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Abstract-- Interactivity in transport protocol can greatly benefit transport friendly applications. We envision a 
transport mechanism, which is interactive and can provide event notification to the subscriber of its communication 
service. With such interactivity, advanced applications (such as adaptive MPEG-2 video transcoding scheme) can 
directly interact with the transport protocol and adjusts its production rate whenever a new event is received from 
the transport layer. We have recently implemented this concept system. The implementation has two components-- 
an interactive transport protocol over FreeBSD called iTCP and, a novel symbiotic MPEG-2 full logic transcoder. 
The system has also been experimented on the Active Network (ABone) using selected nodes in the U.S. and 
Europe. In this report we present the application accessible event model of the TC Interactive and the application 
programming interface that the application and the symbiotic component can use to interface with the TCP 
Interactive.  
 
1. Introduction 
Congestion control for time-sensitive multimedia 
traffic has remained a difficult problem. Most of the 
mechanisms for congestion control those have been 
proposed to date are based on delaying traffic at 
various network points.  The more classical schemes 
depend on numerous variants of packet dropping in 
network, prioritization (graceful delay in router 
buffer) admission control (delaying at network egress 
points), etc. However, a key aspect of a vast majority 
of these schemes is that they introduce time 
distor tion in the transport pathway of applications.  
Though time distortion does no harm to time 
insensitive traffic such as email forwarding or ftp 
data, but they work completely against the 
application if the traffic is time sensitive such as 
multimedia streaming or control data. 
For last few years it has been felt that for multimedia 
applications, the applications themselves have to be 
more integrated in the solution. Particularly 
promising are the research in the new TCP friendly 
paradigm [KeWi00, ReHE00, SiWo98, PrCN00]. 
[SiWo98] presented a TCP rate-based pacing 
mechanism that particularly takes note of document 
transfer characteristics. [ReHE00] discussed a 
general framework where applications can control 
rates based on their end-to-end measurements 
(similar end-to-end technique is used in RealPlayer). 
There are also fully application level proposals. Due 
to the lack of convenient means to obtain network 

states several works suggested [BrGM99, Wolf97] 
sending multilevel redundant information for video. 
Also several other works investigated combining 
application specific information from several streams 
into one clearinghouse architectures for aggregated 
congestion control. For example, Congestion 
Manager [ABCS00, BaRS99] is a system layer 
component. It provisions aggregated congestion 
control when multiple streams from the same end-
point attempt to send via a separate program called 
Congestion Manager (CM). [SiWo98] proposed 
building TCP friendly application where application 
relies on real-time transport protocol (RTP) mediated 
end-to-end measurement. CM tries to minimize 
congestion by coordination between multiple sending 
streams. [PrCN00] used multiple probing mechanics 
for aggregate congestion control.  
There has been several promising work on network 
or system level issues to increase TCP friendly-ness. 
Though, the paradigm of ‘ friendly applications’ 
almost by definition shifts a major part of the 
congestion management responsibility to the 
applications, interestingly relatively very few work 
exists that seriously looked into the corresponding 
issues that arise in an actual time-sensitive 
application while taking advantage of the suggested 
‘ friendliness’ .  The dynamics of the two systems can 
lead to stability issues. Time sensitive applications 
themselves have substantial complexity in adapting. 
Rate adaptation for any advanced multimedia 
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application in general is quite complex. It requires 
sophisticated layer 4+ techniques. It is highly 
unlikely that multimedia rate adaptations for any 
performance coding schemes (such as MPEG) can be 
performed at predominantly network or system layer. 
It seems that an alternate strategy for time sensitive 
multimedia traffic should be the multimedia 

knowledge enriched rate control, which can work in 
symbiosis with the network condition. We have 
recently implemented an MPEG-2 ISO-13818-2 
[ISO96, KYGP01, KhYa01, KhGu1] video streaming 
system, and a novel interactive version of TCP called 
TCP Interactive. The general principle we follow is 
simple and intuitive. It seems an effective delay 
conformant solution for time sensitive traffic may be 
built if the original data volume can be reduced by its 
originator-- the application1.  
However, a key element in any such scheme is that 
the application must be notified. Unfortunately, 

