INTERACTIVE PROTOCOLS FOR EXTENSIBLE NETWORKING,
2000-2005

A dissertation submitted
to Kent State University in partial
fulfillment of the requirements for the
degree of Doctor of Philosophy

by
Raid Y. Zaghal

August 2005



Dissertation written by
Raid Y. Zaghal
B.Sc., Yarmouk University, Jordan, 1993
M.S., American University, Washington DC, 1996
Ph.D., Kent State University, Kent OH, 2005

Approved by

, Chair, Doctoral Dissertation Committee

, Members, Doctora Dissertation Committee

Accepted by

, Chair, Department of Computer Science

, Dean, College of Artsand Sciences




TABLE OF CONTENTS

ACKNOWIBAGEIMENLS ...ttt snn e iX
D 0o (U oA ] o TSP UUPOPP 3
0 A Y/ o (V= o o PO PR PP 3
1.2 NEW REQUIFEIMENTS. ... .co ittt 3
1.3  End-to-End vs. Direct MOdifiCatioN ...........ccoiuiiiieiiiienieeree e 4
N VI T= {3 oo (o] (o |2 PP P PP 4
1.5  Main CoNriDULIONS......ccuiiiiiiiieiiie sttt 5
1.6 SOIULION CIASSES......coouiiiiiiiiiieiie ettt sae e 5
1.7  Dissartation OULHNE .........ooiiiiiiiiie et 6

2 REIAEH WOTKS..... .ottt ettt e et e e ae e be e nne e 7
21  Programmable and Active NEIWOIKS..........cociiiiiiiieiiiesie e 7
211 Networking TEChNOIOGY .......cccueiieiiiieiiieiie e 7
212 Level of Programmability............ccooieeiieiieiie e 7
213 CommuniCations ADSITACLIONS.........ooeiiiieiiieee e 8

2.2 ProtoCOl COMPOSITION ....cuvieiieiiiesiiiesiie ettt n e snee s 8
2.3 DUSCUSSION ....utiiiiieieeetee ettt e sttt et e s et et e e s st e et e et e e sabeesbeeenbeesnneennee s 8

3 Interactive Transparent Networking (INTralN) .......coceeriieneriiie e 10
3.1 BACKGIOUNG......cueiiiieiiieeiee ettt ettt 10
3.2 A Framework for the InNTraN paradigm...........cccceveieneenieeniienee e 12
321 Components and ArchiteCture ...........ccooceeiieiiie i 12
3.2.2 SP-SM Interfacing: Subscription Mechanism ...........cccocveiiiiiieiiieninnnn 14
3.2.3 TM-SM-PE Interfacing: Access Mechanism............ccccevveeviiiiieniieeninnnn 14
3.24 Protocol MetaENgiNEaring.......ccoveiuiereieiie et 17
3.25 SECUNILY MOEL ... 17

3.3 CONCIUSION.....eiiiiiitie ettt 18
41TCP part I: INTraN MetaENGINEEIiNG ......cceiuiiiiieiie et 20
2 R 1 011 (oo [0 o o PP UPR PR 20
4.2  Congestion Control IN TCP ......oouiiiieie e 21
4.2.1 Congestion Control AlgOrithms...........oocveiiiiiiiie e 21
4.2.2 Congestion Control EVENES.........ooviiiiiiieiecee e 22

4.3  TCP MEtaengiNEEING ....cccuueieeiiieiieesieeesiee st ettt et sae e nseesnne e 23
431 The SDL MOGE! ......oooiiieiiecee e 24
4.3.2 EFSM Of ITCP ..t 24

44 A Complete TCP EFSM/SDL MOGE ......ccoooiiiiiiiiiiiiee e 25
441 Remarks and Simplifying ASSUMPLIONS: ........cccoooverieenieeniee e 25
4.4.2 The Complete TCP EFSM.......cccoiiiiiiieieeeeeeesee e 25

45  Classification of EFSM COMPONENES..........coouieiieirieiiieenieesiee e esiee e 26
451 BV e 28
45.2 SEBLES ..ttt b e b nn e nnee 28
4.5.3 VaTADIES.....coeieee s 28

4.6 CONCIUSION......eeiiiiiiiii ittt sttt et b e saeeeneeenne e 28
5iTCP part I1: Implementation and Performance............cccooveieenieenienieenee e 34
51  Implementation DetailS..........cooieiiiiiiiiiieie s 34



511 SYSEEM ATCIITECTUIE ...t 34

512 AP ettt naeenneas 37
5.1.3 INternal Data SEIUCLUIES...........eiiiiiiieeiie st 37
514 Subscription and Probing SCeNarios..........ccocveiiiiiieniiiene e 38
52  Symbiosis Throtthing MOdEL...........coooiiiiiiiii e 39
521 Analysis of SymbiotiC Throttling..........coeevereiireenieeeee e 39
522 Critical-delay-point iNeqUalITY ..........cccovveerieiriereee e 39
5.2.3 Recovery-point iNEQUALILY .........ccceeiuierieiiieniee e 40
524 Frugal State DEtermination...........ccoceerieereenieenee e 40
53  Symbiosis Mechanism: The TranSientWare ...........ccoveeeieeriieneesieeseeesiee s 41
531 Estimation of the Model Parameters fromiTCP States..........ccocceevveenee. 42
5.3.2 Transientware IMplementation .............ccocueereerieenie e 44
54  Experiment and Performance ANalYSIS...........cooeeiiieieeiiieniienee e 45
541 The ABONE TESDEM.......coceiiiieie e 45
54.2 EXPETMENT SELUD..... et 46
5.4.3 Impact on Video Frame Delay ..........cooveriieiieiiieiieseeeeeee e 47
54.4 SymbiotiC Rate CONIO .........eoiiiiiiieiie e 48
545 Observation at Application LEeVEl: ..........ceoviiiiiiiieieseeee e 51
5.4.6 Interactivity OVerhead ..o 51
5.5 CONCIUSION......oiiiiiiiiiiie e 52
6 IPMN: Interactive Protocol for Mobile Networking..........cccccvevviiieniieniencenceins 53
6.1 INIFOTUCTION ...ttt 53
6.2 REIGAEH WOTK......oiiiiiiiee e s 54
6.3  Interactive Protocol for Mobile Networks (IPMN) .........cccoviiiniiiiieniecnieee 54
6.3.1 THE SCREIME.....coe e 54
6.3.2 The ArCHITECTUNE ......eeiee e 55
6.4  Experiment Setup and Traffic GENEration ..........ccceeeveerieeneienie e 58
6.4.1 EXPETMENT SELUD......eeiieeeiee e 58
6.4.2 Traffic CharaCteriStiCS .......uoivieriieie e 59
6.5  Performance Results and ANalySiS ........cccooiiiiiiiiiiiiie e 60
6.5.1 HANAOTT LELEMCY ...eovveeiieiiiesiee et 60
6.5.2 Traffic Arrival TICE .....oiie et 62
6.6 CONCIUSION.. ..ottt nae e enns 65
7 ProtoCOl MOGEIING .....ceueiiiieitie ettt ettt n e nnee s 66
0 RS 00T IR SRR PRRP 66
T2 WWTCP ettt sttt et et e st e e b e sbeenteenteenaeeneeaseenneas 67
7.3 PerfOrManCE ISSUES .......cocuiiiiieiiie ettt 69
731 OVENEAH COSE.....coviiiiie ettt 69
7.3.2 SeCUrity @nd PraCtiCe.........ooieiiiieiieesiee e 71
T4 CONCIUSION.....ciiiieiii ettt nneeenns 72
B CONCIUSION ...ttt ettt sttt esbe e e b e e saneennee s 74
O RETEIEINCES. ...ttt ettt ettt et et sh ettt e et e e s be e et e e st e e s aeeenbeesnneennee s 75



TABLE OF FIGURES

Figure 1. InTraN basic MethodolOogy ............cocoeiiiiriieiii e 19
Figure 2. T-type channel eXteNSION...........oouiiiiiiiieieeee e 20
Figure 3. SUDSCIIption @XamMPIE ......ccc.eiiiieiie e 23
Figure 4. SM date after performing the four Operations............ccccevvveeiiienee e 24
Figure 5. Interfacing between the PE and theTM ..o 24
Figure 6. Protocol meta-engineering EXtENSION .........ueeieeiieereeeriee et 28
Figure 7. SM handling of the WriteVar() Operation............ccevueereeiieesieenee e 30
Figure 8. Slow Start/Congestion Avoidance mechanism (SSCA) .......coocveveeiieeniieeninnns 36
Figure 9. Fast Retransmit/Fast Recovery mechanism (FRFR) ..., 36
Figure 10. Changes on TCP's sending window due to congestion control events........... 37
Figure 11. Simple TCP SyStem COMPOSITION ........c.eeruiereriieerieesiee e 39
Figure 12. EFSM Of TCP......coiiiiiiieiiecee ettt 40
Figure 13. Classification of the EFSM components and their TCP counterparts............ 46
Figure 14 SDL description of asimplified TCP transmitter............ccccevievienieeniienninnns 49
Figure 15. iTCP's (Slow Start) state extended with InTraN components............c.ccoeve.. 53
Figure 16. The TCP-interactive extension and APl ..........cocceviiiiiiiienieeree e 54
Figure 17. iTCP internal data SITUCTUIES..........c.eviieiiieeiee et 57
Figure 18. Subscription and probing SCENAIIOS..........c.coiiriiieiiieie e 59
Figure 19. Symbiosis throttling MOdel ............ceoiiiiii e 62
Figure 20. (a) Signal Handler, (b) Loss TM and (c) Recovery handler ...........cccocveeneens 72
Figure 21. Video transcoder eXperiment SEEUD ..........ueereerieerieeerie e siee e e enieeas 74
Figure 22. Congestion INjector MEChaNISM ..........cuoiiiiiiiiiee e 74
FIigure 23. Frame ATTIVEAL .......couio ittt 78
Figure 24. Number of frames accepted for three values of delay tolerance.................... 79
Figure 25. Symbiotic Rate REAUCTION .......cc.eiiiiiiiiieciieiee e 81
Figure 26. Frame Arrival time and frame SNR quality tradeoff.............ccccceviiiriinnens 83
Figure 27. Interactivity SErvice OVErhead ...........oocueeiiiiiii i 84
Figure 28. IPMN-FUll @rChiteCtUre...........coiiiiie e 93
Figure 29. IPMN-HaIf arChiteCLUIE..........ooiiiiiieieie e 95
Figure 30. EXPEMENT SEIUD. ... .coiiiiiiiiiiesiee ettt sttt n e s e e neee s 97
Figure 31. Sampling of call INtErarrival ...........coooieiiiiiiiiee e 99
Figure 32. Sampling of call duration over 5 hoUrS...........cocveiiiiiiiiiieeeee e 99
Figure 33. Voice Stream arrival traCe........cccueiieeiiieiie et 105
Figure 34. Block interarrival times at the MIN (JItTer)......coooviieiiieenieieee e 107
Figure 35. WWW traffiC traCe .......coouieiiieiie ettt 107
Figure 36. FTPraffiC traCe........coieeiiie e 109
Figure 37. Conventional Snoop MEChaNISM.........c.coiiiiiieiiieiee s 113
Figure 38. The interaCtive VErsion Of SNOOP.........cueereirrieeriierie e 114
Figure 39. Conventional WTCP MeChaniSM ...........ccceiiiriiiiiieeiee e 116
Figure 40. The interactive version 0f WTCP..........coooiiiiiiienie e 116
Figure 41. iTCP CPU time oVErhead...........coooviiiiiiiiceece e 120
Figure 42. iTCP context switching overhead..............cocceviiiiienieenii e 121



TABLE OF TABLES

Table 1. Main components of the INTraN framework.............ccocveviiieniiineee e 81
Table 2. Types of variables and their acCess privileges..........ccocveviiiiieiiienie e 21
Table 3. Types of Transientware MOAUIES ............cooieiiiiiiieie e 21
Table 4. SUDSCIIPLION AP ... 21
Table 5. InTraN Access APl and SIgNalS.........coovviieiieeiieeie e 25
Table 6. DEFINITIONS. .......cciiiiiieiee e 26
Table 7. TCP Congestion Control Internal EVENtS...........ooovviieieeiieineesieesee e 37
Table 8. The APl EXteNsiON Of 1TCP .....cocuiiiiiiiiceeee e 56
Table 9. Implementation details evtinfo{} and sublnstant{} ...........cccccccoriiiniininnnnnne. 58
Table 10. Player locations onthe ABONE.........cooiiiiiiiiieeeeeeeee e 75
Table 11. Experiment control flags and running MOdeS............c.ceeveeiieerieeniesnee s 75
Table 12. Average frame delay and acceptanCe ratio.............cceevcveereeiieenieenie e 77
Table 13. hbest and Trecovery statistics for three ABone nodes...........cccceevveeevveeennen. 80
Table 14. Percentage of total bits delivered for each mode...........ccccocvevveevcieecceeeee, 82
Table 15. IPMN-FUIl @VENES .....cceiiie et 94
Table 16. IPMN-HaIT VENES.........oiiiiiieee e 96
TabIE L7. IPMIN AP ...ttt snee e 98
Table 18. Correspondent NOAe [OCALIONS ..........coiiiiiieiieeiie e 98
Table 19. HANAOT LAIENCY .....veiiveiiieeiiesiee et 103
Table 20. Cost parameters for SNoop and ISNOO0P........ceeiveerieereeiiie e 118
Table 21. Algebraic overhead cost of Snoop and ISNOOP.........covverriierieirieeiie e 118
Table 22. Running modes for the getrusage() experiment ..........ccocveveeneeeieesiieeniens 119
TablE 23, CPU LIME...coiiiiiieiie ettt n e s nnee s 119
Table 24. iTCP context switching OVErnead.............ccooeeiiieniiiiie e 119

Vi



Dedication
To Iman, Raghad and Omar,

To my mother, Zakia and the memory of my father Y ousef Zaghal.



Acknowledgements

Firg, | praise Allah Almighty for enabling me to complete my degree and for all the bounties that He
had bestowed on me and my family.

| would like to express my deepest gratitude to my advisor, Dr. Javed |. Khan, for his invaluable
guidance and support throughout the past four years. He taught me how to do research, encouraged me to
publish and travel, and inspired me with his endless bright ideas. | was also honored to have Professors
Kenneth Batcher, Hassan Peyravi, and Mohammad K. Khan on my dissertation committee. My sincere
thanks are due to all of them for their constructive comments, suggestions, and inspiration. | extend my
gratitude to the faculty and staff of the Computer Science Department at Kent State University for al their
efforts and support which made my academic experience at Kent State University fruitful and successful.

| owe thiswork to my beloved wife, Iman, whom without her help and support | would not have been
able to finish. | thank her for standing besides me during the most difficult times and for her patience and
understanding. | thank my lovely children Raghad and Omar for bringing light and livelinessinto my life.

Last, but not least, | thank my mother Zakiah and my late father Y ousef for their continues love, care,
encouragement, and sacrifice, and for their strong commitment to give me the best education despite dl the

hardships.



CHAPTER 1

Introduction

1.1  Maotivation

The layered organization of the classic OS reference model has been used as a framework for
designing amost every network system known today. The OSI model divides the complex task of host-to-
host networking into layers, where each layer provides a specific communication service, and the collective
effort of all layers ultimately provides the high level communication between the application end-points.
The semantics of the OSI model emphasize the independency and separation of these layers, and thus, it
draws a clear interface between these layers that allow them to exchange data and control messages in a
relatively strict manner.

Ancther key principle that has also influenced the classical design of the Internet suggests moving
specialized application-oriented functionalities up into the upper network layers and out of the core of the
network. The core—which includes lower layers and covers the backbone and routers—should be kept as
simple and generic as possible, and should only provide general-purpose data transfer services that can be
used by all kinds of network applications. This principle is referred to in the literature as the end-to-end
arguments [Sal84]. These classica principles are supported by the following arguments: (1) reducing the
complexity of the core network which also increases its robustness, (2) increasing the generality of the
network by allowing new applications to use the same core services without change, and (3) increasing the
reliability of the network—if specialized application-oriented functions were built inside the core of the
network, then applications will have to depend on their successful implementation and operation in the
network.

It is believed that these fundamental principles, which have served as the architectural mode for the
Internet, are mainly responsible for the successful operation and stability of the Internet during the past 30
years. However, over the last decade, as applications became more sophisticated (Sreaming audio/video, e
commerce) and their communication needs have increased (more bandwidth, more security, mobility
support), new requirements have emerged which are chalenging these principles, on one hand, these
requirements are demanding that new mechanisms and services should be added to the core of the network,
and on the other hand, the current organization of network software layers seems to be too rigid for such
modificationsto be practically realized.

1.2  New Requirements

The emerging requirements for the Internet are mainly due to its explosive growth in terms of size,
speed, number of connected users, and the diversity of applications. Here we show few such examples to
demonstrate the need for new services.

1. Streaming Applications. the 'best effort’ communication service that the Internet provides for any
particular application does not give any guarantees regarding the quality of service (e.g., throughput and
bandwidth). While some applications can tolerate variations in transmission rate or even disconnections,
like FTP and e-mail, a newer type of streaming applications (e.g., audio and video) demand specific service
guarantees, for example, providing a certain throughput. This has created a need to design creative
solutions for the Internet to provide acceptable streaming services for such demanding applications, and at
the same time to ensure that Internet resources are being used fairly by all types of applications—known in
the literature as transport-friendly.

