

Technical Report 2003-02-03
Internetworking and Media Communications Research Laboratories
Department of Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 1

Event Model and Application Programming I nter face of TCP Interactive

Javed I . Khan and Raid Y. Zaghal
Networking and Media Communications Research Laboratories

Department of Computer Science, Kent State University
233 MSB, Kent, OH 44242
javed|rzaghal@cs.kent.edu
(Last update: March 2003)

Abstract-- Interactivity in transport protocol can greatly benefit transport friendly applications. We envision a
transport mechanism, which is interactive and can provide event notification to the subscriber of its communication
service. With such interactivity, advanced applications (such as adaptive MPEG-2 video transcoding scheme) can
directly interact with the transport protocol and adjusts its production rate whenever a new event is received from
the transport layer. We have recently implemented this concept system. The implementation has two components--
an interactive transport protocol over FreeBSD called iTCP and, a novel symbiotic MPEG-2 full logic transcoder.
The system has also been experimented on the Active Network (ABone) using selected nodes in the U.S. and
Europe. In this report we present the application accessible event model of the TC Interactive and the application
programming interface that the application and the symbiotic component can use to interface with the TCP
Interactive.

1. Introduction
Congestion control for time-sensitive multimedia
traffic has remained a difficult problem. Most of the
mechanisms for congestion control those have been
proposed to date are based on delaying traffic at
various network points. The more classical schemes
depend on numerous variants of packet dropping in
network, prioritization (graceful delay in router
buffer) admission control (delaying at network egress
points), etc. However, a key aspect of a vast majority
of these schemes is that they introduce time
distor tion in the transport pathway of applications.
Though time distortion does no harm to time
insensitive traffic such as email forwarding or ftp
data, but they work completely against the
application if the traffic is time sensitive such as
multimedia streaming or control data.
For last few years it has been felt that for multimedia
applications, the applications themselves have to be
more integrated in the solution. Particularly
promising are the research in the new TCP friendly
paradigm [KeWi00, ReHE00, SiWo98, PrCN00].
[SiWo98] presented a TCP rate-based pacing
mechanism that particularly takes note of document
transfer characteristics. [ReHE00] discussed a
general framework where applications can control
rates based on their end-to-end measurements
(similar end-to-end technique is used in RealPlayer).
There are also fully application level proposals. Due
to the lack of convenient means to obtain network

states several works suggested [BrGM99, Wolf97]
sending multilevel redundant information for video.
Also several other works investigated combining
application specific information from several streams
into one clearinghouse architectures for aggregated
congestion control. For example, Congestion
Manager [ABCS00, BaRS99] is a system layer
component. It provisions aggregated congestion
control when multiple streams from the same end-
point attempt to send via a separate program called
Congestion Manager (CM). [SiWo98] proposed
building TCP friendly application where application
relies on real-time transport protocol (RTP) mediated
end-to-end measurement. CM tries to minimize
congestion by coordination between multiple sending
streams. [PrCN00] used multiple probing mechanics
for aggregate congestion control.
There has been several promising work on network
or system level issues to increase TCP friendly-ness.
Though, the paradigm of ‘ friendly applications’
almost by definition shifts a major part of the
congestion management responsibility to the
applications, interestingly relatively very few work
exists that seriously looked into the corresponding
issues that arise in an actual time-sensitive
application while taking advantage of the suggested
‘ friendliness’ . The dynamics of the two systems can
lead to stability issues. Time sensitive applications
themselves have substantial complexity in adapting.
Rate adaptation for any advanced multimedia

Technical Report 2003-02-03
Internetworking and Media Communications Research Laboratories
Department of Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 2

application in general is quite complex. It requires
sophisticated layer 4+ techniques. It is highly
unlikely that multimedia rate adaptations for any
performance coding schemes (such as MPEG) can be
performed at predominantly network or system layer.
It seems that an alternate strategy for time sensitive
multimedia traffic should be the multimedia

knowledge enriched rate control, which can work in
symbiosis with the network condition. We have
recently implemented an MPEG-2 ISO-13818-2
[ISO96, KYGP01, KhYa01, KhGu1] video streaming
system, and a novel interactive version of TCP called
TCP Interactive. The general principle we follow is
simple and intuitive. It seems an effective delay
conformant solution for time sensitive traffic may be
built if the original data volume can be reduced by its
originator-- the application1.
However, a key element in any such scheme is that
the application must be notified. Unfortunately,