                                                
1 It is interesting to note, that the idea of application and network 
symbiosis have been mentioned for quite some time. However, 
almost no study exists which has focused on it. 

today’s transport protocols do not support any 
interactivity with applications.  It seems such non-
interactivity has been inherited from the early days of 
networking interface research, when the applications 
were simple and did not require sophistication. In this 
report we will show that transport interactivity can 
bring major benefit to high performance and 
demanding applications. The particular scheme we 
propose here has the following novel aspects 
compared to other recent works: 
• First, we suggest an active and direct notification 

mechanism by the underlying transport protocol, 
rather than using indirect end-to-end feedback 
tools. If there is any congestion, we propose an 
interactive transport protocol, which can directly 
notify the application.  

• To demonstrate the efficacy of the principle, we 
have designed a corresponding video rate 
transcoder system that works in symbiosis with 
the network. This transcoder actively participates 
in a custom symbiotic exponential-back-off and 
additive-increase like scheme in application layer 
with deep application level knowledge.  (This is 
also one of the first to our knowledge) resulting in 
much more effective joint quality/delay sensitive 
communication.  

• The resulting scheme is similar in spirit to the 
TCP friendly approaches. However, there is a 
fundamental difference in how it is done. We 
expect network (or system) layers to remain as 
simple as possible. The means and techniques for 
rate reduction remain with the producer 
application. The responsibility of the network 
layer is simply to pass on only selected end-point 
events to the applications.  

As, we will show the scheme is not only intuitive and 
simple, but also surprisingly effective compared to 
many other recently proposed schemes, which 
involve much more complex system/network layer 
reorganization.   
The result presented in this report is not simulation; 
rather report from a real implementation of the 
concept system that we have completed very 
recently. The implementation has two components-- 
an interactive transport protocol over FreeBSD that 
we called iTCP and, a novel symbiotic MPEG-2 full 
logic transcoder [KYGP01, KhYa01], which is 
capable of working in tandem with the interactive 
transport. The transcoding model has been developed 
by closely following the MPEG-2 Test Model 5 
(TM5).  MPEG-2 TM-5 signifies a real video coder 

i ni t i al l y ,  cwnd = 1 ( one segment ) ;  
wi n_si ze = mi n ( cwnd,  snd_wnd) ;  
When congest i on occur s:   

sst hr esh = max( wi n_si ze/ 2,  2) ;  
i f  congest i on was due t o t i meout  

cwnd = 1;   
f or  ever y ACK r ecei ved:  

i f  ( cwnd <= sst hr esh)  
   / *  per f or m s l ow st ar t  * /  
   cwnd =  2 *  cwnd;   
el se 
   / *  per f or m congest i on avoi dance * /  
   cwnd = cwnd + segment _si ze;  

Figure-1. Slow Star t/Congestion Avoidance 
algor ithm (SSCA). 

When a 3r d dupl i cat e ACK i s  r ecei ved:  
sst hr esh = max( 2,  mi n( cwnd,  snd_wnd) / 2) ;  
Ret r ansmi t  mi ss i ng segment ;   
cwnd = sst hr esh + 3;  

 
Each t i me anot her  dupl i cat e ACK ar r i ves:  

cwnd = cwnd + 1;  
t r ansmi t  a new segment ;  

 
When a new ACK ar r i ves:   

/ *  one RTT af t er  r et r ansmi ssi on –  
   f ast  r ecover y * /  
cwnd = sst hr esh;  

Figure-2. Fast Retransmit/Fast Recovery 
algor ithm (FRFR). 
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with substantial complexity of itself. While the detail 
can be found in [Mpeg00], we describe the salient 
part of the rate control architecture that is critical to 
this symbiosis in [KhGR02].  
The report is organized in the following way. In the 
next section, we first provide an overview of the 
congestion control mechanism in TCP and highlight 
segment loss events. In section 3 we present our 
interactive model. Here we explain event 
subscription, notification, and handling in the iTCP 
model. Finally, in section 4 we share performance of 
the scheme on the Active Network (ABone). We 
experimented the system on several ABone nodes in 
the U.S. and Europe. 
 