2. Security Needs: the growing numbers of Internet users have a wide range of motivations which may
eventualy lead to misuses and abuses. In addition, many newer applications that communicate highly
sensitive information over the Internet (e.g., banking, e-commerce, and medica applications) need to
protect thelr communication channels and backend servers. But, since end-points cannot be trusted



4

anymore, newer protection mechanisms must to be installed to deal with all kinds of security threats and
attacks, and even to block undesirable forms of interaction like spam e-mails.
3. Mobile and Wireless Networks: al protocolsin the classic core network were originally designed with
wire-line networks in mind. In the last decade, we have seen the advent of wireless technology and the
tremendous growth of wireless devices and services. New protocols/services were added to the core
network (e.g., 802.11, Mohile-IP) to cope with these changes. But till, many issues are till open and need
to be resolved, such as security, performance, and handoffs.

1.3 End-to-End vs. Direct Modification

Most solutions that were proposed to deal with these emerging requirements can be classified into two
main approaches; (1) the end-to-end approach: implements the solution in the upper layers while trying to
adapt to whatever 'best-effort’ service the core network can provide, and (2) the direct modification
approach: applies custom modifications (or enhancements) to the core of the network by direct
implementation or by injecting customization programs.

Since the 'end-to-end' approach triesto stick to the principle of keeping the core simple and generic, it
treats the core of the network as a 'black box' which cannot be altered or accessed except through the
standard API. But, usually, a solution that implements a network adaptation strategy or a service extension
should be aware of certain events and states within the network that cannot be 'seen’ via the standard API.
Networking solutions that are based on this approach usualy try to compensate this limitation by
employing application-level functions to estimate an approximation of these states. Unfortunately, the
accuracy and timeliness of such estimations are often questionable, and sometimes they resort to redundant
means that are naturally being used in the core network anyway. But the key advantage of this approach is
the deployment of the solution at the upper layers. This is much easer and practical to implement and
deploy—even on a large scale—since it does not require modifications in the software layers of the core
network. On the other hand, the 'direct modification' approach seems to be more effective since the solution
is manually implemented right inside the core of the network—so accessing the network state is not a
problem. The difficulty here comes in practice; since these enhancements require customized changes
within lower network layers, they are often difficult, time-consuming, and impractical. Many smart
solutions that have been shown to achieve significant improvements could not make it beyond the
experimental phase and were only tested in the lab or through simulation. Besides, the 'direct modification'
approach clearly violates the end-to-end model, and therefore, israising concerns among experts who want
to preserve the benefits of the original Internet design.

The paradigm of active and programmable networks attempted to simplify the deployment of new
services in the core of the network. They provide means to inject customized programs (or methods) into
the network which in essence enables the user to 'program' the communication channel between the two
end-pointsto fit the application's needs. In away, this approach can be seen as diametrically opposite to the
‘end-to-end' approach. Action codes are ingalled right into the core network where al the events (triggers)
and state information are readily available. Unfortunately, active networks are still facing another set of
challenges. Typicaly, the network system space has not been designed for multi-user execution
environment, and thus, issues like resource sharing, scalability, and security have remained unresolved.

1.4  Methodology

In this work we propose a third approach which may be able to keep the best of both approaches by
creating a decoupling mechanism between the information trigger needed to initiate adaptation (or service
extension), and the actual action code that implements the customization. The 'direct modification’
approach—as well as active networks—kept both inside the core network, while the 'end-to-end' approach
kept both at the upper layers.

The fundamental idea of our approach is to perform a simple, light-weight re-organization (or meta-
engineering) on the protocols of the core network to make them interactive and transparent. These
protocols become (interactive) since they can provide event notification to service subscribers, and they
become (transparent) since they also allow controlled access to their internal state information. Actual
protocol extensions (or customizations) can then be performed at the application space by programmable
modules called transientware modules. We call this mechanism Interactive Transparent Networking



5

(InTraN) and we labd the re-organized network protocol as InTraN-enabled. The proposed methodol ogy

has three types of components:

1- InTraN-enabled Protocol: A meta-engineered protocol with added handles for event notification
and date information exchange. The protocol designer who performs this meta-engineering
designates a subset of the protocol's events (i.e., state transitions) to be subscribeable, and a subset of
its state information (i.e., internal variables) to be accessible.

2- Transientware Module: A user-level program specifically written to provide the protocol extension
or to implement adaptation. It is triggered at the application layer by event signals from the
underlying InTraN-enable protocol, and it is provided by means to access protocol's state
information.

3- Subscription Manager: An interface between application layer components (i.e., subscriber
applications and trans entware modules) and network components (i.e., InTraN-enabled protocols).
It handles subscription requests and state information exchange operations.

A complicated adaptive solution can now be formulated by designing one or more transientware modules

and binding them with events from the InTraN-enabled kernel. These modules can then pull-up the

protocol's state information needed for adaptation or service extension, perform the required action, and if
needed push-down any results or state updates. The Subscription Manager manages all correspondence

(subscription, signaling, read state, and write state) between the network kernel and the application-level

components and imposes safety measures to ensure the stability and correctness of the system.

1.5 Main Contributions

The InTraN paradigm offers a number of unique features that can be considered as the man
contributions of this work:

1- Implementation path via application layer: InTraN allows kerne-level enhancements (or
modifications) to be performed at the application layer, which is especially important since it opens
amore practical implementation path for such modifications to be realized—which otherwise would
have been performed indde the core of the network. This relieves lower network layers from
housing costly custom components, and thus, it preserves the benefits of the 'end-to-end' model by
keeping the core simple and generic. Also, it becomes more effective to handle other complex issues
like security and resource sharing. The attraction is that the application space has plenty of meansto
deal with these issues effectivel y—much of that can be reused.

2- Light-weight core design: Although InTraN gill requires some re-organization of lower network
protocols to facilitate event notification and state information exchange, but as we will show, it is
much lighter than the re-organization needed to run the customized actions inside the network.

3- Small inter-component communication overhead: The InTraN paradigm still incurs some
overhead in terms of signaling and tate information exchange between the transientware and the
kernel. Though, we will show by real measurements that this overhead is very small—even
negligible in some cases. Therefore, the performance of the InTraN paradigm is expected to be no
less than that of active networks, and even much faster than the 'end-to-end' approach since the state
information can now be retrieved directly from the local end-point.

4- Backward compatibility: we have designed the InTraN paradigm to comply with the following
three principles for backward compatibility: (i) the InTraN-enabled version of a protocol remains
functionally compatible with legacy silent versions, (ii) the API is an extended set, and thus classical
applications remains fully usable with the interactive versions of the end-point components, and (iii)
the meta-engineering of a protocol does not change its original dynamics, and thus, the dynamics of
the network.

1.6  Solution Classes

The distinguished features of the InTraN paradigm can support the following solution classes for
general networking problem solving: (1) application adaptation, (2) cross-layer optimization, and (3)
protocol extension. We have redized a FreeBSD implementation of InTraN and used it to design a novel
solution for the first two types:



6

1- Application adaptation: We have designed a TCP-friendly, congestion management scheme for
time-sengitive eagtic traffic. The scheme alows a video transcoder to adjust its sending bit rate in
real-time based on the feedback (loss events and TCP state updates) it receives from the InTraN-
enabled TCP (or iTCP). The scheme exposes the overall benefits of application adaptation for time-
sengitive traffic, and takes a different approach to achieve true TCP-friendly traffic where both the
application and the network cooperate to recover from congestion.

2- Crosslayer optimization: We have designed a connection-oriented mobility scheme for IP
networks. In this scheme, a smart employment of InTraN by three layers (namely: Link layer, IP,
and TCP) was able to (i) freeze the TCP connection right after L2 handoff has started, (ii) perform
handoff on the IP level directly by updating the actual |P addresses on both endpoints (i.e., mobile
node and correspondent node), and (iii) resume the connection on the TCP leve right after handoff
has finished. This scheme offers a number of benefits over conventional Mobile-IP such as faster
handoffs and direct triangulation-free routing.

3 Protocol extension: In the literature, many networking protocols have been manually extended (or
modified) to cope with emerging communication needs. We have chosen two such modifications
that were proposed to improve TCP performance over mobile and wireless networks, namely, Snoop
[Bal95] and WTCP [SiIV99], and then we illustrated how to transform them into an InTraN-enabled
version where the protocol extension isimplemented as application layer transentware.

1.7 Dissertation Outline

In chapter 2, we preview related works. In chapter 3, we present a formal EFSM-based framework for the
proposed meta-engineering and relevant issues like interfacing and security. In chapter 4 we illustrate the
principles of InTraN meta-engineering by showing a real example based on the TCP protocal; first, we
discuss the congestion control model of classic TCP, and then we present an SDL description of a
simplified TCP and its InTraN extension—we call the new protocol iTCP. In chapter 5, first we show
relevant implementation details of iTCP, and then we design a transientware solution for a TCP-friendly
elagtic video traffic. The solution also includes an adaptive video transcoder that can adjust its transmission
rate based on feedback signals from iTCP. In chapter 6, we present our second InTraN-based solution—
IPMN. Thisis amobility scheme for 1P networks that can provide loss-free, rapid handoffs and eliminates
triangular routing. It chapters 5 and 6 we also present extensive experimental results and performance
analysis for both projects (iTCP and IPMN). In chapter 7 we show how the InTraN paradigm can be used
to model other solutions or protocol extensions. Here we show a modeling examples of two well-known
protocols proposed in the literature to improve TCP performance over wireless networks: Snoop [Bal95]
and WTCP [SIV99]. In chapter 8 we give concluding remarks.



CHAPTER 2

Related Works

We have selected two main paradigms from the literature that were proposed to address the issue of
protocol reconfiguration and network service extension. These are the Programmable and Active Networks
paradigm, and the Protocol Composition paradigm.

21  Programmable and Active Networks

Introducing new services into the existing 'best effort' networks was usually a manua, time
consuming, and costly process. Programmable Networks were proposed to simplify the deployment of new
network services, leading to extensble networks that explicitly support service creation and deployment.
Programmable networks architectures provide programmable interfaces that can support a variety of
service composition methodologies. In Active Networks, service delivery and control is achieved through
code mobility. A number of research groups have been devel oping programmable network prototypes, with
each group focusing on different set of characteristics [Cam99], namely (1) networking technology, (2)
level of programmability, and (3) communications abgtractions. Below; we briefly discuss these three
categories and in each one, we preview some of its most prominent prototype implementations.

211  Networking Technology

Different programmable network projects have been designed to target certain networking
technologies which ultimately decide the type of programmability that can be carried to the higher levels.
By making the targeted networking technology more programmable, it becomes easier to overcome
particular deficiencies in the communication services supported by that technology. For example, xbid
[Chan96] by Chan, et al, was designed for ATM technology to support better QOS features like admission
control and resource reservation. By separating control algorithms from the hardware, xbid was able to
provide interfaces that allow open access to node resources and functions. Another example is Smart
Packets [Kul98] by Kulkarni, et al, which introduced a code-based packet concept to create programmable
I P environment.

2.1.2  Level of Programmability

New services can be established into the network with a range of methodologies and granularities.
Programmability level can vary from highly dynamic (eg., capsules [Ten96]) to highly conservative
models (e.g., RPC interfaces [Vin97]). Among the most prominent works is ANTS [Wet98] by Wetherall,
et al, which provides a set of core services (transportation of mobile code, loading of code on demand and
caching techniques) that facilitates the introduction or extenson of existing network protocols, thesein turn
can be used to introduce programmable network services such as enhanced multicast, mobile IP routing and
application levd filtering. In ANTS, Capsules serve as atomic units for network programmability that can
support processing and forwarding interfaces. Other proposals put more focus on security requirements
such as Switchware [Alex98] by Alexander, et d. In this prototype, a component in the active router allows
active extensions to be safely loaded via a set of secure methods such as encryption, authentication and
program verification. A thirds example is the CANEs project [CANE] which provides composition
methods (programming languages with enhanced language capabilities) to construct composite network
services from components.



2.1.3 Communications Abstractions

The programmability of network infrastructure can enable different levels of virtudization (i.e.,
virtual middleware and node support). Communications abstractions include programmable virtua routers,
virtual links and mobile channels. Among these, is a node operating system called NodeOS [Pet99] by L.
Peterson which represents the lowest level of DARPA's architectural framework for active networking
[Calva8]. NodeOS provides node kernel interfaces at routers that enable them to host multiple execution
environments (EEs). These EEs support communication abstractions such as threads, channels and flows.
The architectural framework for active networking is being implemented in the ABone testbed [ABon€].
Ancther example is the Netscript project [Yem96] which takes a functional language-based approach to
capture network programmability using universal language abstractions. Netscript supports Virtual Active
Networks as programmabl e abstractions that can be systematically composed, provisioned and managed.

2.2 Protocol Composition

This paradigm suggests designing a new networking infrastructure that supports creating complex
protocols from smaller off-the-shelf components. The composition can be perceived as a whole middieware
offering complex services for distributed applications. These services include: (1) providing
communication abstractions (e.g., reliable multicast, mobility support), (2) allowing adaptation (e.g.,
switching protocols to overcome a security threat, changing data rates to accommodate a dower link), and
(3) supporting the crestion (and coordination) of multiple communication channels with different QOS
requirements.

The protocol composition paradigm offers a number of advantages over traditional monolithic
approaches [Bir87] [Dol96] [Mal96], such as, higher configurability, reusability, and extensibility. [Men03]
has classified protocol composition frameworks that have been proposed in the literature into two families;
the firgt family contains the x-Kernel [Hut91], and its successors Coyote [Bhat96], [Bha98] and Cactus
[Hil98], and the he second family contains Horus [Van93] [Van96] and its successors Ensemble [Hay98],
Appia[Mir99] [Mir01] and JavaGroups [Ban02].

The x-Kernd [Hut91] is an early and influential work on protocol composition and was the first to
propose building a system in which protocol layers could be arbitrarily configured. A main feature of the x-
Kernd isits support for a uniform interface to al protocols which alows two protocols providing the same
semantics to substitute each other. However, the x-Kernd had a few shortcomings, for example,
configuration was done before system compilation and not at run-time. Also, the x-Kernel was intended
mostly for point-to-point communication, and had limited support for dynamic membership. Cactus [Hil98]
is an evolution of the x-Kernel that inherits and extends its composition and concurrency model to provide
a finer-grain level of composition. In Cactus, the internal structure of an x-kernel protocol consists of the
composition of severa protocols (called micro-protocols). These protocols are event-driven and their
composition isnot hierarchical, allowing them to directly interact without artificial restrictions imposed by
protocol stack hierarchy. Cactus allows several event handlers to be bound to the same event so that all
these handlers are executed upon occurrence of this event.

In Horus [Van93] [Van96] and Ensemble [Hay98], protocol layers can be arbitrarily stacked in a
variety of ways, and thus, they were able to offer more flexible and configurable group communication
support for distributed applications. Both frameworks use a single generic architecture and separate the
basic group communication interfaces from their implementations. This configuration enables the designer
to plug-in certain implementations that match the specific needs of the application, and also to arrange a
stack of micro-protocols that provides the needed properties (or service guarantees). Appia [Mir99] isare-
engineering of Ensemble and it inherits all its features, but its composition model has been extended to
offer more flexibility. In Appia, asin Ensemble, protocol modules are composed on top of each other to
form a stack. The main difference isthe possihility, in Appia, to have more than one protocol module at the
same level in the stack.

2.3 Discussion

Despite the fact that many of these frameworks were able to achieve their goalsin providing complex
services and creating communications abstractions, they are ill facing critical challenges in terms of



9
security, complexity, and scalability. For example, a weak protocol module design may incur a big
overhead cost that surpasses the overal advantage of the protocol composition system, aso, a redly
complex middieware may become difficult to maintain and scale-up as the number of group members
grows substantially. Although the InTraN paradigm will still face the same challenges, but we believe that
due to itslight-weight, structural design, these challenges will be much easier to handle. Though, it will still
require careful design especially with the transientware.



CHAPTER 3

Interactive Transparent Networking (InTraN)

3.1 Background

The proposed interactivity and transparency is achieved via formal meta-engineering of the network
protocols so that a selected subset of their states can be engineered to be accessible by upper-layer service
subscribers in a controlled manner. We use SDL (Specification and Description Language) [EII97, SDLfrm]
to formally describe (@) the protocol meta-engineering process, and (b) the network software organization
needed to support interactivity and transparency. In this chapter, we first give some background
information on SDL, and then we discuss the InTraN framework and its security model.

SDL (Specification and Description Language) is an ITU-standardized language for the formal
description of communication protocols. It is also suited for any application based on the finite state
machine concept, such as circuit design. The programming model used by SDL is based on extended finite
state machines (EFSM) [EII97, ByuOl]. SDL augments the finite state machine model by providing
variables and timers and by supporting object-oriented programming. We describe the protocol meta-
engineering mechanism of InTraN by assuming an abstract communication protocol whose behavior is
described by an EFSM. We demonstrate how InTraN exposes protocol’ sinternal state to achieve controlled
yet secure transparency. Informaly, the EFSM is composed of states and transitions among them. For a
transition to occur, the system must receive an event from the environment which triggers corresponding
actions. After performing the actions, the EFSM produces output signals to the environment. An SDL
system is composed of several protocol entities; each entity is designed as a single EFSM. Formally, An
EFSM is a 6tuple (S s,, E f, O V), where S is a set of dtates, s, is an initid dtate, E

Table 1. Main components of the InTraN framewor k

Component Definition

Protocol Entity (PE) A communication protocol instance that provides specific communication
service in the protocol stack (e.g., TCP). It is described as an EFSM and
has been meta-engineered according to the InTraN paradigm—we use
PE and EFSM interchangeably in the text.