1 It is interesting to note, that the idea of application and network
symbiosis have been mentioned for quite some time. However,
almost no study exists which has focused on it.

today’s transport protocols do not support any
interactivity with applications. It seems such non-
interactivity has been inherited from the early days of
networking interface research, when the applications
were simple and did not require sophistication. In this
report we will show that transport interactivity can
bring major benefit to high performance and
demanding applications. The particular scheme we
propose here has the following novel aspects
compared to other recent works:
• First, we suggest an active and direct notification

mechanism by the underlying transport protocol,
rather than using indirect end-to-end feedback
tools. If there is any congestion, we propose an
interactive transport protocol, which can directly
notify the application.

• To demonstrate the efficacy of the principle, we
have designed a corresponding video rate
transcoder system that works in symbiosis with
the network. This transcoder actively participates
in a custom symbiotic exponential-back-off and
additive-increase like scheme in application layer
with deep application level knowledge. (This is
also one of the first to our knowledge) resulting in
much more effective joint quality/delay sensitive
communication.

• The resulting scheme is similar in spirit to the
TCP friendly approaches. However, there is a
fundamental difference in how it is done. We
expect network (or system) layers to remain as
simple as possible. The means and techniques for
rate reduction remain with the producer
application. The responsibility of the network
layer is simply to pass on only selected end-point
events to the applications.

As, we will show the scheme is not only intuitive and
simple, but also surprisingly effective compared to
many other recently proposed schemes, which
involve much more complex system/network layer
reorganization.
The result presented in this report is not simulation;
rather report from a real implementation of the
concept system that we have completed very
recently. The implementation has two components--
an interactive transport protocol over FreeBSD that
we called iTCP and, a novel symbiotic MPEG-2 full
logic transcoder [KYGP01, KhYa01], which is
capable of working in tandem with the interactive
transport. The transcoding model has been developed
by closely following the MPEG-2 Test Model 5
(TM5). MPEG-2 TM-5 signifies a real video coder

i ni t i al l y , cwnd = 1 (one segment) ;
wi n_si ze = mi n (cwnd, snd_wnd) ;
When congest i on occur s:

sst hr esh = max(wi n_si ze/ 2, 2) ;
i f congest i on was due t o t i meout

cwnd = 1;
f or ever y ACK r ecei ved:

i f (cwnd <= sst hr esh)
 / * per f or m s l ow st ar t * /
 cwnd = 2 * cwnd;
el se
 / * per f or m congest i on avoi dance * /
 cwnd = cwnd + segment _si ze;

Figure-1. Slow Star t/Congestion Avoidance
algor ithm (SSCA).

When a 3r d dupl i cat e ACK i s r ecei ved:
sst hr esh = max(2, mi n(cwnd, snd_wnd) / 2) ;
Ret r ansmi t mi ss i ng segment ;
cwnd = sst hr esh + 3;

Each t i me anot her dupl i cat e ACK ar r i ves:

cwnd = cwnd + 1;
t r ansmi t a new segment ;

When a new ACK ar r i ves:

/ * one RTT af t er r et r ansmi ssi on –
 f ast r ecover y * /
cwnd = sst hr esh;

Figure-2. Fast Retransmit/Fast Recovery
algor ithm (FRFR).

Technical Report 2003-02-03
Internetworking and Media Communications Research Laboratories
Department of Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 3

with substantial complexity of itself. While the detail
can be found in [Mpeg00], we describe the salient
part of the rate control architecture that is critical to
this symbiosis in [KhGR02].
The report is organized in the following way. In the
next section, we first provide an overview of the
congestion control mechanism in TCP and highlight
segment loss events. In section 3 we present our
interactive model. Here we explain event
subscription, notification, and handling in the iTCP
model. Finally, in section 4 we share performance of
the scheme on the Active Network (ABone). We
experimented the system on several ABone nodes in
the U.S. and Europe.

2. Congestion Control in TCP
TCP is a connection-oriented unicast protocol that
offers reliable data transfer as well as flow and
congestion control. TCP maintains a congestion
window that controls the number of outstanding
unacknowledged data packets in the network.
Sending data consumes slots in the window of the
sender and the sender can send packets only as long
as free slots are available. When an acknowledgment
(ACK) for outstanding packets is received, the
window is shifted so that the acknowledged packets
leave the window and the same number of free slots
becomes available.