2. Congestion Control in TCP 
TCP is a connection-oriented unicast protocol that 
offers reliable data transfer as well as flow and 
congestion control. TCP maintains a congestion 
window that controls the number of outstanding 
unacknowledged data packets in the network. 
Sending data consumes slots in the window of the 
sender and the sender can send packets only as long 
as free slots are available. When an acknowledgment 
(ACK) for outstanding packets is received, the 
window is shifted so that the acknowledged packets 
leave the window and the same number of free slots 
becomes available.  
 
2-1. Congestion Control Algor ithms 
On startup, TCP performs slow-start, during which 
the rate roughly doubles each roundtrip time to 
quickly gain its fair share of bandwidth. In steady 
state, TCP uses an additive increase, multiplicative 
decrease mechanism (AIMD) to detect additional 

bandwidth and to react to congestion. When there is 
no indication of loss, TCP increases the congestion 
window by one slot per roundtrip time. In case of 
packet loss indicated by a timeout, the congestion 
window is reduced to one slot and TCP reenters the 
slow-start phase. Packet loss indicated by three du-
plicate ACKs results in a window reduction to half of 
its previous size. Therefore, the two principal 
mechanisms that TCP uses to detect network 
congestion are (i) when the retransmission timer 
times out and (ii) the arrival of duplicate ACKs. Two 
algorithms then contribute to the TCP congestion 
control behavior; these are the classic algorithm of 
slow-start and congestion-avoidance [Jac88], and the 
augmentation of fast-retransmit and fast-recovery 
[Jac90]. Figure-1 and Figure-2 below respectively 
shows the relevant details of the two algorithms. 
 
2-2. Congestion Control Events 
Table-1 below lists six events that internally occur 
when the TCP invokes a congestion control 
algorithm. Although many other TCP events might 
occur during a TCP session (e.g., flow control events 
or connection establishment and termination events), 
we are only interested in these congestion control 
events.  
In Table-1, the column labeled (SSCA) means that 
the event takes place in the Slow Start/Congestion 
Avoidance algorithm, and the label (FRFR) means 
that the event takes place in the Fast Retransmit/Fast 
Recovery algorithm. These events are also presented 
in Figure-3 below. The graph given in Figure-3(a) 
shows the sequence of events of the SSCA algorithm 
and how they affect the effective bandwidth available 
for TCP. Figure-3(b) shows the same sequence for 
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Figure-3. Effective bandwidth changes due to TCP congestion control internal events. 
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the FRFR algorithm. However, in general design we 
expect only a subset of the internal events that 
constitutes a protocol will be of interest to the 
subscriber application. Only a subset of the internal 
events is made accessible via the interface. An 
application instance typically subscribes even to a 
subset of these accessible events.  In Table-1 the 
column (Sub) shows the subscribable events in our 
design.  
 
3. Interactive TCP Model 
3-1. Event Subscr iption 
Figure-4 below shows the conceptual model of our 
interactive protocol. Once it establishes a TCP 
connection, the user process starts by binding the 
TCP kernel with a set of chosen events from Table-1 
using a subscription API that extends the standard 
socket API. The model allows one user process to 
subscribe with multiple sockets and with different set 
of events per socket. The socket itself can support 
notification service for multiple subscribing 
processes. Each individual subscription is handled 
individually in the socket layer even if the same 
process made two or more subscriptions.  
Each subscription binds the subscribed event with a 
predetermined user-supplied Event-Handler. The 
Event-Handler will be invoked as a user process 
when the subscribed event occurs in the kernel space. 
Also, the subscription mechanism itself is dynamic; it 
allows the subscribing process to subscribe to new 
events or cancel subscription (unsubscribe) to 
previously subscribed events at any time during the 
lifetime of the TCP connection. 

