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Abstract-- Interactivity in transport protocol can grestly benefit trangport friendly applications. We envision a
transport mechanism, which is interactive and can provide event notification to the subscriber of its communication
service. With such interactivity, advanced applications (such as adaptive MPEG-2 video transcoding scheme) can
directly interact with the transport protocol and adjusts its production rate whenever a new event is received from
the transport layer. We have recently implemented this concept system. The implementation has two components--
an interactive transport protocol over FreeBSD called iTCP and, a novel symbiotic MPEG-2 full logic transcoder.
The system has aso been experimented on the Active Network (ABone) using selected nodes in the U.S. and
Europe. In this report we present the application accessible event model of the TC Interactive and the application
programming interface that the application and the symbiotic component can use to interface with the TCP

Interactive.

1. Introduction

Congestion control for time-sensitive multimedia
traffic has remained a difficult problem. Most of the
mechanisms for congestion control those have been
proposed to date are based on delaying traffic at
various network points. The more classical schemes
depend on numerous variants of packet dropping in
network, prioritization (graceful delay in router
buffer) admission control (delaying at network egress
points), etc. However, a key aspect of a vast majority
of these schemes is that they introduce time
distortion in the transport pathway of applications.
Though time distortion does no ham to time
insensitive traffic such as email forwarding or ftp
data, but they work completely againg the
application if the traffic is time sensitive such as
multimedia streaming or control data.

For last few years it has been felt that for multimedia
applications, the applications themselves have to be
more integrated in the solution. Particularly
promising are the research in the new TCP friendly
paradigm [KeWi00, ReHEOO, SiWo098, PrCNOQ].
[SW098] presented a TCP rate-based pacing
mechanism that particularly takes note of document
transfer characteristics. [ReHEOO] discussed a
general framework where applications can control
rates based on their end-to-end measurements
(similar end-to-end technique is used in Real Player).
There are also fully application level proposals. Due
to the lack of convenient means to obtain network

states several works suggested [BrGM99, Wolf97]
sending multilevel redundant information for video.
Also several other works investigated combining
application specific information from several streams
into one clearinghouse architectures for aggregated
congestion control. For example, Congestion
Manager [ABCS00, BaRS99] is a system layer
component. It provisions aggregated congestion
control when multiple streams from the same end-
point attempt to send via a separate program called
Congestion Manager (CM). [SIW098] proposed
building TCP friendly application where application
relies on real-time transport protocol (RTP) mediated
end-to-end measurement. CM tries to minimize
congestion by coordination between multiple sending
streams. [PrCNOO] used multiple probing mechanics
for aggregate congestion control.

There has been several promising work on network
or system level issues to increase TCP friendly-ness.
Though, the paradigm of ‘friendly applications
amost by definition shifts a major part of the
congestion management responsibility to the
applications, interestingly relatively very few work
exigts that seriously looked into the corresponding
issues that arise in an actual time-senstive
application while taking advantage of the suggested
‘friendliness’. The dynamics of the two systems can
lead to stability issues. Time sensitive applications
themselves have substantial complexity in adapting.
Rate adaptation for any advanced multimedia
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initially, cwnd = 1 (one segnent);
win_size = min (cwnd, snd_wnd);
When congestion occurs:
ssthresh = max(wi n_size/ 2, 2);
if congestion was due to tinmeout
cwnd = 1;
for every ACK received:
if (cwnd <= ssthresh)
/* performslow start */
cwnd = 2 * cwnd;
el se
/* perform congestion avoi dance */
cwnd = cwnd + segnent _si ze;

Figure-1. Sow Start/Congestion Avoidance
algorithm (SSCA).

application in general is quite complex. It requires
sophisticated layer 4+ techniques. It is highly
unlikely that multimedia rate adaptations for any
performance coding schemes (such as MPEG) can be
performed at predominantly network or system layer.
It seems that an alternate strategy for time sendtive
multimedia traffic should be the multimedia

When a 3rd duplicate ACK is received:
ssthresh = max(2, mn(cwnd, snd_wnd)/2);
Retransmit m ssing segnent;
cwnd = ssthresh + 3;

Each tine another duplicate ACK arrives:
cwnd = cwnd + 1;
transmt a new segnent;

When a new ACK arrives:
/* one RTT after retransm ssion —
fast recovery */
cwnd = ssthresh;

Figure-2. Fast Retransmit/Fast Recovery
algorithm (FRFR).

knowledge enriched rate control, which can work in
symbiosis with the network condition. We have
recently implemented an MPEG-2 1S0O-13818-2
[1S096, KYGPO01, KhYa01, KhGul] video streaming
system, and a novel interactive version of TCP called
TCP Interactive. The generd principle we follow is
smple and intuitive. It seems an effective delay
conformant solution for time sensitive traffic may be
built if the original data volume can be reduced by its
originator-- the application®.