Subscriber Program (SP) A user program that uses network services (e.g., video server). It is
regarded as a potential subscriber of the InTraN service.

Transientware Module (TM) | A piece of code that is specifically designed to handle one or more events
in a certain PE. One or more TMs can implement a protocol
modification/extension at the application layer instead of embedding the
code in the network layer itself.

Subscription Manager (SM) An interface between application layer components (i.e., SPs, TMs) and
network components (i.e., PES). One SM manages the subscription
preferences of a single SP. It handles subscription requests, maintains
updated information about active TMs, and handles their read/write
requests.

isaset of events, f isadtate transition function, O isa set of output signals, and V is a set of variables. The
function f returns a next state, a set of output signals, and an action ligt for each combination of a current
state and an input event. An EFSM also uses predicates to control the behavior of the protocol. These
predicates usually allow similar states to be grouped therefore reducing the total number of states [EII97].
Upon receiving an event, the machine checks a predicate that is composed of variables, logica operators

10



11

-
c
@ \ A A /
g < Subscriber Program ™ ™ . ™
2 (SP) @ & (n)
® Y y Y
\
‘
o v A A
P Network Subscription API | | Access API
5 < Servicg
ﬁ Connection Subscription Manager
3 (SM)

InTraN-Enabled Protocol Entity
(PE)

}I0MIBN

Figure 1. InTraN basic methodol ogy

Transientware Module
(T™)
r N
A4
Subscriber Subscription Manager
Program (SP) (SM)
r N r N r N r N
Cp3 Tp3

A R N T
! 1
| v v M
1 ) 1
; Protocol Entity (PE3) !
~ A |
Q T 1
7 Cp2 P2 '
© v v !
g :
S Protocol Entity (PE2) i
2 c !
1
! Cr1 Tp1 :
: ¥ v :
1 ) 1
i Protocol Entity (PE1) !
1

1

Figure 2. T-type channel extension

(e.g., AND, OR), and relational operators (e.g., <, =, >). If a predicate is true, the EFSM performs the
actions and produces output signals (if applicable).



12
3.2 A Framework for theInTraN paradigm

321 Componentsand Architecture

The main components of the InTraN framework are shown in Table 1 and its basic architecture is
shown in Figure 1. A Subscriber Program (SP) starts by binding an event in a specific PE with aTM viaa
special Subscription API. The SM maintains updated information about all active subscriptions. When a
subscribed event occursin a PE, it signals the SM which responds by activating the TM bound to the event.
A special Access API allows active TMs to access PE's interna data through the SM.

According to the SDL language, EFSMs can communicate only through specific channels. Protocol
Entities (PES) can perform input and output operations to exchange user data and control messages through
these channds. In order to integrate InTraN in this setup, we need to create a communication channel
between every PE and the Subscription Manager (SM). These channels will serve as interaction mediums
between PEs and TMs through the SM. Figure 2 shows the basic architecture of an abstract system with a

Table 2. Types of variablesand their access privileges

Variable Type Set TM access privilege
A Vo, =V, No access
B Vi OV, Read only
o Vo OV, Read and write
Table 3. Subscription API
Primitive Meaning
Bind(e, P, T) Associates a TM with an event e in protocol P. The TM T is invoked whenever the

specified event occurs.

Unbind(e, P, T)

Remove the association between the TM T and the event e.

Update(e, P, T)

Remove the current association of event e and replace it with a new association

with the TM T.

Table 4. Types of Transientware Modules

T™ Type Definition

Signal-Only If TM T; is bound to an event g; in protocol P. When event e; occurs, T; is only
activated. It is not allowed to access protocol's internal variables. No TM-instance
record is created for T; in the SM.

Read-Only If TM T; is bound to an event e; in protocol P. When event e; occurs, T; is activated
and a TM-instance record is created for T; in the SM. T; is granted read-only access
to readable variables in P (i.e., all variables v (V] ).

Read-Write Same as Signal-Only mode, but in addition to that, T;is granted write access to
modifiable variables in P (i.e., all variables v IV, ).

stack of three protocols. Normal information flow from/to user application goes through channds (Cps, Cr,
and Cp,), to augment with InTraN, we added channds (Tps, Tez, and Tpy). These new channels—which we
call T-type channels—are used by PES to pass event signals and exchange data between PEs and the SM.
The T-type channel isdefined in Table 6.

TMs are also classified into three types based on their access privileges to protocol's internal variables.
These types are described in Table 4. A TM is granted read-only access to a subset of PE's local data. In
certain circumstances the TM is allowed even to modify a subset of these accessible variables as long as



13

Application Layer  TMPool

SP;1 SP;

Subscription Manager (SM)
Protocol P preferences

E, ={ey &3}

A={a}

B={b,c,d}

C={d}

Protocol Stack Upper protocol
Protocol P

E. ={e.e, &€}
V, ={a,b,c,d, &

Lower protocol

Figure 3. Subscription example

Subscription Manager (SM)

Protocol P preferences
— — —. Subscription instances . _ _ _ _ _ _
1 ={ey, e}

A={a} sp1—>| e PI T4 |—-| ed PI Ty

|
|
|
B={b,c, d} |
C={d | sz

Figure 4. SM state after performing the four operations

this modification serves the intentions of the protocol designer. Let V, be the set of all variables in the PE,
the designer can designate a subset of V,, called V;, as read-only, and a subset of V, caled v/} as read-
write (i.e, Vo OV, OV,). In Table 2 we define three types of variables: A, B, and C, based on their access

level. In addition, the protocol designer should designate a subset of protocol's events as subscribable. Let
E. be the set of all events in protocol entity P, and E, be the set of subscribable events in P,

thenE, O E, .



Transientware Module
(T™)

Transientware Module
(T™)

A
(2) I nvoke(T;)

(1)ReadVar (T;, b;)

A
(4) Return(val)

A 4

Subscription Manager
(SM)

Subscription Manager
(SM)

A
(1) Event (e, PE)

(2) Get Val (by)

A
(3) ExpVal (b;, val)

A 4

Protocol Entity
(PE)

Protocol Entity
(PE)

Transientware Module
(T™)

(1)WiteVar(b;, val)

A 4

Subscription Manager
(SM)

(2) Set Val (b;, val)

A 4

Protocol Entity
(PE)

14

(a) Signal (b) Read (c) Write

Figure 5. Interfacing between the PE and theTM

322 SP-SM Interfacing: Subscription Mechanism

The InTraN paradigm offers a Subscription API for SPs to manipulate their subscription preferences at the
SM. The three primitives of the Subscription API are shown in Table 3. A Subscriber Program (SP) which
opts to subscribe with protocol entity P must associate an event in E;, with a TM via the Bind() operation.

The binding between events and TMs is one-to-many relationship. i.e., a 3P can bind one or more eventsto
a specific TM, but a specific event can be bound to one TM only by a specific SP. This restriction is needed
to avoid ambiguity when event signals are sent to the SVI. The SP can use the Unbind() operation to cancel
an exiging subscription, or the Update() operation to replace the current association of an event with a
new one. The three subscription primitives can be used dynamically during run-time for maximum
flexibility. For example, a SP can start by binding e, to TM; by calling Bind(e;,P, TM,). Later (e.g., after a
certain time has elapsed), it may call Update(e;,P,TM,) to change the association of e, from TM; to TM..

Example: We present a Smple examplein Figure 3 to illustrate these concepts. The figure shows a system
with two subscriber programs (SP; and SP,) and a pool of four TMs (T, Ty, T, and Ty). In this example we
only highlight one protocol (P) from the protocol stack. Therefore, we assume that all four TMs can be
bound to subscribable events in P. The Subscription Manager (SM) maintains the subscription preferences

of P—among other protocols in the stack as well. P has four events and five local variables shown inE,

andV, respectively. Among these, two events are subscribable ( E,’D ), three variables are read-only

accessible (type B), and only one variable is modifiable (type C). Assuming the following operations were
performed in this order by their respective SPs.

1. SPi: Bind(ey, P, Ty)
2. SPs: Bind(63, P, Tz)
3. SP: Bind(es, P, Ty)
4. SPs: Update(es, P, T3)

Figure 4 shows the date of the SV after these four operations are performed. Here we show two
subscription threads for the two SPs represented as linked lists for easy update. A record in the list
represents a live subscription instance which creates the binding between a protocol event and a TM. Notice
that the Update() operation has replaced the binding of e; on the SP, thread from TM, to TMa.

3.23 TM-SM-PE Interfacing: Access Mechanism

All communication between the TM and the PE must go through the SM. The SV provides the
interfacing between all TMs and the PEs through a special Access APl and Sgnals—these are shown in



15
Table5. InTraN Access APl and Signals

Access API (TM-SM interface)

ReadVar(T, V)

The TM (T) issues a read request to the SM to retrieve the value of variable (V)
from its correspondent PE.

WriteVar(T, V, val)

The TM issues a write request to the SM to write the value (val) to the variable (V)
in its correspondent PE.

Return(val, F)

The SM returns the value (val) of a variable (V) to a TM which is blocking on a
ReadVar() request. If the Boolean flag (F) is (true), then (val) is valid, otherwise,
the TM just ignores (val).

The SM returns a feedback to the TM that has issued a WriteVar() request. If the

Return(F) Boolean flag (F) is (true), this indicates a successful write operation, otherwise, it
indicates a failed write operation.

Invoke(T) The SM invokes a registered TM (T) after receiving an Event() signal from a PE.

Finish(T) The TM (T) informs the SM that it is going to terminate. The SM responds by

removing the TM-instance of the terminating TM.

T-type Channel S

ignals (SM-PE interface)

Getval(V)

The SM signals the PE to read the value of the local variable (V)

SetVal(V, val)

The SM signals the PE to write the value (val) to the local variable (V)

SetFlag(SF, val)

The SM signals the PE to set the subscription flag (SF) by sending (val=true) or to
reset the flag (SF) by sending (val=false). This signal will enable/disable the event
that is associated with (SF).

Event(evt, PE)

The PE Notifies the SM that event (evt) has just occurred in protocol (PE)

ExpVal(V, val)

The PE exports the value (val) of local variable (V) to the SM

Table 6. Definitions

Name Definition

T-type A private bidirectional channel that connects every PE in the system with the SM.

channel Every T-type channel has a unique name (T, ) where P is the protocol connected to the
SM through this channel.

TM-instance A record created by the SM whenever a new TM process is activated. The TM-

instance enables the SM to handle future read/write requests that might be made by
the TM to access the protocol's local variables. The SM stores the following information
in a TM-instance:

a) The process ID of the TM.

b) The name of the T-type channel connecting the SM to the target PE.

c) Temporary copies of protocol's variables targeted by read/write requests.

Table 5. We impose this mode of communication to preserve the integrity of the system and to let the SV
enforce access privileges as specified by the designer.

Figure 5 explainsthe interfacing provided by the SM. The figure shows the sequence of operationsthat gets
executed when (a) a PE issues an Event() signal, (b) a TM issues a ReadVar() request, and () a TM issues
aWriteVar() request. We explain the three scenarios bel ow:

(a) TM Invocation and Termination

When a subscribed event (signal) is consumed in the EFSM of a PE (P), the signa Event(g, P) is sent
to the SV indicating the event type and the protocol. The SM searches its subscription lists to find the TM
that is currently bound to such (event, protocol) pair. Assuming a TM (T;) was found, the SM activates T;
via the Invoke(T;) operation. Whenever the SM activates a TM, it also creates arecord in its data store that
we call (TM-Ingtance) to be able to handle any future requests that might be made by the TM—the TM-
Instance is defined in Table 6. When the TM finishes, and before it is terminated, it sends a Finish(TM)
message to the SM. The SM then removes the TM-Instance record of the terminating



16
TM.

Protocol Entity P

Un-subscribable
Subscribable Events Events

InTraN Transitions

_____________

GetVad i
(@) oo
Expval i
QOrigind :

Transition '

! Origind
1 .

1 Transition
1

1

1

Figure 6. Protocol meta-engineering extension

(b) Read Access

When a TM (T;) wants to read the value of a certain variable v; from the underlying PE, it sends a
ReadVar(T;, v;) request to the SV, then it blocks waiting for the value of v,. The SM checks if the requested
value is accessible (i.e,, v OV;) and if T; is éligible to issue a read request (i.e, it is Read-Only or Read-

Wrkite type). If thisistrue, the SM issues a GetVal(v)) sgnal to the PE specifying the name of the requested
variable, otherwise it replies with a Return(-1, false) to T;. When the PE receives a GetVal(v,) signd it
returns the value of v; to the M via a signal ExpVal(val). The SV then forwards the value val to T; via a
Return(val, true) operation.

(c) Write Access
As we mentioned earlier, some TMs can modify certain variables in the EFSM of the PE. If avariable
v is modifiable (i.e,vV,), then, its value can be overwritten by a Read-Write-type TM. However, the

protocol designer should be careful when choosing the members of v/ in each PE. Technically, sinceaTM

in the InTraN paradigm represents a soft alternative for hardcode protocol modifications, this relaxation
should make TMs even more dynamic and powerful. On the EFSM level of the PE, modifying a variable
can trigger a state transition; this, of course, should reflect the designer's intention. Therefore, protocol
modifications can be realized through a group of carefully designed TMs which can manipulate certain
properties of the EFSM through interaction, i.e., (reading from) and (writing to) protocol's local variables.
As with the reading case, writing to PE's local variables must go through the SM. A TM (T;) makes a write
request by passing the variable name and its new value to the SV via aWriteVar(T;, v;, val) operation. If v;
is modifiable and T; is Read-Write type, the SM generates a signal SetVal(v;, val) to the PE and issues a
Return(true) message to T;. Otherwise, it issues a Return(false) message to T; indicating a failed write
operation. When the EFSM of the PE consumes the SetVal() signal, it simply runsthe assignment v; := val.



17
3.24  Protocol Meta-Engineering

The meta-engineering of a PE involves adding new events and transitions to its EFSM. Basicaly, the
SM should be able to tell the PE which eventsin its E;, set are currently subscribed by SPs. These events

will be marked in the EFSM, so that, whenever any one of them occurs, the EFSM sends a signal to the SV
over its T-type channel.

Figure 6 depicts the necessary meta-engineering of the EFSM of any classical protocol entity P in
order to make it InTran enabled—new components are shown in shaded SDL symbols. Let § be any state
in P, E be any subscribable event, and U; be any un-subscribable event, then the following components are
added to the EFSM:

" A new transition triggered by the signal SetVal(d, val).

. A new transition triggered by the signal GetVal(d).

. A new transition triggered by the signal SetFlag(E;, val)

. For every E; a Boolean flag (S5) is created in P to remember the current subscription status of E;.
S isset totrueif E is currently subscribed. We augment the trangtion of E; right after the SDL
input symbol as shown in Figure 6. After consuming E, the EFSM checks the associated
subscription flag (SEj) of the consumed event. If S5 = true (i.e.,, an SE is currently subscribed to
E), the EFSM outputsthe signa Event(E;, P) to the M. Otherwise, no action is taken.

The SV uses the SetFlag() signal to manage subscription flags (i.e., S5 flags) as follows: Assume an
SP made the subscription: Bind(E;, P;, TMy), the SM registers this subscription instance in its internal data
store, and then it checks if there are other SPs currently subscribed to E;. If no active subscription instance
is found, the SM sends the signal SetFlag(E;, true) to the EFSM of protocol P;. When the EFSM consumes
thissignd, it enables E signaling by setting the subscription flag SE; associated with E; to true. However, if
the SV does find at least one active subscription instance to E; in its data sore, this indicates that E
signaling is already enabled in the EFSM, and therefore the SM takes no further action. Conversdly, if an
SP made Unbind(E, P;, TM,), the SM updates its internal data store, and also checks if any SP is till
subscribed to E; after executing the Unbind(). If at least one such ingtance is found, the SV takes no further
action, but if the Unbind() has caused the last subscription instance of E; to be deleted from the data store,
the SV sendsthe signal SetFlag(E;, false) to the EFSM of protocol P; to disable the signaling service of E..
The SetVal() and GetVal() signals correspond to the write-access and read-access operations which were
described in the previous sub-section.

3.25  Security Model

Since the InTraN framework exposes the internal state of the protocol to entities running in the user
space (i.e, TMs), it must address the correctness and safety issues of the underlying protocol appropriately.
We can claim that access modes that only involve signaling or reading are safe (i.e., Sgnal-Only and Read-
Only TMs) since they do not alter protocol's internal state. We have to be concerned only when a TM is
allowed to write to protocol's variables (i.e., Read-Write mode). Here, we propose a security model which
allows controlled access to protocol's internal variables and at the same time maintains system stability. We
define two types of designers who can be involved in any InTraN-based solution: (1) protocol designer, and
(2) TM designer. The protocol designer must be a super-user. He basically performs the meta-engineering
on protocol entities. This includes, deciding the three classes of protocol's variables (A, B, and C),
identifying subscribable events (i.e., E;, ), and extending the EFSM by adding InTraN components as in

Figure 6. The TM designer can be any user; he simply implements a particular protocol solution/extension
by coding one or more TMs. He uses the services offered by the underlying InTraN-enabled system through
the Access API to implement the intended sol ution.