 
3-2. Event Notification 
The basic scenario of the event notification 
mechanism proceeds as follows: An entity called 
Event-Monitor runs in the iTCP kernel space and 
monitors all subscribed events for every socket (2).  
 
Assume at some point event ( evt )  occurs in socket 
( sock) . The Event-Monitor sends a signal to the 
Singnal-Handler (3a), and at the same time it writes 
the socket descriptor of the socket ( sock)  in the 
process structure pr oc{ }  of every process that 
subscribed with this socket. Also, it marks all 
subscriptions of event ( evt )  in the socket ( sock)  
as outstanding and need to be handled (3b).  
When it receives a signal, the Signal-Handler must 
know first which socket generated the event. To do 
this, it uses the probing API to read the socket 
descriptor of the socket ( sock)  from the process 
structure. Then, it uses the probing API to access the 
socket ( sock)  and get the relevant information  
about the outstanding subscription of event ( evt ) . 
The information retrieved includes the event type and 
the name of the Event-Handler (4a,b). At this point 
the Signal-Handler is ready to invoke the appropriate 
Event-Handler (5). 
 
3-3. Event Handling 
There are n Event-Handlers, enough to satisfy all 
subscriptions made by the user process. Event-
Handlers are usually small programs supplied by the 
user. One Event-Handler is forked by the Signal-
Handler per signal to take some action knowing that 

Event Meaning Description SSCA FRFR Sub 

1 
Retransmission timer timed 
out Possibly congested network or the segment was lost. X  X 

2 A new ACK was received 
Increment snd_cwnd either exponentially (if less than 
sst her esh) or linearly otherwise. 

X   

3 
snd_cwnd has reached the 
slow start threshold 
sst hr esh 

Switch incrementing snd_cwnd from exponential to linear. X   

4 A third duplicate ACK was 
received 

A segment was probably lost, perform fast retransmit.  X X 

5 
A fourth (or more) duplicate 
ACK was received 

One segment has left the network; we can transmit a new 
segment.  X  

6 A new ACK was received 
Retransmitted segment has arrived at the destination and all 
out of order segments buffered at the receiver are 
acknowledged. 

 X X 

Table-1. TCP’s Congestion Control Internal Events. 
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the event ( evt )  has just occurred in the kernel 
space (e.g. reduce outbound bit rate to the transport 
layer). 
Our probing API allows the Event-Handler to probe 
additional information about the state of the TCP 
connection (6a,b). This information includes some 
parameters from the TCP control block such as:  send 
window size ( snd_wnd) , congestion-control 
window size ( snd_cwnd) , threshold for slow-start 
( snd_sst hr esh) , current retransmit value 
( t _r xt cur ) , and round-trip time ( t _r t t t i me) . 
The Event-Handler can use some of these parameters 
to calculate a new sending rate that guarantees certain 
delivery time bound of the traffic. The model allows 
the Event-Handler to probe the Kernel any time to get 
the updated values of these parameters, and it allows 
the network administrator to restrict access to kernel 
data by each Event-Handler. 

3-4. API 
In Figure-4 we show two kinds of API that extends 
the socket API; subscription API which allows the 
application to subscribe with the interactivity service 
and the probing API which allows the application to 
probe the transport layer and retrieve relevant 
information about a subscribed event or about the 
TCP connection state in general. Table-2 shows the 
complete set of API system calls that we designed to 
support the iTCP model.  For each system call we list 
its prototype, the level of its caller (user or system), 
its potential caller (application, signal handler, or 
event handler), and a brief description about its 
functionality. Some of these functions are designed 
for the network administrator (root process) to 
manage the subscription process by granting priority 
levels and access permissions for the user process.  