However, a key element in any such scheme is that
the application must be notified. Unfortunately,

It isinteresting to note, that the idea of application and network
symbiosis have been mentioned for quite sometime. However,
amogt no study exists which has focused onit.

today’'s transport protocols do not support any
interactivity with applications. It seems such non-
interactivity has been inherited from the early days of
networking interface research, when the applications
were simple and did not require sophistication. In this
report we will show that transport interactivity can
bring major benefit to high performance and
demanding applications. The particular scheme we
propose here has the following novel aspects
compared to other recent works:

» Firdt, we suggest an active and direct notification
mechanism by the underlying transport protocol,
rather than using indirect end-to-end feedback
tools. If there is any congestion, we propose an
interactive transport protocol, which can directly
notify the application.

» To demondtrate the efficacy of the principle, we
have designed a corresponding video rate
transcoder system that works in symbiosis with
the network. This transcoder actively participates
in a custom symbiotic exponential-back-off and
additive-increase like scheme in application layer
with deep application level knowledge. (Thisis
also one of the first to our knowledge) resulting in
much more effective joint quality/delay sensitive
communication.

* The resulting scheme is similar in spirit to the
TCP friendly approaches. However, there is a
fundamental difference in how it is done. We
expect network (or system) layers to remain as
simple as possible. The means and techniques for
rate reduction remain with the producer
application. The responsibility of the network
layer is ssimply to pass on only selected end-point
eventsto the applications.

As, we will show the schemeis not only intuitive and

simple, but also surprisingly effective compared to

many other recently proposed schemes, which
involve much more complex system/network |ayer
reorganization.

The result presented in this report is not simulation;

rather report from a real implementation of the

concept system that we have completed very
recently. The implementation has two components--
an interactive transport protocol over FreeBSD that
we called iTCP and, a novel symbictic MPEG-2 full
logic transcoder [KYGPO1, KhYaOl], which is
capable of working in tandem with the interactive
transport. The transcoding model has been devel oped
by closdy following the MPEG-2 Test Model 5
(TM5). MPEG-2 TM-5 signifies a real video coder
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with substantial complexity of itself. While the detail
can be found in [Mpeg00], we describe the saient
part of the rate control architecture that is critical to
this symbiosisin [KhGRO02].

The report is organized in the following way. In the
next section, we first provide an overview of the
congestion control mechanism in TCP and highlight
segment loss events. In section 3 we present our
interactive model. Here we explan event
subscription, naotification, and handling in the iTCP
model. Finaly, in section 4 we share performance of
the scheme on the Active Network (ABone). We
experimented the system on several ABone nodes in
the U.S. and Europe.

2. Congestion Control in TCP

TCP is a connection-oriented unicast protocol that
offers reliable data transfer as well as flow and
congestion control. TCP maintains a congestion
window that controls the number of outstanding
unacknowledged data packets in the network.
Sending data consumes dots in the window of the
sender and the sender can send packets only as long
as free dots are available. When an acknowledgment
(ACK) for outstanding packets is received, the
window is shifted so that the acknowledged packets
leave the window and the same number of free slots
becomes available.

2-1. Congestion Control Algorithms

On startup, TCP performs dow-start, during which
the rate roughly doubles each roundtrip time to
quickly gain its fair share of bandwidth. In steady
state, TCP uses an additive increase, multiplicative
decrease mechanism (AIMD) to detect additional

bandwidth and to react to congestion. When there is
no indication of loss, TCP increases the congestion
window by one dot per roundtrip time. In case of
packet loss indicated by a timeout, the congestion
window is reduced to one slot and TCP reenters the
sow-start phase. Packet loss indicated by three du-
plicate ACKs results in a window reduction to half of
its previous size. Therefore, the two principal
mechanisms that TCP uses to detect network
congestion are (i) when the retransmission timer
times out and (ii) the arrival of duplicate ACKs. Two
algorithms then contribute to the TCP congestion
control behavior; these are the classic algorithm of
slow-start and congestion-avoidance [Jac88], and the
augmentation of fast-retransmit and fast-recovery
[Jac90]. Figure-1l and Figure-2 below respectively
shows the relevant details of the two algorithms.

2-2. Congestion Control Events

Table-1 below lists six events that internally occur
when the TCP invokes a congestion control
algorithm. Although many other TCP events might
occur during a TCP session (e.g., flow control events
or connection establishment and termination events),
we are only interested in these congestion control
events.