Only when a Read-Write type TM tries to update a C type variable, then system stability can be
compromised—we define this combination as the dangerous combination. The danger may come from two
sources: (1) a flaw in the protocol design, and (2) a maicious TM of type Read-Write. When a system is
running with a dangerous combination, the operating system activates a guarding program that verifies any
attempts made by TMs to update C type variables. If the update is safe, it is alowed to proceed. But, if the
update may cause instability in the system (i.e, it is attempting to change a timer or index variable in the
protocol) then the write operation is blocked immediately and the offending TM is shut down. The guarding
program itself is simple and can be implemented as utility program that belongs to the operating system.



18

The SM thread that handles the WriteVar()
request.

WriteVar
(Tw, v, val)
received

definitions Get P from the TM-
v A varigble in protocol entity P instance of Ty
val A new vaue to be writtenintov
Tw The TM that issued the write

operation .
P Thetarget protocol entity TwisRWiype

Return (Falso) to T |

&&

Call guarding prog
(v, P) RED

GREEN
A 4 A 4

Output to P )
/ SetVal(v, val) / Terminate Ty,

Figure 7. SM handling of the WriteVar() operation

Basically, it needs to know which updates on any PE's internal variables are safe and which are not
regardless of protocol designer classifications in Table 2. This way, the integrity of the InTraN-enabled
system can be preserved even in the presence of design flaws.

What are the performance implications of this added security? We can show that by careful
implementation the overhead should be very small. Here, we propose an implementation path using event-
driven run-time screening, but other choices can be taken as well, such as static analysis of the TM source
code (similar to that of [Hau04]). The SM can be programmed to initiate a special thread program to handle
the WriteVar() operation and the dangerous combination. Figure 7 describes the basic agorithm;
Assuming a TM called (T,) has issued the following write operation: WriteVal(Ty, v, val). Firg, the SM
consults the TM-ingtance of T,, to retrieve the protocol entity P associated with it. Next, this operation must
pass the initial screening at the SM (i.e., the SV checks if T, is a Read-Write type TM and v is a C type
variable). If the write operation passes this test successfully, then the SV invokes the guarding program to
perform a second-level independent screening and waits for its decision. The SV passes two parameters to
the guarding program: target variable v and target protocol entity P. If the guarding program finds that this
write operation is safe, it sends a GREEN signa to the SM to allow it, the SM then continues normally by
issuing a SetVal(v, value) signa to P. Otherwise (i.e., the write operation is not safe), it sends a RED
signal to the SM which responds by canceling the write operation and shutting down T,,. Let N be the
number of PEs and let K be the maximum number of unsafe variable updates in any PE. Then, the guarding
program will make O(N+K) comparisonsin the worst case.

3.3 Conclusion

The proposed InTraN meta-engineering presented in this chapter has a number of distinguishing
features; firg, it is light-weight and requires only limited changes (and additions) on the original protocol.
Secondly, it is generic and can be applied to any protocol as far as it has some state information and
programmable interface, and findly, it leaves the InTraN-enabled protocol fully compatible with legacy



19
network components and non-subscribing applications. Furthermore, it allows maximum flexibility since it
puts most of the work in programmable components that can be updated or changed at anytime.



CHAPTER 4

iTCPpart I: InTraN Meta-Engineering

4.1 Introduction

With the advent of advanced applications and their advanced transport needs current transport
services areincreasingly becoming inadeguate. Thisinadequacy has also prompted recent attempts towards
recreating new and more complex functionalities inside the network or system middle layers. For example,
Congestion Manager [And00], [Bal99] is a system layer component that provisions aggregate congestion
control when multiple streams from the same endpoint attempt to send. Unfortunately, majority of these—
though they offer specific functional advantages—enormoudy increase the network or system layer
complexity. Such complex permanent addition to the network software appears questionable. When the
complexities of such solutions are weighted againgt their general advantage over a broad range of
applications, they do not seem to be gaining any acceptance. Due to the same inadequacy, in the past few
yearsit has also been felt that for advanced applications (e.g., real-time streaming), it is better to engage the
applications themselves in the solution. Particularly promising are the research in the new TCP friendly
paradigm [Pra00], [Rg00], [Sis98]. Due to the lack of convenient means to obtain real-time information
about network state, these systems had to rely exclusively on application layer techniques to compensate
for the network impairment. Several works such as [Bri99], [Wol97] suggested sending multilevel
redundant information which will eventually increase the burden on the network. Also, due to the inherent
round trip delay involved, adaptation time can be unbearable for more time-critical applications. Overall, it
is very difficult to build a network friendly application if the network itsdlf is non-friendly and unwilling to
interact.

A particular problem we address with iTCP is the congestion management and particularly the one for
time-sensitive streaming traffic. Most of the network level schemes for congestion control are based on
delaying traffic at various network points. The more classical schemes depend on numerous variants of
packet dropping in network, prioritization (graceful delay in router buffer), admission control (delaying at
network egress points), etc. However, a key aspect to note in all is that they introduce time distortion in the
transport pathway of the application. Though this is harmless to time-insensitive traffic such as email or
FTP, but they distort the temporal characteristics of time-sensitive traffic such as multimedia sreaming or
control data. Recent solutions are also based on complex network or system layer addition (such as
[AndOQ]). We demonstrate a simple InTraN-based congestion management scheme for time-sensitive
eadtic traffic. In contrast to network or system layer solutions, the general principle we follow is simple
and intuitive; it seems an effective delay conformant solution for time-sensitive traffic may be designed if
the original data volume can be reduced by its originator—the application.

To demondtrate the efficacy of the principle, we have also designed a corresponding advanced video
rate transcoder system [KhaOl] that works in symbiosis with the network. This transcoder actively
participates in a custom symbiotic back-off scheme in the application layer with deep application level
knowledge resulting in much more effective joint quality/delay sensitive communication. The adaptation is
applicable for traffic where it is possible to dynamically adjust the data generation rate—we call it elagtic
traffic. Most perceptual data, such as audio and video streams generally belongs to this traffic class. The
resulting scheme is similar in spirit to the TCP-friendly approaches. However, there is a fundamental
difference in how it is done. The network or system layers remain as simple as possible. The responsibility
of the network layer is smply to pass on only selected end-point events to the application. Since, the
solutions are now implemented at application level; therefore these can be made much more sophisticated
without and significant increase in network layer complexity.

In this chapter we first give some background information on congestion control mechanismsin TCP
and then we discuss the InTraN meta-engineering of TCP that will yield iTCP. In the next chapter we
discuss implementation details and present experimental performance results of the controlled i TCP/video
symbiosis.

20



21

initially, cwnd = 1 (one segment);
ssthresh = 65535 bytes;
win_size = min (cwnd, snd_wnd);
When congestion occurs, do:
ssthresh = max(win_size/2, 2);
if congestion was due to timeout
cwnd = 1;
for every ACK received:
if (cwnd <= ssthresh)
cwnd = 2 * cwnd;
else
cwnd = cwnd + segment_size;

Figure 8. Slow Start/Congestion Avoidance mechanism (SSCA)

When a 3rd duplicate ACK is received:
ssthresh = max(2, min(cwnd, snd_wnd)/2);
Retransmit missing segment;
cwnd = ssthresh + 3;

Each time another duplicate ACK arrives, do:
cwnd =cwnd + 1;
transmit a new segment;

When a new ACK arrives, do:
cwnd = ssthresh;

Figure 9. Fast Retransmit/Fast Recovery mechanism (FRFR)

4.2  Congestion Control in TCP

TCP is a connection-oriented unicast protocol that offers reliable data transfer as well as flow and
congestion control. TCP maintains a congestion window that controls the number of outstanding
unacknowledged data packets in the network. Sending data consumes dots in the window of the sender and
the sender can send packets only as long as free dots are available. When an acknowledgment (ACK) for
outstanding packets is received, the window is shifted so that the acknowledged packets | eave the window
and the same number of free dots becomes available,

421 Congestion Control Algorithms

On startup, TCP performs dow-start, during which the rate roughly doubles each roundtrip time to quickly
gain its fair share of bandwidth. In steady state, TCP uses an additive increase, multiplicative decrease
mechanism AIMD) to detect additional bandwidth and to react to congestion. When there is no indication
of loss, TCP increases the congestion window by one dot per roundtrip time. In case of packet loss
indicated by a timeout, the congestion window is reduced to one slot and TCP reenters the dow-start phase.
Packet loss indicated by receiving three duplicate ACKs results in a window reduction to half its previous
size. Therefore, the two principal mechanisms that TCP uses to detect network congestion are (a) when the
retransmission timer times out and (b) when three ACKs arrive. Two algorithms then contribute to TCP's
congestion control behavior; these are the classic algorithm of dow start/congestion avoidance [Jac88], and
the augmentation of fast retransmit/fast recovery [Jac90]. The two algorithms are outlined in Figure 8 and
Figure 9 respectively.



22

Table 7. TCP Congestion Contral Internal Events

Event Meaning Description SSCA FRFR Sub
1 Retransmission timer Possibly congested network or the X X
timed out segment was lost
A new ACK was Increment snd_cwnd elthe_r exponentially
2 received (if less than sstheresh) or linearly X
otherwise
snd_cwnd has reached o .
= Switch incrementing snd_cwnd from
3 the slow start threshold exponential to linear X
ssthresh
4 A third duplicate ACK A segment was probably lost, perform fast X X
was received retransmit
5 Qufﬂ?étar;é%cruo\:\zs One segment has left the network; we can X
Pl transmit a new segment
received
Retransmitted segment has arrived at the
6 gg;\\//vegCK was destination and all out of order segments X X
buffered at the receiver are ACKed
A A
evt(1) evt(4)
winsize winsize
g g
23 20
[ 1 gt S Q g
: 2 Slow start threshold =2 Slow start threshold
n < n <
2.3 N @
0] 0] vt(5
evi(®) evi(6)
o0 000
time - one RTT time -

(@) ' (b)

Figure 10. Changes on TCP's sending window due to congestion contr ol events

4.22  Congestion Control Events

Table 7 lists sx events that internaly occur when the TCP invokes congestion control algorithms.

Although many other TCP events might occur during a TCP session (e.g., flow control events or
connection establishment and termination events), we are only interested in congestion control events.
In Table 7, the column labeled (SSCA) refers to events that take place in the Slow Start/Congestion
Avoidance algorithm, and the label (FRFR) refers to events that take place in the Fagt Retranamit/Fast
Recovery algorithm. These events are a so presented in Figure 10. Plot (a) of the figure shows the sequence
of events of the SSCA agorithm and ther affect on effective window size, and plot (b) shows the same
sequence for the FRFR agorithm. However, in general design we expect only a subset of the internal
events of the protocol to be of interest to the subscriber application. Only a subset of these is made
accessible via the interface. An application ingtance typically subscribes even to a subset of the accessible
events. The column (Sub) shows subscribable eventsin our design.



23

b - b -
[AppWrite] Y ST SR A [AppRead]
Transmitter Entity Receiver Entity
(TE) (RE)

[RecvACK] A A [RecvData]
MT MR
[SendData] Y Y [SendACK]
Unreliable Medium (UM)

Figure 11. Smple TCP system composition

T1235 T17 T12,13,14,15

Figure 12. EFSM of TCP

4.3 TCP Meta-engineering

Now we show how to perform the meta-engineering extenson on TCP and make it InTraN-enabled—
we call the extended protocol iTCP.



24
431 TheSDL Model

Firg, we formally describe the abstract protocol using SDL, and then we augment the protocol by
adding InTraN components. [Tur93] described a smple dliding window protocol in SDL that featured
positive acknowledgments and retransmission mechanisms. We transformed this protocol into simplified
TCP by adding congestion control support. The simplified TCP can be modeled as a composition of three
blocks, Transmitter Entity (TE), Receiver Entity (RE), and Medium. The Medium represents the underlying
unreliable service (eg., IP and lower layers) while TE and RE represent the two endpoints of a TCP
connection. Figure 11 describes the composition. The sending and receiving applications are located in the
environment. They interact with the system via two service access points modeled by two unidirectional
channels, ST (from the environment to the TE) and R (from RE to the environment). The channe ST
carries the AppWrite signal from the sending application to the TE, and the channel SR carries the AppRead
signal from the RE to the receiving application. The TE uses a bidirectional channel MT to send data (viaa
SendData signa) and to receive acknowledgments (via a RecvACK signal) over the Medium. One the
opposite side, the RE also uses a hidirectional channel MR to receive data (via a RecvData signal) and to
send acknowledgments (via a SendACK signal) through the Medium.

In Figure 14 (a 4-pages figure at the end of the chapter) we formally present in SDL notation the
fundamental part of TCP's congestion control and flow control mechanisms at the sender (Transmitter
Entity). The system describes a unidirectional data service. In this abstract description, we only focus on the
sliding window and congestion control aspects of TCP, many of the details in conventional TCP are hidden,
such as: buffer sze issues, sequence number caculations (e.g., sequence number wrap around), and
checksum tests. Furthermore, many of the irrelevant details are hidden inside procedure calls, eg.,
CalcRTO().

The EFSM of this system is depicted in Figure 12 and can be described as:
 S={Yow Sart, Data Transfer, Fast Recovery, Closed Window},
* 5, = JowSart,

o E={AppWrite, RecvACK, rexmt timeout},

e O={SndData},

» V= {segno, ackno, RAW, dACK, pACK, FRFlag, RTO, rexmt, Cwnd, Samnd, LU, LS ExpBoff}.
o f={To, Ty, ..., T}, Thetransitions of f arelabeled in Figure 14.

432 EFSM of iTCP

We want iTCP to track two events: ‘retransmission timer timeout’ and 'receiving third duplicate
ACK’. Both events signify packet loss and usually cause TCP to trigger congestion control procedures.
Therefore, the augmented EFSM of our Transmitter protocol becomes: (InTraN additions are shown in
bold)

= S={Yow Sart, Data Transfer, Fast Recovery, Closed Window},

* 5 = JowSart,

= E = {AppWrite, RecvACK, RexmiTimeout, GetVal, SetVal, SetFlag},

»  O={SendData, ExpVal, Event},

= V= {segno, ackno, RAW, dACK, pACK, FRFlag, RTO, rexmt, Cwnd, Sand, LU, LS ExpBoff, RA,

RT}.

= fisaugmented aswe described in Figure 6 (i.e., by adding three trangtions for the GetVal, SetVval,

and SetFlag events, and modifying existing transitions of subscribable eventsin every state).

RA and RT are the Boolean subscription flags associated with events RecvACK and RexmtTimeout
respectively. We chose the setsg_,, B, and C asfollows:

*  E;={RecvACK, RexmtTimeout},
B={dACK, Sand, RAW},
. C= {} i -

The InTraN-added members of E (i.e,, GetVal, SetVal, and SetFlag) are for internal SV use only.
Therefore, they are not included inE;, (i.e., they cannot be subscribed by a SP). The same applies to the
subscription flags (RA, RT) which cannot be included in the set B or C. In Figure 15 (at the end of this



25
chapter) we show the InTraN-enabled SDL version of the (slow start) state only. The remaining states can
be extended by adding exactly the same components.

44 A Complete TCP EFSM/SDL Model

In this section we provide an EFSM model for the original TCP standard that was proposed in RFC
793 [Pos8l]. We have augmented the original standard to include the congestion control mechanism of
TCP Reno described above. We have posted the complete SDL description of this EFSM in a technical
report [Zag05] which is posted on our web server. We have developed this model as a supplement material
for the InTraN paradigm. Using this moddl, any InTraN-enabled protocol extension solution can be

formulated as we described earlier by selecting the setsE{:, B, and C and by writing a set of TMs that

implement the proposed extension. We felt that this model can be beneficial for other researchers who
might be interested in the formal description of the TCP standard using the EFSM/SDL notation.

441 Remarksand Simplifying Assumptions:

1- The EFSM always remembers the current state in the variable (CurrState) and the previous state in
the variable (PrevState),

2- The TCP endpoint has unlimited buffer space (e.g., buffer space to queue SENDs and RECEIVEs
is aways available)

3- In any state, whenever a segment is sent, the segment is added to the Retransmission Queue
(RexmtQueue) and the retransmission timer (REXMT) is started.

4- The (REXMT TIMEOUT) event has been modeled in al states except (FIN-WAIT-2, TIME-
WAIT, CLOSED), since in these states the endpoint have already received an ACK of its FIN
segment (i.e., will not tranamit any segments afterwards).

5- The (TIMEWAIT TIMEOUT) event has been modded in (TIME-WAIT) state only. In all other
dtates, thistimer isirrelevant.

6- Thefollowing were not modeled from RFC 793:

a) Security/Compartment and Precedence processing.
b) The STATUS user cdl.

¢) The PUSH mechanism (i.e., PSH contral hit)

d) TheURGENT mechaniam (i.e, URG contral hit)

442 TheComplete TCP EFSM
The TCPEFSM=(S, s, E, f, O, V) can be described as follows:
1. States(S) ={CLOSED, LISTEN, SYN-SENT, SYN-RCVD, ESTABLISHED, FIN-WAIT-1, FIN-
WAIT-2, CLOSING, CLOSE-WAIT, LAST-ACK, TIME-WAIT}.
2. Initial State (s0) = { CLOSED}
3. Events (E)
User Calls(subscriber events) = {Active OPEN, Passive OPEN, SEND, RECEIVE, CLOSE,
ABORT}.
Arriving Segments (service events) = {SEGMENT ARRIVE (SYN, ACK, RST, FIN)}.
Timeouts (inter nal events) = {
REXMT TIMEOUT: The Retransmission Timer (REXMT) has timed out,
, TIME-WAIT TIMEOUT, USER-TIME TIMEOUT}.