2-1. Congestion Control Algor ithms
On startup, TCP performs slow-start, during which
the rate roughly doubles each roundtrip time to
quickly gain its fair share of bandwidth. In steady
state, TCP uses an additive increase, multiplicative
decrease mechanism (AIMD) to detect additional

bandwidth and to react to congestion. When there is
no indication of loss, TCP increases the congestion
window by one slot per roundtrip time. In case of
packet loss indicated by a timeout, the congestion
window is reduced to one slot and TCP reenters the
slow-start phase. Packet loss indicated by three du-
plicate ACKs results in a window reduction to half of
its previous size. Therefore, the two principal
mechanisms that TCP uses to detect network
congestion are (i) when the retransmission timer
times out and (ii) the arrival of duplicate ACKs. Two
algorithms then contribute to the TCP congestion
control behavior; these are the classic algorithm of
slow-start and congestion-avoidance [Jac88], and the
augmentation of fast-retransmit and fast-recovery
[Jac90]. Figure-1 and Figure-2 below respectively
shows the relevant details of the two algorithms.

2-2. Congestion Control Events
Table-1 below lists six events that internally occur
when the TCP invokes a congestion control
algorithm. Although many other TCP events might
occur during a TCP session (e.g., flow control events
or connection establishment and termination events),
we are only interested in these congestion control
events.
In Table-1, the column labeled (SSCA) means that
the event takes place in the Slow Start/Congestion
Avoidance algorithm, and the label (FRFR) means
that the event takes place in the Fast Retransmit/Fast
Recovery algorithm. These events are also presented
in Figure-3 below. The graph given in Figure-3(a)
shows the sequence of events of the SSCA algorithm
and how they affect the effective bandwidth available
for TCP. Figure-3(b) shows the same sequence for

E
ffective

bandw
idth

time

win_size

Slow start threshold

(a)

E
ffective

bandw
idth

time

win_size

Slow start threshold

(b)

Figure-3. Effective bandwidth changes due to TCP congestion control internal events.

one RTT

evt(1)

evt(2)

evt(3)

evt(4)

evt(5)
evt(6)

Technical Report 2003-02-03
Internetworking and Media Communications Research Laboratories
Department of Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 4

the FRFR algorithm. However, in general design we
expect only a subset of the internal events that
constitutes a protocol will be of interest to the
subscriber application. Only a subset of the internal
events is made accessible via the interface. An
application instance typically subscribes even to a
subset of these accessible events. In Table-1 the
column (Sub) shows the subscribable events in our
design.

3. Interactive TCP Model
3-1. Event Subscr iption
Figure-4 below shows the conceptual model of our
interactive protocol. Once it establishes a TCP
connection, the user process starts by binding the
TCP kernel with a set of chosen events from Table-1
using a subscription API that extends the standard
socket API. The model allows one user process to
subscribe with multiple sockets and with different set
of events per socket. The socket itself can support
notification service for multiple subscribing
processes. Each individual subscription is handled
individually in the socket layer even if the same
process made two or more subscriptions.
Each subscription binds the subscribed event with a
predetermined user-supplied Event-Handler. The
Event-Handler will be invoked as a user process
when the subscribed event occurs in the kernel space.
Also, the subscription mechanism itself is dynamic; it
allows the subscribing process to subscribe to new
events or cancel subscription (unsubscribe) to
previously subscribed events at any time during the
lifetime of the TCP connection.

3-2. Event Notification
The basic scenario of the event notification
mechanism proceeds as follows: An entity called
Event-Monitor runs in the iTCP kernel space and
monitors all subscribed events for every socket (2).

Assume at some point event (evt) occurs in socket
(sock) . The Event-Monitor sends a signal to the
Singnal-Handler (3a), and at the same time it writes
the socket descriptor of the socket (sock) in the
process structure pr oc{ } of every process that
subscribed with this socket. Also, it marks all
subscriptions of event (evt) in the socket (sock)
as outstanding and need to be handled (3b).
When it receives a signal, the Signal-Handler must
know first which socket generated the event. To do
this, it uses the probing API to read the socket
descriptor of the socket (sock) from the process
structure. Then, it uses the probing API to access the
socket (sock) and get the relevant information
about the outstanding subscription of event (evt) .
The information retrieved includes the event type and
the name of the Event-Handler (4a,b). At this point
the Signal-Handler is ready to invoke the appropriate
Event-Handler (5).

