypassing the costly decapsulation/ reencapsulation

of the rest. In fig-5 we share a plot showing the

speedup in EDIF filter with respect to a conventional

full search filter (FSF). The speedup is plotted with

respect to the percentage of packets which are

carrying the key (p) for three different relative

decapsulation costs (� �������	��

���	� �	� �������

decapsulation increases as the speed differential in

the decapsulation increases. As shown with 10-20%

EDIP density about 200-500% times speedup is

possible my EDIP marking. The full report will

provide more detail space cost and speedup analysis

under various network, application, and service

scenarios.

6. Comments

Fast intercept of streamed data is a growing concern

in networking. The application level embedded

processing is rapidly increasing and can be a potential

bottleneck in Internet traffic carriage. The network

protocols and packet data structures have been

EDIF's Speed Up over FSF

0
2
4
6
8

10
12
14
16
18
20

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

P: EDIP Percentage

Sp
ee

du
p

alpha=2 alpha=3 alpha=5

Fig-5 EDIP Speedup

EDIF's Speed Up over FSF

0
2
4
6
8

10
12
14
16
18
20

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

P: EDIP Percentage

Sp
ee

du
p

alpha=2 alpha=3 alpha=5

Fig-5 EDIP Speedup

Technical Report 2002-03-01
Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

designed mostly for end-to-end processing. In this

report we have presented a part of our research that

looks into mechanisms which can provide random

access in a stream. In [9] we present a protocol for

deployment of such filtering service on an application

services network.

The work is currently being funded by the DARPA

Research Grant F30602-99-1-0515 under its Active

Network initiative.

7. Reference:
[1] S. Blake, D. Black and etc., RFC 2475 “An

Architecture for Differentiated Services” , 1998

[2] Christian Huitema, “ IPv6, the new internet
protocol” , second edition, Prentice Hall , 1998

[3] Akamai, http://www.akamai.com

[4] ESI, http://www.esi.org

[5] S. Deering, R. Hinden, “ Internet Protocol,
version 6 specification” , RFC 2460, 1998

[6] Wei-Ying Ma, Bo Shen and Jack Brassil ,
“Content Services Network: The Architecture
and Protocols” , International workshop on web
caching and content distribution, June 2001.

[7] Oliver Spatscheck, J. S. Hansen, J. H.
Hartman and L. L. Peterson; Optimizing TCP
forwarder performance, IEEE/ACM Trans.
Networking 8, 2 (Apr. 2000), Pages 146 - 157.

[8] D. Maltz and E Bhagwat, "TCP splicing for
application layer proxy performance," IBM,
ftp://ftp.cs.cmu. edu/user/dmaltz/Doc/splice-
perf-tr.ps, Mar. 1998.

[9] 1. Javed I. Khan & Yihua He, Ubiquitous
Internet Application Services on Sharable
Infrastructure, Technical Report: 2000-03-02,
Kent State University, [available at URL
http://medianet.kent. edu/ technicalreports.html,
also mirrored at http://
bristi.facnet.mcs.kent.edu/medianet]