4. Transition Function (f) = {described in [Zag05]}



26
5. Output Signals (O) = {Return (message), Return Error (error message), Signa User (message), and
Segment (SEG)}.

6. Variables (V)
A. Segment Variables
SEG.SEQ: segment sequence number
SEG.ACK: segment acknowledgment number
SEG.LEN: segment length
SEG.WND: segment window (Receiver Advertised Window)
SEG.CTL: control bits (ACK, RST, SYN, FIN)

B. Send Sequence Variables
SND.UNA: send unacknowledged
SND.NXT: send next
SND.WND: send window
ISS: initia send sequence number

C. Receive Sequence Variables
RCV.NXT: receive next
RCV.WND: receive window
IRS: initial receive sequence number

D. Timers
REXMT: Retransmission Timer.
TIMEWAIT: Time-wait Timer
USERTIME: User Timer

E. Counters
dACK: duplicate ACK counter
ExpBoff: exponential backoff counter

F. Other
CurrState: Current State
PrevState: Previous State
RTO: Retransmission Timer Out value
RTT: Round Trip Time—used to calculate RTO
SRTT: Smoothed RTT—used to calculate RTO
CWND: Congestion window
MSS: Maximum Segment Size
SSthresh: Slow Start Threshold
MSL: Maximum Segment Lifetime

G. Buffers
Send Buffer: Send Buffer
RCV Buffer: Receive Buffer
OO RCV Buffer: Out of Order Recelve Buffer
Rexmt Queue: Holds sent but unacknowledged segments
User Calls Queue: Holds outstanding user calls (e.g., SEND, RECEIVE, CLOSE)

45 Classfication of EFSM Components

Figure 13 classifies the main components of a generic communication protocol EFSM and connects
those to the EFSM components of TCP. The upper part of the figure (shown in yellow) presentsthe generic
classification with three main components. Events, States, and Variables. The lower part of the figure
(shown in green) classifies the TCP components.



N
~

EFSM
Events States Variables
| [
External Internal Simple Complex
Subscriber Timers
Events
Service Objects
Events
Active
OPEN o—| REXMT CLOSED
TIMEOUT
OPEN | | 1 meour
[sERTive]
USER-TIME
— TivEouT
Sequence
SEGMENT
Buffer
USER-TIME
1 CLOSE-WAIT :
SYN _ Retransmit
: ueue
r{AcK | Secnane .
Sequence
User Calls
LRSI — Queue

USER-TIME

Figure 13. Classification of the EFSM components and their TCP counter parts



28
451 Events

Events can be External (i.e, they are triggered by receiving a signal from an externd entity), or
Internal (i.e, they are triggered when atimer times out). Signalsthat trigger external events can come from
two types of entities: Service Providers (i.e., lower-level protocols that provide communication services to
this EFSM), or Service Subscribers (i.e., upper-level protocols that uses the communication services
offered by this EFSM). A signal received from a Service Provider triggers a Service Event, and a signa
received from a Service Subscriber triggers a Subscriber Event. In the TCP part, the Service Provider is
IP and the Service Subscriber is the user, therefore, user calls like (OPEN, SEND, RECEIVE, etc) are
classified as Subscriber Events, and receiving a segment from IP (SEGMENT ARRIVE) is classified as
a Service Event. Whenever one of the three timers in TCP expires, it generates an Internal Event.
Internal Eventsin TCP happen whenever one of the timers expires.

452 States

States can be classified in ahierarchy, where thetop level contains the states in this EFSM. Each date
on the top level can itself contain a smaller EFSM whose states can be considered as second level states.
For example, the four states of the congestion control EFSM presented in the previous section (i.e., Slow
Start, Data Transfer, Window Closed, and Fast Recovery) are al considered to be part of the
(ESTABLISHED) state of this EFSM, and therefore they can be classified as second level states. In Figure
13 we only show the 11 states of the complete TCP EFSM at thetop level.

453 Variables

We have classified Variables into two categories: Simple and Complex. Simple variables have
simple data types like integers or character strings. Complex variables are class objects defined with
methods and values. Timers are special type of complex variables since (i) they have built in methods in
SDL (e.g., SET, RESET) and (ii) they trigger internal events when they expire. In the TCP part we classify
simple variables into three parts: Segment, Send Sequence, and Receive Sequence (the EFSM has
additional variables but we did not include them in the figure due to space limitation). We aso show the
threetimers (REXMT, TIME-WAIT, and USER-TIME) and all the Buffers/Queues as Complex variables.

46 Conclusion

In this chapter we have first reviewed some of the issues concerning congestion control in TCP and
the need for application involvement in designing adaptive TCP-friendly solutions. Then, we have shown a
real application of the InTraN meta-engineering on TCP which gave an InTraN-enabled version of TCP (or
iTCP). In the next chapter we demonstrate a TCP-friendly, congestion management scheme based on iTCP
and the InTraN Trans entware mechanisms.



Process TCP Transmitter

/* This process has four states: (1) initial
state is slow start, (2) data transfer, (3)
fast recovery, and (4) window closed. The
EFSM diagram of this process is given in
Figure 12 */

-

Initialize
variables

seqno : Header field (sequence number) AN
ackno : Header field (ACK number)

RAW : Hearder field (Receiver Advertised
Window)

dACK : duplicate ACK

PACK : previous ACK

FRFlag : Fast Recovery Flag (Boolean)
RTO : Retransmission Timer Out value
Cwnd : Congestion window

Swnd : Send Window

LU : Least Unacked byte

LS : Last Sent byte

ExpBoff : Exponential Backoff

SBuff : Sender Buffer.

rexmt: Retransmission timer.

AppWrite
(data)

Add data to SBuff

(false)

Window
Closed

LS:=LS+1

CalcRTO (RTO)

set (RTO, rexmt)

To

SendData
(H, Data)

Ty

RecvACK
(H, data)

rexmt
(segno)

(false)

(false)

ExpBoff :=
ExpBoff x 2

A 4

| Cwnd :=Cwnd + 1 |

)l
| set (ExpBoff x RTO,
Swnd := min rexmt)
(Cwnd, RAW) |
| Retransmit
Remove ACKed (segno)
bytes from SBuff
ReleaseTimers
(segno)
| Ts
LU := seqno+1
ExpBoff := 1

(false)

(—)

(Data Transfer>

T2

Ta

1)

(false)

Figure 14. SDL description of a simplified TCP transmitter

29



Process TCP Transmitter

Data Transfer

(@)

AppWrite RecvACK rexmt
(data) (H, data) (seqgno)
Add data to SBuff ssthresh :=
seqno = LU (false) max (Swnd/2, 2)
Cwnd:=1
\ 4
LS - LU < Swnd -
ReleaseTimers
(false) (true) T (seqno)
Window LS==LS+1 seqgno = pACK (false)
Closed Retransmit
(seano)
Te (true)
CalcRTO (RTO) \ 4 \ 4
dACK := dACK+1 PACK := segno
Slow Start
set (RTO, rexmt) Tu

SendData
(H, Data)

(false)

ReleaseTimers Remove ACKed
(dACK-1) bytes from SBuff
Retransmit ReleaseTimers
(dACK-1) (seqgno)
temp := min (Cwnd,
Swnd/2) LU := seqno+1
ssthresh := max(2, temp)
Cwnd := ssthresh + 3 \ 4
Fast Recovery Tiwo

Figure 14 (continued)

30



Process TCP Transmitter 3)

Fast Recovery

AppWrite RecvACK rexmt
(data) (H, data) (segno)
Add data to SBuff ssthresh =
seqgno z LU (false) max (Swnd/2, 2)
Cwnd:=1
(true)
(false)
T ReleaseTimers
15
fal (seqno)
A 4 seqno = pACK (false)
FRFlag := False
= Retransmit
LS:=LS+1
(true) v (seqno)
Tis FRFlag := True Remove ACKed
bytes from SBuff A 4
CalcRTO (RTO)
Slow Start
\ 4 -
ReleaseTimers
(seqno) Ti7
set (RTO, rexmt)
T14
LU := seqno+1
SendData
(H, Data)
A 4
v Data Transfer
Tie
T12

Figure 14 (continued)




Process TCP Transmitter

Window Closed

(4)

RecvACK
(H, data)

AppWrite

seqno 2 LU

(true)
( ) Remove ACKed
bytes from SBuff
Tis
ReleaseTimers
(segno)
LU := seqno+1

v

Data Transfer

Tig

rexmt
(segno)

ReleaseTimers
(segno)

Retransmit
(segno)

Figure 14 (continued)

32



78]

Process iTCP Transmitter

All variables in 'TCP Transmitter' (Figure 14) in
addition to the following:
RA: Boolean subscription flag for (RecvACK)
RT: Boolean Subscription flag for (rexmt)
Fval: Boolean parameter for the (SetFlag) event

(1)

Slow Start

AppWrite
(data)

No change, same as
in TCP Transmitter i

RecvACK
(H, data)

(false)

Rest of transition as i

rexmt
(segno)

(false)

Rest of transition as
in TCP Transmitter

GetVal
(RAW)

GetVval
(Swnd)

[

ExpVal
(RAW)

)

ExpVal
(Swnd)

)

(—)

(—)

(—)

GetVal SetFlag

(dACK) (RT, Fval)
ExpVal RT = Fval
(dACK)

(—)

SetFlag
(RA, Fval)

RA = Fval

(—)

Figure 15.iTCP's (Slow Start) state extended with InTraN components



CHAPTER S5

iTCP part 11: Implementation and Performance

5.1 Implementation Details
511  System Architecture

Figure 16 depicts the conceptual architecture of the system on FreeBSD. The scheme works in three spaces.

user space, system space, and kernel space. Once it establishes a TCP connection, the user process starts by

binding the TCP kernel with a set of chosen events from Table 7 using a Subscription API that extends the
7

-
Increase

c Reduce
@ vy Reduce |
%) < R
Y - LossTM1 LossTM2 ECOYEy
8 Video Transcoder Handler
@ AA A A 8 T

L 5 -

e Il I -1~ Recoverytimer ~---

TCP 1 £ \ 2
» Connection R
% SigHandler
g < 'y 4a 6a
A 4 \AA \4
Socket Subscription SIGIO Probing API
API AP signal
A A
N D R Y R
~
2 4b
A\ 4 ob

N
D
3 3 FreeBSD TCP Event 3b - Event Connection
o kernel Monitor L~ Information State

Figure 16. The TCP-interactive extension and API

standard socket APl (1). An entity called Event-Monitor runs in the TCP kernel space and monitors all
subscribed events for every socket (2). Assuming at some point event (evt ) occursin socket (sock). The
Event-Monitor sends a (SI G O) signal that is caught by the (Si gnal Handl er) (3a), and at the same
time writes the socket descriptor of the socket (sock) in the process structure pr oc{} of every process
that is currently subscribed with this socket. Also, it marks all subscriptions of event (evt ) in the socket
(sock) as outstanding (3b)—i.e, waiting to be handled. The OS activates the signal handler
(Si gHandl er) associated with the (SI A O) signal whenever this signal is caught. The (Si gHandl er)
first uses the probing API to retrieve the socket id (sock) of the socket that generated the event. Then, it
uses the probing APl again to access the socket (sock) and get relevant information about the outstanding
subscription of event (evt ). The information retrieved includes the event type and the name of the T™M
bound to it (4a,b). Immediately after that, the (si ghandl er) invokes this TM (5). TMs are usualy small
programs supplied by the user or by a third-party as ready to run executables custom-designed to handle
certain events. One TM is forked by the (si ghandl er) for each valid (SI G O) signal. The probing API
allows the TM to probe additional information about the state of the TCP connection (6a, b). We show two
TMs in Figure 16, LossTML and LossTM? to handle the two loss events mentioned above. These TMs

34



35
Table 8. The API Extension of iTCP

Level Caller Description

voi d Get Events (int *NunOf Events, evtlnfo *EventList[]);

User User process  |Retrieve the complete list of available events in the TCP kernd. Retrieve evt | nf o{} druct for each
eventinthelist.

int SubscribeEvt (int sock, int evt, int T-ware);

User User process | Subscribe with the socket sock for event type evt . Register handler T- war e for this event. This call
will add asubl nst ance{} sructuretotheevt Li st lis inthe subscribed socket.

int UnsubscribeEvt (int sock, int evt);

User User Process  |Unsubscribe a previously subscribed event. Afterwards, no signal will be sent when this event occurs.
Removethesubl nst ance{} fromtheevt Li st list in the subscribed socket.

int GetSockid (void);

System |Signal Handler |Get the descriptor of the socket that sent the signal when the subscribed event had occurred. This is

necessary since a process can subscribe to many sockets, and the Signal Handler needs to know which
socket triggered the event.

int ProbeEvtinfo (int sock,

struct evtinfo *info);

System |Signal Handler |Get the number and the Handler name of the event that has just occurred in the socket sock.

int ProbeSocket (int sock,

struct connState *conn);

User Event Handler |Probe the socket sock to retrieve the current state of the TCP connection is the connSt at e{ }
structure.

int GetSubPerm (int sock, int evt, int *perm;

User User Process | Get the current access permission string per mfor the event evt subscribed with socket sock. Get four
flags (Read, Write, Subscribe and Trigger) for two levels (System and User).

int GetSubPriority (int sock, int evt, int *priority);

User User Process | Get the Priority Level of the event evt subscribed with socket sock. Returned Pri ori ty isbetween
land3.

int GetHandl erPerm (int sock, int evt, int *nask);

System  |Root Process  |Get the Connection Access Mask mask for the event evt subscribed with socket sock. The returned
value in mask specifies which fields in the connSt at e{} struct are accessible by the T-ware and
which fidldsare not.

int SetSubPerm (int sock, int evt, int perm;

System  |Root Process  |Set a new access permission string per m for the event evt in the socket sock. The integer per m

should specify four flags: (Read, Write, Subscribe and Trigger) for two levels (System and User).

int SetSubPriority (int evt,

int priority);

System  |Root Process |Setanew Priority Level for the event evt inthe socket sock by assigning avaluetopriority.

int SetHandl erPerm (int sock,

int evt, int e_hand, int nask);

System  |Root Process | Set a new access mask mask for the event evt in the socket sock. The integer mask should specify
which fiddsintheconnSt at e{} sructure are accessi ble and which fields are not.

int GetEvtState (int evt, int *state);

User User Process  |Get the Subscription State of event evt . Return zero in st at e if the event is subscribable or one)
otherwise.

int Del Event (int evt);

System  |Root process | Set the deleted flagintheevt | nf o{ } sructureto true. Afterwards, evt will be ignored by subsequent
sysemcalls.

int AddEvent (int evt);

System |Root Process  |Reset the deleted flag in the evt | nf o{} sructure to false. Afterwards, evt will be reported by

subsequent calls.

int UntriggerEvt (int sock,

int evt, int status);

User

|User process |Trigger/untrigger subscribed event evt .

employ a symbiosis throttling mechanism based on the TCP state to cal culate an optimized reduced bit rate
(hpes) to put the transcoder in a frugal state. They also calculate an optimal duration (Trecovery) fOr the frugal



w N R, o

P1 P2
'} proc{} socket {} '} proc{}
_______ » €--__
< o \/
pTd ol le sublList 2o le pTd
socketfd o evtlist socketfd
subl nstance{} subl nstance{}
R evtInfof} next_sub e next_sub e
b d Jescription prev_sub e prev_sub
il B = tpd 5 event event
el et ed=
stat us st at us
subscri babl e=1
T ST abTe=o event Per event Per
in'pgogrtance=3 priority priority
handl er handl er
evt | nfo{} handl er Per v handl er Per v
L p| subProcess subProcess e
description
del et ed=0
subscri babl e=1
triggerable=1
i nportance=2

Figure 17.iTCP internal data structures

struct evtinfo *evtList[]
int n;
s = makeSocket ();
Subscri beSt ub{
Get Events(&n, evtList);
For (i =0; i<n; i++){
if (evtList[i]->subscribable == 1)

if ((i == REXMI_TOUT) ||
(i == THI RD_DACK))
Subscri beEvt (s, i, EvtHandler[i]);
}
i Sockets = i Sockets 0O s;

struct evtSublnfo *ESinfo;
Pr obe{
s = Get Socki d();
if (s O iSockets){
ProbeEvt I nfo(s, ESinfo);
if (ESinfo->evt in (REXMI_TOUT, TH RD_DACK)) {
Swi tch (ESi nfo->Twar e) {
case 1: Twarel();
case 2: Tware2();

Figure 18. Subscription and probing scenarios

36



37
state—after which the transcoder returns to its normal rate. They convey this rate reduction to the
transcoder by writing the new rate to the filenamed "r at e. par " (7) and they start atimer that will expire
when Treovery time has passed after which a recovery handler is invoked to write the norma rate into
"rate. par" (8).

Table 9. Implementation detailsevt | nf o{ } and subl nst ant {}

(@) struct evtlnfo{}

Field type Field Name Description

char * Description A brief description text about the event and its
meaning.

i nt Del et ed A flag to mark the event as deleted.

i nt Subscri babl e A flag to decide if the event is subscribable.

i nt triggerable A flag to decide if the event can be triggered by the
subscribing process.

i nt | mport ance Importance level of the event.