In Table-1, the column labeled (SSCA) means that
the event takes place in the Slow Start/Congestion
Avoidance algorithm, and the label (FRFR) means
that the event takes place in the Fast Retransmit/Fast
Recovery algorithm. These events are aso presented
in Figure-3 below. The graph given in Figure-3(a)
shows the sequence of events of the SSCA algorithm
and how they affect the effective bandwidth available
for TCP. Figure-3(b) shows the same sequence for
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Figure-3. Effective bandwidth changes due to TCP congestion control internal events.
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the FRFR algorithm. However, in general design we
expect only a subset of the internal events that
congtitutes a protocol will be of interest to the
subscriber application. Only a subset of the internal
events is made accessible via the interface. An
application instance typically subscribes even to a
subset of these accessble events. In Table-1l the
column (Sub) shows the subscribable events in our
design.

3. Interactive TCP M odel

3-1. Event Subscription

Figure-4 below shows the conceptual model of our
interactive protocol. Once it establishes a TCP
connection, the user process starts by binding the
TCP kernel with a set of chosen events from Table-1
using a subscription API that extends the standard
socket API. The model allows one user process to
subscribe with multiple sockets and with different set
of events per socket. The socket itself can support
notification service for multiple subscribing
processes. Each individual subscription is handled
individually in the socket layer even if the same
process made two or more subscriptions.

Each subscription binds the subscribed event with a
predetermined user-supplied Event-Handler. The
Event-Handler will be invoked as a user process
when the subscribed event occursin the kernel space.
Also, the subscription mechanism itsdlf is dynamic; it
allows the subscribing process to subscribe to new
events or cancel subscription (unsubscribe) to
previously subscribed events at any time during the
lifetime of the TCP connection.

3-2. Event Notification

The basic scenario of the event notification
mechanism proceeds as follows: An entity called
Event-Monitor runs in the iTCP kernel space and
monitors all subscribed events for every socket (2).

Assume at some point event ( evt ) occursin socket
(sock) . The Event-Monitor sends a signal to the
Sngnal-Handler (3a), and at the same time it writes
the socket descriptor of the socket (sock) in the
process structure proc{} of every process that
subscribed with this socket. Also, it marks all
subscriptions of event ( evt) in the socket ( sock)
as outstanding and need to be handled (3b).

When it receives a signal, the Signal-Handler must
know first which socket generated the event. To do
this, it uses the probing APl to read the socket
descriptor of the socket (sock) from the process
structure. Then, it uses the probing API to access the
socket (sock) and get therelevant information
about the outstanding subscription of event (evt).
The information retrieved includes the event type and
the name of the Event-Handler (4a,b). At this point
the Signal-Handler is ready to invoke the appropriate
Event-Handler (5).

3-3. Event Handling

There are n Event-Handlers, enough to satisfy all
subscriptions made by the user process. Event-
Handlers are usually small programs supplied by the
user. One Event-Handler is forked by the Signal-
Handler per sgna to take some action knowing that

Table-1. TCP’'s Congestion Control Internal Events.

Event |Meaning Description SSCA | FRFR | Sub
1 (I?uettransmlsson timer timed Possibly congested network or the segment was lost. X X
5 A new ACK was recsived Increment snd__cwnd either exponentidly (if less than X

sst her esh) or linearly otherwise.

snd_cwnd has reached the

3 slow start threshold Switch incrementing snd_cwnd from exponentia tolinear. | X
ssthresh
4 A th.' rd duplicate ACK was A segment was probably lost, perform fast retransmit. X X
received
A fourth (or more) duplicate One segment has | eft the network; we can transmit a new
5 . X
ACK was received segment.
Retransmitted segment has arrived at the destination and all
6 A new ACK was received out of order segments buffered at the receiver are X X

acknowledged.
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the event (evt) has just occurred in the kerne
space (e.g. reduce outbound bit rate to the transport
layer).

Our probing APl alows the Event-Handler to probe
additional information about the state of the TCP
connection (6a,b). This information includes some
parameters from the TCP control block such as: send
window size (snd_wnd), congestion-control
window size (snd_cwnd) , threshold for slow-start
(snd_sst hresh), current retransmit value
(t_rxtcur),andround-triptime (t _rtttime).
The Event-Handler can use some of these parameters
to calculate a new sending rate that guarantees certain
delivery time bound of the traffic. The model allows
the Event-Handler to probe the Kernel any time to get
the updated values of these parameters, and it alows
the network administrator to restrict access to kernel

3-4. AP

In Figure-4 we show two kinds of APl that extends
the socket API; subscription APl which allows the
application to subscribe with the interactivity service
and the probing APl which alows the application to
probe the transport layer and retrieve relevant
information about a subscribed event or about the
TCP connection state in general. Table-2 shows the
complete set of APl system calls that we designed to
support the iTCP modd. For each system call we list
its prototype, the level of its caller (user or system),
its potential caller (application, sgnal handler, or
event handler), and a brief description about its
functionality. Some of these functions are designed
for the network administrator (root process) to
manage the subscription process by granting priority
levels and access permissions for the user process.

data by each Event-Handler.