 
Level Pot. Caller  Description 
void GetEvents (int *NumOfEvents, evtInfo *EventList[]); 
User User process Retrieve the complete list of available events in the TCP kernel. Retrieve evtInfo{} structure for each 

event in the list. 
int SubscribeEvt (int sock, int evt, char *e_hand); 
User User process Subscribe with the socket (sock) for one event type (evt) to receive a signal when it occurs. Add a 

subInstance{} structure to the evtList linked list in the subscribed socket. 
int UnsubscribeEvt (int sock, int evt); 

User User Process Unsubscribe a previously subscribed event. Afterwards, no signal will be sent when this event occurs. 
Remove the subInstance{} from the evtList linked list in the subscribed socket. 

int GetSockid (void); 

System Signal Handler Get the descriptor of the socket that sent the signal when the subscribed event had occurred. This is 
necessary since a process can subscribe to many sockets, and the Signal Handler needs to know which 
socket triggered the event. 

int ProbeEvtSubInfo (int sock, struct evtSubInfo *info); 
System Signal Handler Get the number and the Event Handler of the event that has just occurred in the socket (sock). 
int ProbeSocket (int sock, struct connState *conn); 

User Event Handler Probe the socket (sock) to retrieve the current state of the TCP connection is the connState{} 
structure. 

int GetSubPerm (int sock, int evt, int *perm); 

User User Process Get the current access permission string (perm) for the event (evt)subscribed with socket (sock). 
Get three flags: (Read, Write, and Subscribe) for two levels (System and User). 

int GetSubPriority (int sock, int evt, int *priority); 

User User Process Get the Priority Level of the event (evt) subscribed with socket (sock). Return 1 in (Priority) 
priority is lowest, or 3 priority is highest. 

int GetHandlerPerm (int sock, int evt, int *mask); 

System Root Process 
 

Get the Connection Access Mask (mask) for the event (evt) subscribed with socket (sock). The 
returned value in (mask) specifies which fields in the connState structure are accessible by the Event 
Handler and which fields are not.  

int SetSubPerm (int sock, int evt, int perm); 

System Root Process 
 

Set a new access permission string (perm) for the event (evt) in the socket (sock). The integer 
(perm) should specify three flags: (Read, Write, and Subscribe) for two levels (System and User). 

int SetSubPriority (int evt, int priority); 
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System Root Process Set a new Priority Level for the event (evt) in the socket (sock) by assigning a value to 
(priority).  

int SetHandlerPerm (int sock, int evt, char *e_hand, int mask); 

System Root Process 
 

Set a new access mask (mask) for the event (evt) in the socket (sock). The integer (mask) should 
specify which fields in the connState structure are accessible and which fields are not.  

int GetEvtState (int evt, int *state); 

User User Process Get the Subscription State of the event (evt).  Return zero in (state) i f the given event is subscribable 
or one otherwise. 
 

int GetEvtImpLevel (int evt, int *level); 

User User Process Get the Importance Level of the event (evt).  The value returned in (level) varies from 1 for low 
importance to 4 for high importance. 

int GetEvtWinEffect (int evt, int *effect); 

User User Process Get the effect of the event (evt) on the effective bandwidth of the TCP connection. Return +1 in 
(effect) i f evt opens the sliding window, -1 if i t closes the window, or 0 if it has no effect on the 
window.  

int DelEvent (int evt); 

System Root process Set the deleted flag in the evtInfo{} structure to true. Afterwards, this event will be ignored in any 
subsequent system call.  

int AddEvent (int evt); 

System Root Process Reset the deleted flag in the evtInfo{} structure to false. Afterwards, this event wil l be reported in any 
subsequent system call. 

 
 
 

Conclusions 
This report only discusses the event model and the API of the TCP Interactive. It has been extensively tested for 
video streaming over ABONE and has demonstrated in dramatic improvement in video QoS performance. The 
results can be seen in forthcoming technical documents. The work has been supported by the DARPA Research 
Grant F30602-99-1-0515. 
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