(b) struct sublnstance{}

Field type Field Name Description

Struct sublnstance * |next_sub A pointer to the next entry in the linked list

Struct sublnstance * |prev_sub A pointer to the previous entry in the
linked list

i nt event Event number/name.

i nt st at us The status of the signal.

i nt event Per m Access permission string for this
subscription instance.

i nt Priority Priority of the event in this subscription
instance.

i nt handl er The number of event handler for this
subscription instance.

i nt handl er Per m Access pattern mask for the connection
state variables.

struct proc * subProcess A pointer to the subscribing process.

512 API

Table 8 shows the complete APl system designed. In this table for each system call we list its
prototype, the level of its caller (user or system), its potential caler (application, signal handler, or TM),
and a brief description about its functionality. Some of these functions are designed for the network
adminigrator (root process) to manage event subscription by granting priority levels and access
permissions for the user process.

5.1.3 Internal Data Structures

We have implemented the scheme on FreeBSD 4.5 kernel. Here, we discuss some of the interna
details of iTCP implementation. A user process can open one or more TCP sockets. At the same time a
socket can be used by more than one process. Figure 17 shows the relevant data structures needed to
implement the subscription and probing scenarios in iTCP. An open socket maintainsa list of events called
(evt Li st) as an inventory of all events supported by iTCP. The socket uses the (evt Li st) field to
retrieve the static information related to any event type. Thelist isimplemented as an array of pointersto a
structure called evt | nf o{}. The gructure evt | nf o{ } shown in Table 9 (a) represents one event type
and stores information about the event such as its description and relevant attributes. The socket aso
maintains a doubly linked list of subscribed events for every subscriber process called (subLi st).



38
Whenever a user process subscribes with a new event, the socket adds a new entry to this list caled
subl nst ance{}. The structure subl nst ance{} represents one subscription instance for a given
process/socket pair. It contains information such as event number, status and name of the TM bound to the
subscribed event. Table 9 (b) shows the complete subl nst ance{} structure. The socket removes a
subl nst ance{} entry from the (subLi st) if a user process decides to unsubscribe from a previoudy
subscribed event.

514  Subscription and Probing Scenarios

Figure 18 demonstrates subscription and probing scenarios. We explain an application stub routine
Subscri beSt ub() which handles this stage. After creating a socket (s), the Subscri beSt ub()
routine uses the Get Event s() system call to retrieve the set of events available from the socket in
evt Li st[] and their number (n) from the kernel. Let's assume that the application wants to subscribe to
two events. The retransmission timer time-out event (REXMT_TOUT) and the third duplicate ACK event
(THIRD_DACK). Here, we let the index (i ) represent the event number in the lis evtList[].
Subscri beSt ub() first checksif the current event (i ) is either (REXMT_TOUT) or (THIRD_DACK),
if thisistrue; it makesa Subscri beEvt () system call to subscribe to the event. After finishing the loop
this system call adds the socket (s) to the set (i Socket s), which includes al sockets that the application
had subscribed with. When the kernel sends a SI G Osignal, a system routine catches it. This routine then
uses the probing function Pr obe{} (shown in Figure 18) to handlethe signa. The Pr obe{} routine calls
CGet Socki d() tofind out which socket has sent the event, and stores its descriptor in (s). If the socket (s)
was among the set of subscribed sockets (i Socket s) of this application, it cals ProbeEvt | nf o() to
retrieve the subscription information for this subscription ingance. Internally, when the Pr obeEvt | nf o()
system call is made, the kernel traces the subLi st [] of socket (s) and looks for a subscription ingance
subl nst ance{} whose status field equals 1, i.e, this is an outstanding instance waiting for the signa
handler attention. Normally there should be only one outstanding instance per application in the socket’s
subLi st [] . Once found, the kernel returns two fields from the outstanding instance to the application in
the evt Subl nf o{} structure the event number (evt), and the TM name (Tware). When the
ProbeEvt I nf o() returns, the Probe() checks if the event (evt) is iTCP related, i.e, it is either
(REXMT_TOUT) or (THIRD_DACK), and then it executes the proper TM as dictated by the value
returned in ESi nf o- >Twar e.

Reaction delay (1)
_> <_

Relaxation period (A)

Critical delay period (d) §

Generator Function g(t) < > /\ | i

X
X
X

A M| s T

! |
(h) = | Window

il
c
=
Q
=
o
=}
—+
~

time tloss tactual tequal tcritical trecovery

Figure 19. Symbiosisthrottling model



39
52  Symbiosis Throttling M odel

The key to the system is the intermediate event gluing mechanism—or as we call it symbiosis
throttling. It performs the key task of dynamically specifying the target rate for the application based on
the event notification interrupt. The idea is to accept the event feedback provided by the underlying
interactive transport layer, and generate a corresponding rate feedback for rate formation capable
applications. This feedback is estimated in a way that ensures transport service with applications specified
delay conformation over the otherwise classic transport service.

The main ideais that when atime-out event ( £=1) occurs in the transport, we let the subscriber rate

retract to a smaller rate. We call this retraction state as frugal state. The key issue is how to optimally
design thefrugal state’ sretraction point so that the overall system meets the delay bound of the application.

521 Analysisof Symbiotic Throttling

Let g(t) be the generation function dencting the data rate at which the rate formation capable application
produces data as a function of time. Let w(t) is the bandwidth function provided by the transport channel
over which, the application sends the data. Figure 19 explains the model. During normal operation w(t) >
g(t). When aloss event is detected (e.g., timeout) the transport bandwidth retracts to some smaller effective
value due to window resizing. The underlying cause might be a packet 1oss or a congestive delay deep
inside network. In either case, the sender transport buffer builds up and resultsin increased communication
delay. In response to the loss event, we let the subscriber adjust its generation rate to a lower generation
state (we call this state the frugal bandwidth state). The norma operation is however by a satisfied
bandwidth state. In any practical feedback system thereisalso always areaction delay in the feedback loop.
Let T be the reaction time needed by the subscriber process to react and adjust its rate. Given the above
model, the particular design problem we address is the following:

Given the bandwidth function w(t), the generation function g(t), the satisfied sate bandwidth (Bg), and
the upper bound on the acceptable data delivery delay (dg), determine the best possible frugal state
(generation rate and its duration) for which the bound dq can be ensured.

Here the delay bound dg is the maximum delivery delay an application can sustain between generation
endpoint and delivery endpoint of the application layer. We now further define two additional concepts
important for the derivation to be presented.

5.22  Critical-delay-point inequality

Assuming the loss is detected at time o After the loss assume it takes tea time for the transport
system to again equalize the transport bandwidth with the frugal state generation rate of the subscriber. This
is the point where w(t)= g(t). We call this point the even-point. Since the generation rateis larger than the
transport rate before the even-point is reached, therefore the transport buffer will build up until the even-
point is reached. The buildup will gradually decrease after the even-point. Thus the bytes entering the
buffer exactly at the even-point will face maximum delay. Let thistime be called critical-delay-point tyitica-
Thus, if the transport buffer aready has Q bytes in it (before moving to the frugal state), the buffer size at
even-point is given by the LHS of equation—(1a). Let d be the maximum acceptable delay, then the
following inequality must hold. We name it critical-delay-point constraint:

critical

tequm t,
max(0, Q) + jt g(t) —w(t) et < jt wit) Cait

equal

Or, max(0,Q) + fe‘*“a' g(t) [t < f“‘“‘“’ w(t) e (13

loss



40
5.23 Recovery-point inequality

The bytes entering the transport buffer after the even-point will face less but non-zero delay. This data
too will be entering into the buffer quite full. Additional bytes, those generated between the even-point and
the critical-delay-point, will still populate the buffer. Therefore our ultimate goal is to take the buffer into
pre-event state before returning to normal generation. Thus, the subscriber system should gill continue to
operate at somewhat less than satisfied state. This extended frugality will allow remaining buffer buildup to
dissipate—completely erasing the effect of the timeout event. We define this time as the full-recovery-point.
Let's call it the recovery time t,ecovary, then the following second inequality in equation—(1b) must hold.
We call it full recovery-point constraint.

max(0,Q) + j;t'“"““ g(t) ot < | e ) ot --(1b)

loss loss

524  Frugal State Determination

The two inequalities respectively can provide a general solution for the level and duration of the
fruga gdate for any general transport bandwidth and generation function. It can aso predict the
corresponding recovery time.

Below, we solve specifically for the case where the iTCP transport control is similar to TCP (binary-
back-off and additive-increase) and a piecewise step g(t). For smplicity, we assume that when a loss event
is detected the window function decelerates to zero (i.e, W(toss)=0). We firg solve for a fast reacting
system, where the reaction time is very small and let the buildup before subscriber reaction is Q. Let g(t) is
a piece-wise step function. We further assume that the post-fault w(t) is a linear function with bandwidth
acceleration m.

Let dg is the maximum buffer delay tolerable by the application data. Given a maximum propagation
delay limit Tp, and bandwidth w(t), we can say that do= d+Tp+ (1/w(t)) where d is the total delay faced by
the byte entering at critical-delay-point. Since, typically w(t)>>1, then d can be approximated by d = do -
Te. Let T be the time it takes the system to reach the even-point (i.e., T = teua — tioss). Then critical buffer
equality (1a) can be expanded into:

-(2)

Q+ml s%DnEﬂT+d]2
T2-21d -d?2+2R <
m

It solvesto:

T=ds 2d?-22 ©
m

Only positive real solutions are practical. For any given system arbitrary delay bound cannot be met.
In that case both the solutions are imaginary. The model can now be used to determine the limit on the
maximum acceptable delay. For thereal solution the minimum delay requirement cannot be smaller than:

dmin 2 \/§ “(4)
m

T can have two solutions. Both solutions are positive if:

d<\/§ --(5)
“Ym

Otherwise, only one solution is positive. From T, we can determine the frugal state bandwidth of the
generator function. It should be stepped down to:

--(6:
h=mT :md[li Z—E] (%3
\ md

Out of the two solutions, the best possible frugal state (the one which alows higher transmission rate
in the frugal dtate) is:



41

--(6b)
- miT = lo_2Q
Npet = MT = md[1+ 2 ]

And the other solution is;

--(6c)
[ 2
Nother = MT = md[l— 2——Qj

The second solution, when exists, provides a second possible frugal state with lower generation rate.
If this solution is taken, the data-generation allowance at frugal state will be lower. However, it will result
in faster recovery.

The next question we ask is how long the system should stay in frugal state. We first derive alower
bound. Thisisgiven by thecritical recovery time:

-
Teritical = 2T = Zd(li \/Z—T_QJ
md

For the special case, when, the initial buildup (or reaction time) is zero, the corresponding height and
duration of the fruga dateis:

heeg = Md (1++/2) --(8)
Tcritical = 2d(1+ \/E)
For step g(t), between the critical-point and recovery-point the system continues to be in frugal sate

accelerating the recovery. Corresponding recovery time is the complete duration of the frugal state. It can
be determined by solving equality—(2), and is given by:

h / 20m -(9)
Trewvay=5(1+ 1+ th ]

For the genera case, when there is a buffer buildup due to the reaction delay=r, the buildup can be
estimated from the satisfied state generation rate and the reaction delay. Let H be the bandwidth satisfied
state generation rate, when ris small, B can be approximated by:

mr --(10)
Q=r(H _T)

The slop m can be approximated from the effective RTT and the segment size (up to the current
threshold TCP window grows exponentially).

m= Benanne ~ 2l -(11)
B B RTT
RTT!1 channel | “channel
( %927 2l

Here Bgamne 1S the target channd bandwidth, | is the increment step or segment size and RTT is the
round trip delay estimate used by TCP to resize its window. For symbiosis with the underlying transport
protocol, each time a retransmission timeout event (at t=0), reported the frugal state bandwidth is
determined as following.

g(t) =w(t) whené=0,t=0 --(12)

:md[1+ /z_ﬂngzl
md

=w(t) at  t>Tieeovay

5.3  Symbiosis Mechanism: The Transientware

The important task of gluing between the transport layer and the application unit (MPEG-2 rate
transcoder) is findly performed by the symbiosis unit (Transientware Module or TM). The TM essentially
executes the throttling model. It estimates the parametersrequired to execute the model by probing iTCP as



42
needed and findly it provides the rate parameter to the application as it requires operating in symbiosis.
Bel ow we describe its parameter estimation process and invocation operations.

531 Esimation of the Model Parametersfrom iTCP States

To be able to use the symbiosis throttling model described above, we now show how the model
parameters can be estimated from the TCP gate and event times made accessible by the iTCP. Namely, we
want tofind r, H, RTT, and | from the TCP internal state variables now made available by iTCP.

A) Reaction Delay (T)

Thereaction time T was approximated as following:
r= (tResponseTime_tEvatime) + Urate + Urcp --(13&)

Event Ti ne iswhen the signa handler was invoked. The quantity urce iS a constant approximating
the time taken by iTCP's kernel signaling. We assume urcp =0. Thus Event Ti e is used here as an
approximation of the real time when the event has occurred deep in the TCP layer. ResponseTi ne
approximates the time of the real rate reduction (i.e. when the calculated hpe iSSaved to “r at e. par ” file).

Quanltity U4 is the estimate of the rate control systems reaction time after receiving the new rate, we also
assume Uy 4e=0.

B) Round Trip Time (RTT)

RTT is directly returned by TCP from its dtate variable TCPstate->t_rtttime. TCP
implementation uses the following process to measures round trip time (RTT) and retransmission timer out
(RTO). First, TCP measures the RTT between sending a byte with a given sequence number and receiving
an acknowledgment that covers that sequence number (M denotes the measured RTT). Afterwards, TCP
updates a smoothed RTT estimator R using the low-pass filter:

R« aR+(1-a)M --(13b)

Where @ is a smoothing factor with a recommended value of 0.9. The smoothed RTT is updated
whenever a new measurement M is made. This means that 90% of each new estimate R is from the
previous estimate and 10% is from the new measurement M. TCP then calculates a hew retransmission
timer out value (RTO) based on the mean and variance of the RTT measurement. The technique was
proposed by Jacobson [Jac88]. He used the mean deviation as a good approximation of the standard
deviation sinceit iseasier to compute. In each RTT measurement M, the following cal cul ations are made:
Err=M-A --(13¢)

A « A+ gErr
D «— D + hgain(|EI’I’| - D)

RTO=A+4D
Where A is the smoothed RTT (an estimator of the average) and D is the smoothed mean deviation.
Err isthe difference between the measured value just obtained and the current RTT estimator. Both Aand D



43

Si gnal Handl er (si gnun) {
struct evt Sublnfo *handl nf o;
if (signum== SId O {
getti meof day(event Ti ne) ;
s = Get Socki d();
ProbeEvt I nfo(s, handl nfo);
if (!(child = fork())){
execl (handl nf o->handl er, s, eventTine);
exit(0);
10: }/lend if
11: Y lend if
12: }//end Signal Handl er

CoNoaR~ONME

(a)

1: Loss-TM socket s, eventTi ne){
2: struct connState *TCPstate;
3: probeSocket (s, TCPState);
4: fscanf(timeFile, “%d”, videoStartTine);
5 H = (TCPState->t_rtseq — TCPState->t_iss)*8
/ (videoStartTine - eventTine);
6 getti meof day(respTine);
7: responceDel ay = respTinme - eventTi ne;
8: m = 2*( TCPSt at e- >t _maxseg) *
8 /| TCPState->t_rtttine;

9: B=r esponceDel ay * (H —(nt¥responceDel ay)/2);
10: h_best = mrd* (1 + sqrt(2-(2*Mn¥d)));
11: T_recovery = (h_best/m *
(1 + sqrt(1+(2*B*M/(h*h)));
12: ratefile = fopen(“rate.par”, “w);
13: fwite(h_best, ratefile);
14: St art RecoveryTi nmer (Recovery-TM ;
15: }//end LossTware
16: }

(b)

1 Recover yHandl er (si gnum) {
2 if (signum == S| GALRM {
3: wai t Ti mecount ++;
4 if ( waitTinecount && !ratelK &&
(wai tTinme > T_recovery)){
5 ratefile = fopen(“rate.par”, “w);
6 fwite(original Rate, ratefile);
7: rateoK = 1;
8: Y lend if
9: }/lend if
10: }//end RecoveryTware

(c)

Figure 20. (a) Signal Handler, (b) Loss TM and (c) Recovery handler

are used to calculate the next RTO. The gain g isfor the average and is set to 1/8. The gain for the deviation
is hgin and is set to 1/4.

C) Maximum Segment Size (1)

RTT is directly returned by TCP from its dtate variable TCPst at e- >t _naxseg. Maximum
segment size MSS (we called it | in our model), isthelargest ‘ chunk’ of datathat TCP can send to the other
end. When a connection is established, each end has the option to announce the MSS it iswilling to receive.
When TCP sends a SYN segment, it can send an MSS value up to the outgoing interface’s MTU, minus the
size of the fixed TCP and IP headers. In our experiment, TCP chose an MSS of 1460 bytes.

D) Satisfied State Bandwidth (H)



44

H can be calculated by finding the ratio: number of bytes transmitted so far over elapsed time since

the video has started. This is estimated from two TCP state variables (t_rtseq and t_iss) and two local
measurements:

Y = (TCPstate — t_rtseq —TCPstate — t_iss)x8

Uyideostart Time ~ YeventTime

The difference:
TCPstate — t _rtseq—TCPstate — t_iss

Between the state variables gives how many bytes have been tranamitted so far. We multiply it by eight to
convert it to bitssince all our calculationswill be in bit/second units. The time Ugeogiarttime S the time when
the video started; it was saved in afile by the encoder prior to sending the first frame.