3-3. Event Handling
There are n Event-Handlers, enough to satisfy all
subscriptions made by the user process. Event-
Handlers are usually small programs supplied by the
user. One Event-Handler is forked by the Signal-
Handler per signal to take some action knowing that

Event Meaning Description SSCA FRFR Sub

1
Retransmission timer timed
out Possibly congested network or the segment was lost. X X

2 A new ACK was received
Increment snd_cwnd either exponentially (if less than
sst her esh) or linearly otherwise.

X

3
snd_cwnd has reached the
slow start threshold
sst hr esh

Switch incrementing snd_cwnd from exponential to linear. X

4 A third duplicate ACK was
received

A segment was probably lost, perform fast retransmit. X X

5
A fourth (or more) duplicate
ACK was received

One segment has left the network; we can transmit a new
segment. X

6 A new ACK was received
Retransmitted segment has arrived at the destination and all
out of order segments buffered at the receiver are
acknowledged.

 X X

Table-1. TCP’s Congestion Control Internal Events.

Technical Report 2003-02-03
Internetworking and Media Communications Research Laboratories
Department of Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 5

the event (evt) has just occurred in the kernel
space (e.g. reduce outbound bit rate to the transport
layer).
Our probing API allows the Event-Handler to probe
additional information about the state of the TCP
connection (6a,b). This information includes some
parameters from the TCP control block such as: send
window size (snd_wnd) , congestion-control
window size (snd_cwnd) , threshold for slow-start
(snd_sst hr esh) , current retransmit value
(t _r xt cur) , and round-trip time (t _r t t t i me) .
The Event-Handler can use some of these parameters
to calculate a new sending rate that guarantees certain
delivery time bound of the traffic. The model allows
the Event-Handler to probe the Kernel any time to get
the updated values of these parameters, and it allows
the network administrator to restrict access to kernel
data by each Event-Handler.

3-4. API
In Figure-4 we show two kinds of API that extends
the socket API; subscription API which allows the
application to subscribe with the interactivity service
and the probing API which allows the application to
probe the transport layer and retrieve relevant
information about a subscribed event or about the
TCP connection state in general. Table-2 shows the
complete set of API system calls that we designed to
support the iTCP model. For each system call we list
its prototype, the level of its caller (user or system),
its potential caller (application, signal handler, or
event handler), and a brief description about its
functionality. Some of these functions are designed
for the network administrator (root process) to
manage the subscription process by granting priority
levels and access permissions for the user process.

Level Pot. Caller Description
void GetEvents (int *NumOfEvents, evtInfo *EventList[]);
User User process Retrieve the complete list of available events in the TCP kernel. Retrieve evtInfo{} structure for each

event in the list.
int SubscribeEvt (int sock, int evt, char *e_hand);
User User process Subscribe with the socket (sock) for one event type (evt) to receive a signal when it occurs. Add a

subInstance{} structure to the evtList linked list in the subscribed socket.
int UnsubscribeEvt (int sock, int evt);

User User Process Unsubscribe a previously subscribed event. Afterwards, no signal will be sent when this event occurs.
Remove the subInstance{} from the evtList linked list in the subscribed socket.

int GetSockid (void);

System Signal Handler Get the descriptor of the socket that sent the signal when the subscribed event had occurred. This is
necessary since a process can subscribe to many sockets, and the Signal Handler needs to know which
socket triggered the event.

int ProbeEvtSubInfo (int sock, struct evtSubInfo *info);
System Signal Handler Get the number and the Event Handler of the event that has just occurred in the socket (sock).
int ProbeSocket (int sock, struct connState *conn);

User Event Handler Probe the socket (sock) to retrieve the current state of the TCP connection is the connState{}
structure.

int GetSubPerm (int sock, int evt, int *perm);

User User Process Get the current access permission string (perm) for the event (evt)subscribed with socket (sock).
Get three flags: (Read, Write, and Subscribe) for two levels (System and User).

int GetSubPriority (int sock, int evt, int *priority);