Level

| Pot. Caller

| Description

voi d Get Events (int

*NumOf Event s,

evtinfo *EventList[]);

User

User process

Retrieve the complete list of available eventsin the TCP kernel. Retrieveevt | nf o{ } structure for each
event inthelist.

i nt SubscribeEvt (int

sock, int evt, char *e_hand);

User

User process

Subscribe with the socket ( sock) for one event type ( evt) toreceiveasignal whenit occurs. Add a
subl nst ance{} structuretotheevt Li st linked list inthe subscribed socket.

i nt Unsubscri beEvt (int sock,

int evt);

User

User Process

Unsubscribe a previoudy subscribed event. Afterwards, no signal will be sent when this event occurs.
Removethesubl nst ance{} fromtheevt Li st linked list in the subscribed socket.

int GetSockid (void);

System

Signal Handler

Get the descriptor of the socket that sent the signal when the subscribed event had occurred. Thisis
necessary since a process can subscribe to many sockets, and the Signal Handler needsto know which
socket triggered the event.

i nt ProbeEvt Sublnfo (int sock,

struct evtSublnfo *info);

System

| Signal Handler

| Get the number and the Event Handler of the event that has just occurred in the socket ( sock) .

i nt ProbeSocket (int sock,

struct connState *conn);

User

Event Handler

Probethe socket ( sock) toretrieve the current state of the TCP connectionistheconnSt at e{ }
structure.

int Get SubPerm (int sock,

int evt, int *perm;

User

User Process

Get the current access permission string ( per n) for the event ( evt ) subscribed with socket ( sock) .
Get three flags: (Read, Write, and Subscribe) for two levels (System and User).

int GetSubPriority (int sock,

int evt, int *priority);

User User Process Get the Priority Level of theevent (evt ) subscribed with socket (sock) . Returnlin(Priority)
priority islowes, or 3 priority is highest.

int GetHandl erPerm (int sock, int evt, int *mask);

System Root Process Get the Connection Access Mask ( mask) for theevent (evt ) subscribed with socket (sock) . The

returned valuein ( mask) specifieswhich fieldsintheconnSt at e structure are accessible by the Event
Handler and which fieldsare not.

i nt Set SubPerm (int sock,

int evt, int perm;

System

Root Process

Set a new access permission gtring ( per ) for the event (evt ) inthe socket (sock) . Theinteger
(per m) should specify three flags: (Read, Write, and Subscribe) for two level s (System and User).

int SetSubPriority (int evt,

int priority);




Technical Report 2003-02-03

Internetworking and Media Communications Research Laboratories
Department of Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

System Root Process Set anew Priority Level for theevent (evt ) inthe socket (sock) by assgning avaueto
(priority).
int SetHandl erPerm (int sock, int evt, char *e_hand, int nask);

System Root Process Set a new access mask ( mask) for theevent (evt) inthe socket (sock) . Theinteger ( mask) should
specify which fiddsintheconnSt at e structure are accessible and which fields are not.
int GetEvtState (int evt, int *state);

User User Process Get the Subscription Sate of theevent (evt) . Returnzeroin( st at e) if the given event is subscribable
or one otherwise.

int GetEvtlnpLevel (int evt, int *level);

User User Process Get the Importance Level of theevent (evt ). Thevaluereturnedin (1 evel ) variesfrom 1 for low
importance to 4 for high importance.
int GetEvt WnEffect (int evt, int *effect);

User User Process Get the effect of the event (evt ) on the effective bandwidth of the TCP connection. Return +1 in
(ef fect) if evt opensthe diding window, -1 if it closes the window, or 0 if it has no effect on the
window.

int Del Event (int evt);

System Root process Set thedeleted flag intheevt | nf o{ } structureto true. Afterwards, this event will beignored in any
subsequent system call.

int AddEvent (int evt);

System Root Process Reset the deleted flagintheevt | nf o{} sructureto false. Afterwards, this event will be reported in any
subsequent system call.

Table-2. iTCP extension of the socket API.

Conclusions

This report only discusses the event model and the API of the TCP Interactive. It has been extensively tested for
video streaming over ABONE and has demongrated in dramatic improvement in video QoS performance. The
results can be seen in forthcoming technical documents. The work has been supported by the DARPA Research
Grant F30602-99-1-0515.
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