5.32 Transientware | mplementation

The Symbiosis Throttling of equation 12 is actualy implemented in the loss event handler or the TM.
Basically, we need to calculate hpey and Trecovery €VeEry time the TM is invoked. The role of the signal
handler was merely to catch the signa from the kernel and invoke the appropriate TM. To simplify things
we et the encoder subscribe with the retransmit timer out event only. Figure 20 (a) outlines a sketch of the
signal handler code. After catching the SI G O signal, it needs to know which socket generated the event
(line 5) then it probes the socket to get the event number and the TM id (line 6). Once retrieved, it forks a
new child and executes the appropriate TM for the event type (lines 8-10). If aloss event is detected, e.g.,
timer out event, the handler activates the TM shown in Figure 20 (b) which we call Loss- TM The signa
handler passes the socket id (s) and time when the event occurred (event Ti ne) to the TM. Once
activated, the Loss- TM firs probes the socket to retrieve the following parameters from TCP:
t_rtttime (round trip time), i ss (initia send sequence number), t _rtseq (sequence number
being timed), and t _naxseg (maximum segment size). Then it caculates the satisfied state bandwidth
generation rate H, the reaction delay r as explained before. Afterwards, the Loss- TMcalculates m, B, hpes,
and Tyecovery IN @ straightforward manner (lines 8-11). In line 13, it stores the reduced rate hyey in the
“rat e. par” filewhich will be noticed immediately by the symbiotic encoder. Finaly, it startsatimer for
recovery and associates a handler (Recover yHandl er) with this timer—this handler is outlined in
Figure 20 (c). When the timer reaches Trecoverys the recovery handler writes the normal rate (i.e., origina rate
before reduction) into the file“r at e. par”.

Server
SERVER
| TCP-classic
K
A4 v y
XCODER Congestion PLAYER
—> Injector
ITcP TCP-classic TCP-classic
Transcoder- Router Player-
ABone node ABone node

Figure 21. Video transcoder experiment setup



45
54  Experiment and Performance Analysis

We ran the experiment using the real implementation of iTCP kernel and the MPEG-2 Symbiotic
Transcoder. The performance results were obtained from alive experiment of video delivery sessions over
the Internet. Before presenting our results first we will describe the testbed and the setup.

int bursts = 3;
int burstTime[]={3, 3, 3};
int interBurstTine[]={10, 10, 0};
sl eep(10);
for (i=0; i<bursts; i++){
remove entry fromrouting table;
sl eep(burstTinme[i]);
return entry to routing table;
sl eep(interBurstTine);

Figure 22. Congestion Injector mechanism

54.1 The ABone Testbed

We wanted to run the experiment on the rea Internet environment. This required running the
symbiotic transcoder, a sender equipped with iTCP transport protocol, and a set of players on remote hosts
around the world. We could have done this manually by conventional methods to reach a number of remote
nodes worldwide. But this would have required extensive overhead to setup the testbed and maintain.
Therefore, we decided to run the experiment on ABone testbed [Ber02b]. The ABone, devel oped under the
DARPA Active Network program forms a virtual network infrastructure on which a growing set of active
network components can be tested and experimentally deployed. ABone is an operational network and
provides an Internet wide network of routing as well as processing capable nodes. Providers can contribute
confederation of computing capable nodes. Independent application involving multiple trust domains can
be securely launched and executed. It also specifically allows new transport protocol components to be
remotely deployed. ABone nodes are available from Europe, Asia and North America. Individual nodes are
contributed and managed locally and independently by the contributing site administrators. However, the
adminigrators do not have to manage the remote users. Researchers can remotely install and execute
programmed components on any collection of these nodes via the ABone backbone management and
control backplane being a part of a centralized user pool. The codes are distributed via an enlisted set of
Trusted Code Servers (TCS), which help authenticating them prior to distribution. The security domainsare
handled by the backplane control system. The backplane is being maintained by the ABone Coordination
Center (ABOCC) at 1Sl at the University of Southern California. ABone status can be monitored live from
the ABOCC web site [Ber02b]. In addition to the iTCP machine we have a cluster of 10 registered ABone

Table 10. Player locations on the ABone

RTT measurment

Target ABone node Country ) mean l(;lfurr]nutgir
min average max deviation

ave.willab.fi Finland 0.16355 |0.16606 |0.16647 |0.798 24

zzz.abone.supermedia.pl Poland 0.14705 |0.14844 |0.15701 |3.023 23

abone-01.cs.princeton.edu USA 0.03945 |0.04002 |0.04524 |1.319 17

dad.isi.edu USA 0.06548 |0.06572 |0.06610 |0.186 19




46

Table 11. Experiment control flagsand running modes

Control flag Effect

iTCP Turns on/off the interactivity service.
EVENT Turns on/off the event notification service.

Turns on/off the symbiosis feature of the transcoder. When this flag is set, the signal
SYMB handler invokes the event handler to reduce the bit rate of the decoder. Otherwise, the

signal handler just records the event type and time.

Means (OPTimal mode). Used to choose between two modes of Symbiotic rate reduction (i)
OPT optimal backoff mode which uses the symbiosis throttling model described in section 4. or
(ii) exponential backoff mode which uses a preset retraction rate and duration.

Running Control Flags
- Comments

mode iTCP EVENT SYMB OPT

iOPT ON [ ON | ON | ON |Fullinteractivity. Use the optimal backoff symbiosis throttling.

iEXP ON ON | oN | OFF Full interactivity. Use the exponential backoff symbiosis
throttling.

iOFF ON ON | OFF X Subscribe, report event, but do not change bit rate. Used to
measure overhead.

Classic OFF X X X | Turn off all interactivity features.

Table 12. Average frame delay and acceptanceratio

princeton.edu isi.edu willab fi supermedia.pl

mode Average Accept Average Accept Average Accept Average Accept
Delay Ratio Delay Ratio Delay Ratio Delay Ratio

iOPT 0.518 0.797 2.018 0.415 2.504 0.319 1.38 0.692
4=2 iIEXP 2.613 0.529 -0.015 1 -1.239 1 2.411 0.284
iOFF 6.279 0.455 10.82 0.197 8.752 0.155 8.485 0.133
Classic 3.047 0.461 10.957 0.217 6.615 0.273 8.485 0.147
iOPT 0.897 0.976 2.029 0.737 -0.641 1 0.727 1
d=a | IEXP 2.613 0.529 -0.015 1 -1.239 1 2.411 0.777
iOFF 6.279 0.455 10.82 0.197 8.752 0.293 8.485 0.277
Classic 3.047 0.805 10.957 0.395 6.615 0.299 8.485 0.291
iOPT 0.883 1 3.974 0.679 1.623 1 1.387 1
d=¢ | IEXP 2.613 0.997 -0.015 1 -1.239 1 2.411 1
iOFF 6.279 0.455 10.82 0.329 8.752 0.295 8.485 0.277
Classic 3.047 0.805 10.957 0.395 6.615 0.535 8.485 0.52

nodes in our lab at Kent State University (mk00-mk09.maunakea.medianet.kent.edu). Four of these nodes
run on FreeBSD and the rest run on Linux. At thetime of our experiment (Nov. 2003), there were 24 Linux
nodes, 5 Solaris nodes, and 12 FreeBSD nodes registered at the ABone. For our experiment we simply sent
our video player to one of the ABone's trused code server at (http://bro.isi.edu/KENT). Then we
configured and registered our iTCP-kernel machine (kawai.medianet.kent.edu) as a primary node on the
ABone to run iTCP and the symbiotic transcoder. The server remained in a traditional (non active) node.
The ABone allowed the automatic loading of the sessions on designated machines worldwide.

542  Experiment Setup

This experiment describes the performance of an MPEG-2 1SO/IEC13818-2 (176x120) resolution
video encoded with base frame rate of 2 Mbps at main profile. Figure 21 illustrates the deployment setup.



47
The video server runs on a classic TCP machine (manoa) and feeds the video stream into the transcoder,
which runs on the iTCP active node (kawai). To create some forced congestion in the experiment we also
run a congestion injector program on a first-mile active gateway router (lahaina). The injector creates
congestion bursts. Figure 22 shows the congestion injector. It allows the duration, and the interval between
bursts to be programmed for three consecutive bursts. During a congestion burst the router will smply
disrupt its routing table by removing the entry that leads to the player machine. When the burst timeis over,
the router restores the routing table back to normal. In our experiment, we used 3 three-second bursts at 10
second intervals. A three-second burst usually triggers 1 to 2 retranamit timer out events depending on the
player’s location. We ran the players on selected remote ABone node. We repeated the experiment on four
ABone nodes, two in the US and two in Europe. Some general network conditions observed of the four
target nodes are shown in Table 10. The player and transcoder units were enhanced to collect detail frame
arrival, and delivery measurements.

54.3 Impact on Video Frame Delay

For detail comparison we have performed several sets of experiment. Theseare: i OPT, i EXP, i OFF,
and d assi ¢ modes. In the i OPT (optimal backoff) mode, we activated the throttling model described
above to calculate hyes and Trecovery With every loss event. We challenged the system to provide the frames
at guaranteed d=6, 4, and 2 seconds. As a base case we also repeated the experiment with the same
congestion schedule in classical mode where the interactive and symbictic rate adaptation features were
turned-off and the entire system run in classical TCP mode. Wecall it Cl assi ¢ mode. For comparison we
also included the case of i EXP used in our previous work to demongtrate the effectiveness of iTCP. Itisa
non-optimized smple heuristics-based symbiosis which performs a lazy binary back-off scheme for the
generation rate. The method adapts but it can not provide QoS guarantee as of the throttling model. Detail
of this simple schemeisin [Kha03c]. With the i EXP (exponential backoff) mode, we used a predetermined

Table 13. hpes and Trecovery Statisticsfor three ABone nodes

d(sec) event princeton.edu willab.fi supermedia.pl isi.edu
h best Trecovery h best Trecovery h best Trecovery h best Trecovery
el 512240 1.520135 1443311 15.68562 1333511 14.49148 824810 4,952
2 e2 491954 | 1.459965 | 1292875 | 14.04808 | 1223663 | 13.29792 | 969318 5.81185

e3 496552 | 1.476599 | 1309004 | 14.22661 | 1257601 | 13.66691 | 891772 4.94007
el 279963 | 0.851075 602184 6.551785 665086 7.228908 | 453645 2.7236
4 e2 261526 | 0.792414 564819 6.145352 584324 6.355469 | 499010 2.58743
e3 259565 | 0.788820 604674 6.579283 602115 6.550372 | 399208 2.47848
el 186117 | 0.573669 486808 5.301540 467211 5.085250 | 340233 1.90652
6 e2 173629 | 0.525550 419186 4557723 401019 4.368733 | 323222 1.73493
e3 172046 | 0.539606 307244 3.343913 411801 4.480751 | 299405 1.86838

reduction ratio (o« = 0.35) and multiplied that with current bit rate to calculate the frugal state bit rate, we
also used a fixed recovery time of 4.0 seconds. We also repeated the experiments in another mode called
i OFF for overhead estimation. The mode is smilar to classic TCP. No symbiosis is performed. But the
event subscription mechanism remains active. This will be explained later. In all the iTCP enabled runs
(i OPT, i EXP and i OFF), the transcoder subscribes with iTCP for the retransmission timer out event. In
the experiment, we took frame-wise detail event trace of the first 750 frames of the video at both sending
and receiving ends. For a given discard threshold time in the receiving end we also traced which frame was
successfully received or not at the MPEG-2 player. As explained earlier, we traced four transport aware
cases (i OPT with three values of delay tolerance d=2, 4, and 6 seconds and i EXP) and two transport
unaware cases (i OFF and  assi ¢). Please, return to Table 11 for running modes details.

Now we show the dramatic impact of iTCP s interactivity based symbiosis. In Figure 23 we plot the delay
experienced by the video frames in terms of frame arrival time at the player for the six modes mentioned
above. In addition to that, we also show the idea expected frame delivery time—Expect ed in the
figure—based on linear generation rate. As can be seen iTCP outperformed classical TCP, after every



48

Table 14. Per centage of total bits delivered for each mode

princeton.edu isi.edu supermedia.pl willab fi
Target Actual Target Actual Target Actual Target Actual
iOPT, d=2 0.912 0.913 0.898 0.901 0.886 0.886 0.929 0.929
iOPT, d=4 0.966 0.966 0.892 0.897 0.814 0.826 0.789 0.791
iOPT, d=6 0.975 0.98 0.94 0.945 0.87 0.88 0.867 0.874
iEXP 0.843 0.843 0.835 0.835 0.862 0.862 0.86 0.86
iOFF, Classic 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

congestion burst, the unaware cases (Cl assi ¢ and i OFF) continuously fell behind. The delay built up
and it could hardly recover. Thisis evident by the step jumps in the delay line. The TCP aware cases aso
suffered some step buildup, but it was much smaller and it could recover after few seconds due to the rate
retraction. In Table 12 we present the frame delay and acceptance ratio comparison for the whole stream.
The table shows the performance for three choices of delay tolerance d=2, 4, and 6 seconds. For each value
of d we traced the four running modes (i OPT, i EXP, i OFF, and d assi ¢) and recorded the average
delay in seconds that each frame has experienced and the frame acceptance ratio at the four receiving
player ABone nodes. It can be clearly noticed that iTCP/aware modes achieved low delays and high
acceptance percentages while the unaware/classic modes suffered from higher delays and lower acceptance
percentages. We present this information visually in Figure 24. In this figure we show the number of
frames accepted at by the video player for the three choices of delay tolerance. Clearly iTCP's TM
mechanism allowed the application to use sophisticated optimization techniques to optimally control the
temporal qualities of itstraffic.

544 Symbiotic Rate Control

In the next set of experiments we present the internals of the symbiosis mechanism in more detail.
Figure 25 depicts the symbiotic frame rate transcoding that occurred due to the joint rate specification at the
rate control logic at the symbiosis unit and in the transcoder for each frame. In the figure we show four
plots for the four target ABone nodes. Each plot represents the iOPT mode run for the delay tolerance case
d=4. Table 13 presents the actual values of hyet @Nd Trecovery that controlled the frugal mode operation as
calculated by the symbiosis controller TM after being activated by each one of the three loss events created
in the experiments. In each plot of Figure 25 we see the target bit rate and the retraction ratio as specified
by the symbiosis contraller, and the resulting outgoing actual frame rate generated by the transcoder. The
timer out events (in this case there are 3 timeout events) reported by i TCP resulted in the symbiosis unit to
modify the rate according to the optimal backoff symbiotic rule (equation 12). Though, the precise MPEG-
2 generation rate varied widdy from frame to frame to accommodate the frame type, but the general trend
followed the specified target. Table 14 provides the overall stream compression due to symbiotic adaptation
for the entire stream (i OPT and i EXP cases), as compared to the normal non-symbiotic cases (i OFF and
Cl assic cases). Inthe C assic and i OFF cases, there were no adaptation (thus retraction =1).
Compared to this both i OPT and iEXP reduced the overall ddivered bits about 83-95%. However, it is
interesting to note that i EXP without its optimization logic, operated more aggressively and compressed



49

abone-01.cs.princeton.edu

dad.isi.edu

0

ul ul
8 B
3 3
@ @
2 2
z z
S S
5 5
@ @
7 7
@ @
o o
101 201 301 401 501 601 401 501 601
Frame number Frame number
ave.willab.fi zzz.abone.supermedia.pl
ul ul
B 8
3 3
@ @
2 2
z z
S S
g g
@ @
7 7
@ @
o o
401 501 601 701 301 401 501 601
Frame number Frame number
Figure 23. Frame Arrival Trace
[2iOPT B iEXPO OFF O Classic|
abone-01.cs.princeton.edu dad.isi.edu
800
z z
© 700 o
5 Py
8 s00 5
(9] [9)
T 400 =
2 2
= 30 =
o o
3 20 3
& 100 13
0
D=2 D=4 D=6 D=2 D=4 D=6
Dealy tolerance (sec.) Dealy tolerance (sec.)
ave.willab.fi zzz.abone.supermedia.pl
= 800 = 800
© 700 S 700
o o
;‘ 600 ;‘ 600
8 500 8 500
[9) [9)
% 400 % 400
2 300 2 300
g 20 g 200
8 100 8 100
0
D=2 D=4 D=6 D=2 D=4 D=6

Dealy tolerance (sec.)

Dealy tolerance (sec.)

Figure 24. Number of frames accepted for three values of delay tolerance



50

Frame arrival time (sec.)