User User Process Get the Priority Level of the event (evt) subscribed with socket (sock). Return 1 in (Priority)
priority is lowest, or 3 priority is highest.

int GetHandlerPerm (int sock, int evt, int *mask);

System Root Process

Get the Connection Access Mask (mask) for the event (evt) subscribed with socket (sock). The
returned value in (mask) specifies which fields in the connState structure are accessible by the Event
Handler and which fields are not.

int SetSubPerm (int sock, int evt, int perm);

System Root Process

Set a new access permission string (perm) for the event (evt) in the socket (sock). The integer
(perm) should specify three flags: (Read, Write, and Subscribe) for two levels (System and User).

int SetSubPriority (int evt, int priority);

Technical Report 2003-02-03
Internetworking and Media Communications Research Laboratories
Department of Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 6

System Root Process Set a new Priority Level for the event (evt) in the socket (sock) by assigning a value to
(priority).

int SetHandlerPerm (int sock, int evt, char *e_hand, int mask);

System Root Process

Set a new access mask (mask) for the event (evt) in the socket (sock). The integer (mask) should
specify which fields in the connState structure are accessible and which fields are not.

int GetEvtState (int evt, int *state);

User User Process Get the Subscription State of the event (evt). Return zero in (state) i f the given event is subscribable
or one otherwise.

int GetEvtImpLevel (int evt, int *level);

User User Process Get the Importance Level of the event (evt). The value returned in (level) varies from 1 for low
importance to 4 for high importance.

int GetEvtWinEffect (int evt, int *effect);

User User Process Get the effect of the event (evt) on the effective bandwidth of the TCP connection. Return +1 in
(effect) i f evt opens the sliding window, -1 if i t closes the window, or 0 if it has no effect on the
window.

int DelEvent (int evt);

System Root process Set the deleted flag in the evtInfo{} structure to true. Afterwards, this event will be ignored in any
subsequent system call.

int AddEvent (int evt);

System Root Process Reset the deleted flag in the evtInfo{} structure to false. Afterwards, this event wil l be reported in any
subsequent system call.

Conclusions
This report only discusses the event model and the API of the TCP Interactive. It has been extensively tested for
video streaming over ABONE and has demonstrated in dramatic improvement in video QoS performance. The
results can be seen in forthcoming technical documents. The work has been supported by the DARPA Research
Grant F30602-99-1-0515.

References

[ABCS00] D. Andersen, D. Bansal, D. Curtis, S. Seshan, and H. Balakrishnan, System Support for Bandwidth
Management and Content Adaptation in Internet Applications, Proceedings of the Fourth
Symposium on Operating Systems Design and Implementation, OSDI 2000,
October 23-25, 2000 San Diego, California.

[AlPa99] Allman, Paxson, et al. TCP Congestion Control, RFC 2581, April 1999.

[BaRS99] Balakrishnan, H., Rahul, H., and Seshan, S., An Integrated Congestion Management Architecture
for Internet Hosts," Proc. ACM SIGCOMM, Cambridge, MA, September 1999.pp.175-187.

[BrGM99] Hector M. Briceño, Steven Gortler and Leonard McMillan, NAIVE--network aware Internet video
encoding, Proceedings of the seventh ACM international conference on Multimedia, October 30 -
November 5, 1999, Orlando, FL USA, Pp 251-260.

[BrOP94] Brakmo, L.S., O’Malley, S.W., and Peterson, L.L, TCP Vegas: New Technique for Cogestion
Detection and Avoidance, Proc. SIGCOMM’ 94 Conf. ACM, pp-24-35, 1994.

[GuTe98] Wetherall, Guttag, Tennenhouse, "ANTS: A Tool kit for Building and Dynamically Deploying
Network Protocols", IEEE OPENARCH'98, San Francisco, April 1998. Available at:
http://www.tns.lcs.mit.edu/publications/openarch98.html

[ISO96] Information Technology- Generic Coding of Moving Pictures and Associated Audio Information:
Video, ISO/IEC International Standard 13818-2, June 1996.

Table-2. iTCP extension of the socket API.

Technical Report 2003-02-03
Internetworking and Media Communications Research Laboratories
Department of Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 7

[Jac88] Jacobson, V, “Congestion Avoidance and Control” , Proc. SIGCOMM’ 88, Conf, ACM, pp-214-
329, 1988.

[Jac90] Jacobson, V., "Modified TCP Congestion Avoidance Algorithm," end2end-interest mailing list,
April 30, 1990.

[KeWi00] Jun Ke and Carey Williamson / University of Saskatchewan, Towards a Rate-Based TCP Protocol
for the Web, Proceedings of the 8th International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, 2000.

[KhGu01] Javed I. Khan, Q. Gu, Network Aware Symbiotic Video Transcoding for Instream Rate Adaptation
on Interactive Transport Control, IEEE International Symposium on Network Computing and
Applications, IEEE NCA’ 2001, October 8-10, 2001, Cambridge, MA, pp.201-213

[KHFH96] Keesman, Gertjan, Hellinghuizen, Robert Hoeksema, Fokke Heideman, Geert, Transcoding of
MPEG bitstreams Signal Processing: Image Communication, Volume: 8, Issue: 6, pp. 481-500,
September 1996,

[KYGP01] Javed I. Khan, Seung Su Yang, Qiong Gu, Darsan Patel, Patrick Mail, Oleg Komogortsev, Wansik
Oh, and Zhong Guo Resource Adaptive Netcentric Systems: A case Study with SONET- a Self-
Organizing Network Embedded Transcoder, Proceedings of the ACM Multimedia 2001, October
2001, Ottawa, Canada, pp617-620

[KhY01] Javed I. Khan & S. S. Yang, Resource Adaptive Nomadic Transcoding on Active Network,
International Conference of Applied Informatics, AI 2001, February 19-22, 2001, Insbruck,
Austria, [available at URL http://medianet.kent.edu/, also mirrored at http://
bristi.facnet.mcs.kent.edu/medianet] (accepted).

[KhGR02] Javed I. Khan, Qiong Gu and Raid Zaghal, Symbiotic Video Streaming by Transport Feedback
based quality rate selection, Proceedings of the 12th IEEE International Packet Video Workshop
2002, Pittsburg, PA, April 2002, http://www.pv2002.org .

[KPOY01] Javed I. Khan, Darsan Patel, Wansik Oh, Seung-su Yang, Oleg Komogortsev, and Qiong Gu,
Architectural Overview of Motion Vector Reuse Mechanism in MPEG-2 Transcoding, Technical
Report TR2001-01-01, Kent State University, [available at URL http://medianet.kent. edu/
technicalreports.html, also mirrored at http:// bristi.facnet.mcs.kent.edu/medianet] January, 2001]

[Mpeg00] MPEG-2 Test Model 5, [URL: http://www.mpeg.org/MPEG/MSSG/tm5/, last retrieved December
25, 2000]

[PeDa00] 19 L. L. Peterson and B. S. Davie. Computer Networks, 2nd edition, Morgan-Kaufmann, 2000.

[PrCN00] Prashant Pradhan, Tzi-cker Chiueh and Anindya Neogi Aggregate TCP Congestion Control Using
Multiple Network Probing, Proceedings of the The 20th International Conference on Distributed
Computing Systems, ICDCS 2000. 2000.

[ReHE00] Reza Rejaie,Mark Handley, Deborah Estrin, Architectural Considerations for Playback of Quality
Adaptive Video over the Internet, Proceedings of the IEEE International Conference on Networks
(ICON'00), 2000.

[SiWo98] Dorgham Sisalem, Adam Wolisz, Towards TCP-Friendly Adaptive Multimedia Applications Based
on RTP, Proceedings of the The Fourth IEEE Symposium on Computers and Communications,
1998.

[Tene96] Tanenbaum, A. Computer Networks, 3rd edition, Prentice Hall, 1996.

[TSSW97] Tennenhouse, D. L., J. Smith, D. Sincoskie, D. Wetherall & G. Minden., "A Survey of Active
Network Research", IEEE Communications Magazine, Vol. 35, No. 1, Jan 97, pp 80-86

[Wolf97] Bernd E. Wolfinger, On the potential of FEC algorithms in building fault-tolerant distributed
applications to support high QoS video communications, Proceedings of the sixteenth annual ACM
symposium on Principles of distributed computing , 1997, Pages 129 – 138

Technical Report 2003-02-03
Internetworking and Media Communications Research Laboratories
Department of Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 8