—— Event —— Target Bits Actual Bits ‘
abone-01.cs.princeton.edu dad.isi.edu
20 20
@ l o | 1
@ 16 [ | @ 16 | |
: | T L,
5 12| | 512 | \ i
3 . | 3 . ) IR
% a :'wr“\-'ylc A ‘mJ J 8‘7'*;:‘:«:": !H il ?J
I \
R [ P AN, | (S I A At
S i fﬂhwﬁi'" mrl HHM S i nr‘ mawnwp hyif | Hm
1V "
1 161 261 361 401 501 601 701 1 161 201 3(|)1 4(|)1 5(|)1 601 701
Frame number Frame number
ave.willab.fi zzz.abone.supermedia.pl
20 20
% 16 i % 16
%] %]
?'3 | l '||||||I| ?'3 | ||||||||I|
512 ‘ | o 5 12| | N
;[N T : I Iel L
% O ,.|,| PR 1{ .TJ % alll 1,‘ i 1 G I (,1{ .rJ*
o C O o [l AL
g Nnﬂﬂﬂcﬁpl j,r‘”.mﬂ ;LHNH MHW g Mmﬂﬂ kfrmn}m mf-lfflu?w HM
ity | call vt :
1 101 261 361 461 501 601 701 1 161 201 361 461 501 601 701
Frame number Frame number
Figure 25. Symbioctic Rate Reduction
= iOFF iEXP iOPT, d:4‘
abone-01.cs.princeton.edu dad.isi.edu
50 50
%) %)
z z
T T
e} e}
[= [=
£ £
g <
3 3
g g
Z Z
10 10
0 20 40 60 80 0 20 40 60 80
Frame arrival time (sec.) Frame arrival time (sec.)
ave.willab.fi zzz.abone.supermedia.pl
50 50
%) %)
;ZU 40 ;ZU . L]
g "k . o g i ¥4T
: "% 73 : S 2 ﬁi
? : ? [y B u
£ 2 5 3 .
Z Z
10 : : : 10
0 20 40 60 80 0 20 40 60 80

Frame arrival time (sec.)

Figure 26. Frame Arrival time and frame SNR quality tradeoff



51
more (for example i EXPs’ 85% vs. i OPTs’ 91% in d=2). In comparison i OPT operated more
confidently (i.e., reduced less hits), yet achieved higher temporal quaity (average delay is 2.6 sec vs. 0.5
sec for same cases).

545 Observation at Application Level:

In the above experiments we illusrated how the symbiosis mechanism worked from the video
transport protocol (MPEG-2) and the network transport protocol TCP layers beneath it. In this plot we will
illugtrate how this mechanism appears from the very top—at the application layer itself. An application
receives and delivers uncompressed frames. The performance metric this end-system uses is the tempora
and spatial quality difference between the transmitted and the reproduced uncompressed video frames. The
underlying MPEG-2 system and the network layer TCP together provide the transport service. The specific
compression, windowing etc. and other detail mechanisms are external techniques to the end systems.

In Figure 26 each frameis plotted as a point in the video quality/frame delay plane. The figure shows
four plots for the four ABone nodes, and each plot represents three running modes (i OPT with d=4, i EXP,
and d assi ¢). As can be seen from the region of the three QoS distributions, in TCP-classic, athough
frames have been generated with SNR quality ranging between 18-40 dB, but many of these frames
suffered long delay and were lost in transport. In contrast, the interactive i OPT mode managed to deliver
all frames with guaranteed delay with the bulk of the frames had 10-32 dB quality. It is interesting to note
that thei EXP mode achieved the same tradeoff, but since it took a non-optimized and thus more aggressive
approach in symbiotic rate reduction the quality suffered more loss and recorded values as low as 7 dB.
Fundamentally, what iTCP has offered is a quditatively (as opposed to the quantitative improvements
offered by any unaware solution) new empowering mechanism, where the catastrophic frame delay can be
traded off for acceptable reduction in SNR quality.

Interactivity Overhead

30 +— —

90
—4 80
5 70 -
2 o iOPT, d=4
S 50 L _
ot B iOFF
= 40 L — )
% ° O Classic
0
]
o

20 + —
10 —

princeton.edu willab.fi isi.edu supermedia.pl

ABone node

Figure 27. Inter activity service over head

54.6 Interactivity Overhead

The dramatic advantage in application level performance came a a cost since the event tracking
mechanism added some overhead. We were also curious to find out the overhead of the event mechanism.
To track the overhead, we recorded the total data transmission time under the three conditions (i OPT,
i OFF, and O assi c). Theleft most bar of Figure 27 plots the trangport time for the optima interactive
mode where we activate both event delivery and symbiosis. To observe the overhead of the event service,
in the i OFF mode we used the iTCP implementation, however, we stopped the symbiotic reduction so the
transport layer handled the same amount of data. As expected the overall transmission time increased in all
three cases. However, in the third column (Cl assi ¢ mode) run we turned off the interactive service
altogether and thus we saved its overhead and lost its benefit. As can be seen, the dlight increase in the



52
event delivery overhead was vastly offset by the application level technique. The advantage the application
gained from the event delivery was much bigger than the overhead.

55 Conclusion

In this chapter, we have presented a case of rate symbiosis mechanism in line with current advances in
TCP-friendly systems. We collected the results of our experiment by running the video session on the
global Active Network (ABone) testbed. In the previous discussion we have demonstrated the case of
quality conformant congestion control for time-sensitive video traffic. The approach exposed the overal
advantage of network ‘friendly’ applications. However, it aso departs significantly from the maingream
TCP friendly systems that have been suggested recently in two senses; First, it does not add any new major
component in network software structure. One of the principal strength of the proposed scheme is its
relative smplicity at network layers—yet its effectiveness. It only expects some form of interactivity
directly from the concerned network protocols as a general interface feature. Thus, there is no expectation
of (or conflict with) additional services (such as combined congestion control from multiple applications).
Secondly, the applications do not have to be designed dependent on other auxiliary indirect probing tools or
network utilities, nor it excludes their use when available. Some of the information measured by the
auxiliary tools suggested by other approaches might be already available (or are being estimated/tracked) at
lower layers anyway. At least this is the case with TCP congestion. The direct protocol interactivity we
propose thus seems to be the logical path that can avoid potential duplication of efforts.



CHAPTER 6
IPMN: Interactive Protocol for Mobile Networking

There are two well known challenges in the literature for Internet host mobility; (i) improving TCP
level performance and (ii) reducing handoff latency. Until now, most solutions that were proposed were
kept in lower network layers (i.e, link layer, 1P, or TCP layer). In this chapter we present an end-to-end
host mobility solution based on the InTraN paradigm. The solution alows continuous operation of TCP
between the two endpoints even with the presence of handoffs and long disconnections, and it aso enables
the mobile node to perform fast handoffs with minimum or no loss. We have implemented the scheme on
FreeBSD and tested the real system over the Internet. We show with experimentation on three types of
traffic (Voice, WWW, and FTP) that our scheme can substantially reduce handoff latency and improve
TCP performance.

6.1 Introduction

Classic IP protocol was designed long time ago for wireline Internet with no support for node
mobility. Its routing mechanism relies on 1P address semantics to deliver packets to a destination node
whose location is assumed to be fixed. The same argument also applies to TCP, whose congestion control
mechanism assumes that the path between the two endpoints is 'wired'. Since the advent of wireless
technology and the tremendous growth of mobile networking applications, a persisence need has emerged
to remedy the TCP/IP stack and make it mobile networking compatible. On the IP level, we need to be able
to deliver packets to a mobile node regardless of its current point of attachment, and on the TCP level we
need to be able to identify the reasons behind packet loss and react to them differently; if loss was due to
congestion on the wired link, we let TCP run its native course-invoke the appropriate congestion control
procedure. However, if the loss was due to radio disturbance on the wirdless link or due to handoff
disconnection, TCP should retransmit as soon as possible without any rate throttling.

Fortunately, classic IP allows a mobile node to roam from one access point to ancther as long as it
remains in the same IP subnet. In this case, the mobile node has to perform link-layer (L2) handoffs in
order to maintain its wireless connectivity and these L2 handoffs remain transparent to the IP layer (L3).
However, if the mobile node migrates to a different |P subnet, its current 1P address becomes topologically
invalid and it must acquire a new IP address from the newly visited network, i.e., it must also perform L3
handoff. Otherwise, all its existing TCP/IP connections become useless.

Extensive research has been done recently to address these problems. One of the most well known
mobility solutions on the IP level is Mobile IP (MIP) [Per96] which has been endorsed by the IETF. MIP
provided aglobal logical solution by introducing indirection through a set of Mobility Agents. Each mobile
nodeisidentified by an IP address assigned to it by its home network—called home address—regardl ess of
its current point of attachment. MIP introduced three new entities, namely the home agent, the foreign
agent and the mobile node. Whenever a mobile node performs L3 handoff, it must register its current point
of attachment with the home agent. For every registered mobile node, the home agent intercepts all
incoming traffic from a given sender—usually referred to as the correspondent node—and redirects it
through tunneling (packet encapsulation) to the mobile node’s most recently registered location. Traffic
from the mobile node to the correspondent node is routed normally (possibly bypassing the home agent).
This kind of traffic flow is referred to in the literature as triangular routing. In MIP, foreign agents
periodically broadcast agent advertisements to detect mobile node's movement. When the mobile node
decides to migrate to a new subnet, it configures a new care-of-address, and then it regigters this address
with the home agent. The home agent updates its address binding cache and sends an ACK to the mobile
node. Communication between the two endpoints cannot resume until registration is completed at the home
agent.
Although MIP has provided a global solution for 1P level mobility, but it has also introduced its own
performance problems. Some of them stem from the complicated handoff procedures which resulted in
longer handoff latencies—which have also affected TCP level performance—and others from the longer
routes due to triangular routing. Since its release, MIP has gone through several modifications like route

53



54
optimization extensions [Per00] [Per01]. Actualy, a great dea of the research on mobile networking is
focusing on MIP and its performance. For example, Researchers aimed at reducing regisration signaling
delay by introducing a hierarchical structure and therefore alowing regional registration and reduced round
trip delay [CamO01] [Gus01] [Hri02] [Ram99]. Other proposals took a different approach by suggesting a
deployment scheme of MIP based on existing infrastructure like The RAT (Reverse Address Trandation)
scheme [SIT99] which is based on the network addresstrandation (NAT) protocol [Sri99].

At the TCP level, many solutions have been proposed to fix its performance problem over mobile
networks. These solutions have been classified in the literature in three categories; link layer protocols
[Aya95] [Bal95], split-connection protocols[Yav95 | [Bakr97], and end-to-end solutions [Mat96] [Baks97].
A good survey on TCP extensions for mobile networks can be found in [AnjO3] [Ela02]. Most of these
proposals however, mainly targeted TCP level performance assuming the 1P mobility solution already
existed. Therefore, to solve the mobility problem on both levels (TCP and IP), we can either (i) combine a
TCP level solution with an 1P mobility solution (e.g., use SACK [Mat96] over MIP), or (ii) just propose
one complete solution for both problems. The first option can be extremely costly in terms of extra
overhead—and probably redundancy—due to lack of synchronization between the two solutions. The
second option may be effective only if both protocols can share relevant events and state transitions
(possibly through athird party) to be able to synchronize their actions.

In this chapter we present IPMN (Interactive Protocol for Mobile Networking). IPMN provides a
solution for IP mobility problem as well as TCP peformance problem over mobile networks. The
scheme—which diverts from the MIP approach—is based on the InTraN paradigm. With IPMN the
correspondent node can send packets directly to the mobile node and eliminates triangular routing. More
importantly, it can also perform rapid handoff with very little or no loss of TCP segments.

6.2 Related Work

We found several proposals in the literature with some kind of protocol interactivity. For example,
Wu, et al. [Wu01] proposed an intelligent handoff scheme for mobile wireless Internet over MIP. One
aspect of this scheme is to let L2 send a notification to L3 whenever L2 has successfully finished
performing handoff. Also, Fikouras, et d, [FikO1] aimed at reducing movement detection delay in MIP by
introducing a hinted based movement detection agorithm called Fast Hinted Cell Snitching (FHCS). The
scheme alows L2 to send ‘triggers to L3 whenever a handoff event is initiated. These proposals have
shown that such smple form of interactivity has an obvious advantage. However, they are fundamentally
different from our scheme in two aspects: (i) they are based on MIP while our scheme offers a complete
mobility solution that can replace MIP, and (ii) their event notification remains within lower network layers.
But, since our interactive paradigm allows interactivity between lower layers and the application layer, we
can deploy the solution at the application layer itself which has several advantages over low-layer solutions
only.

6.3  Interactive Protocol for M obile Networks (IPMN)
6.3.1 The Scheme

We employed the InTraN paradigm to design a globa IP level mobility solution which aso
incorporates a TCP level performance solution during handoff. The basic idea of our scheme is to enable
the mobile node to obtain a new IP from the future access router before handoff is performed, replace the
‘source IP field in the TCP/IP gtack of the mobile node with the new IP, and relay the new IP to the
correspondent node. Once it receives the new IP, the correspondent node immediately switches to the new
IP by replacing the ‘destination IP' field in the TCP/IP stack with the new IP. A best case scenario for this
scheme would happen if the mobile node can | ocate the new access router and obtain anew IP address (e.g.,
through a DHCP server) before loosing connection with its current access router. Once it obtainsits new IP
address, the mohile node proceeds with L3 handoff as follows:

1. Freezethe TCP connection by advertising a zero window to the correspondent node.

2. Perform actual L3 handoff by replacing the IP fields in the TCP/IP stack at both the mobile node and
the correspondent node with the new 1P address.

3. Wakeup TCP by advertising a nonzero window to the correspondent node.



55

Mobile Node Correspondent Node

Application layer Application layer

Handler 3 |_ I I Wl'\l_>_9 g?s_u[n_e)_ ________ Handler 4 - -|-
-| Handler 2 :|- o ey '
1
WIN=0 (freeze
Handler 1 —|----------------£---Z ------ \ E
]
1
|
B ¢ TCP

TCP
[Eadatadad P
Event 3 J e » Event 4
IP

1P

dl 821N0S YyaIms

e e e —— =

d| uoneunssp youms

Base Station

- P |: Event 2 Wireless ¢ -
Link 0 Backbone
- <0 0 Network -
Link Layer Link Layer
Event 1

Figure 28. IPMN-Full ar chitecture

Handoff pre-processing, i.e., locating a future access router and obtaining a new 1P address, can also be
done at the application level prior to L2 handoff. Fortunately, since we allow protocol interactivity, we can
configure L2 to send an early signal the application layer about an impeding handoff. This gives the
application layer a grace period to do all this 'bookkeeping' while it is still connected through the current
access router. Naturaly, a simple application level 1P-lookup module should perform the task. We can
benefit from interactivity again by allowing this IP-lookup module to probe L2 for the identity of the next
access router (e.g., its IP address). Then, this module can contact the router and obtain the next |P address
via a DHCP attached scheme. A number of previous works like [FikO1] [ST99] and [Y 0k02] have shown
excellent schemes that can support this methodol ogy. We can re-model these schemes—or some aspects of
them—via the InTraN paradigm to implement the handoff pre-processing illustrated above. Furthermore,
we believe that since the mobile node can obtain a new 1P before handoff, this pre-processing should not
impact handoff latency. The purpose of this current implementation of IPMN is to experiment the basic
idea of physically changing the IP number at both end-points whenever the mobile node configures a new
IP address. Therefore, this version of IPMN, only implements the three-step L3 handoff procedure shown
above.

6.3.2 TheArchitecture

We propose two modes of our scheme: A light-weight implementation that we call IPMN-Half and a
more robust, heavy-weight implementation we call IPMN-Full. The primary difference between the two
modes is the amount of internal inter-protocol interactivity involved. While in IPMN-Half a mobile node
uses an explicit application-level message to relay the new |P number to the correspondent node, in IPMN-
Full the mobile node uses interactivity and TCP level communication to perform the same task.

A) IPMN-Full Mode:

Figure 28 describes the conceptual architecture of IPMN-Full, and Table 15 describes the
corresponding events and their handling sequences at each endpoint. At the mobile node, when the link
layer detects signal fading and initiates L2 handoff (event 1), it signals the subscribing application. When
the event isreceived at the application layer, a Transientware module (handler 1) is activated immediately;
this module simply makes a smple system call which lets TCP advertise a zero window to the



Node Event Layer

56

Table 15. IPMN-Full events

Event tracked

Action taken by event handler

No.
1 LL Wireless signal fading. | Advertises a zero window to the FH. The freeze
Prepare to perform mechanism of TCP will force the FH to stop
handoff to next BS. transmission.
§ 2 IP A new IP has been Call the switch_ip() system call. This will replace the
= assigned to the MN from | source IP filed in the IP header of the MN with the new IP
= the new BS. and will send a segment to the FH with TCP option =
8 SWITCH_IP to replace the destination IP field on the FH.
D
3 TCP |The 'SWITCH_IP’ Advertises a non-zero window to the FH. This will
segment has been ACK- |unfreeze the connection and enable the FH to resume
ed. transmission.
4 TCP | A special TCP segment | Strip the new IP number from the options part of the
g >1<" received with TCP segment, then call the Switch_IP() system call which
@3 option=SWITCH_IP. stores the new IP in the destination IP field of the IP
header overwriting the old IP number.
Mobile Node Correspondent Node
Application layer Application layer
Handler 2 Switch IP message Switch P [7[7]™!
module '
w4 Handler 3 I Wl'\l_>_9 Srgs_uin_e)_ ________ : 7))
2 | 1E
8 WIN=0 (f ' g
gi | Handler 1 |—- -------------- (freeze) ____. ! : i g
= ! 2
S ;o =
@ ! =
T : P ! g.
! TCP o p TCP =
: Event 3 J : ______ » E
! |
] 1
! P . IP -
Ly [@ Wireless Base Station < -
Link 0 Backbone
Network
Link Layer = 0 Link Layer
Event 1

Figure 29. IPMN-Half architecture

correspondent node. This would normaly cause the correspondent node to stop transmission. When the
mobile node gets a new IP from the future network (event 2), it activates (handler 2) which transmits the
future I P to the correspondent node at TCP level through a system call. Thenew IPis sent in a specia TCP
segment with ‘opti on=SW TCH_I| P'. At the correspondent node, When TCP recognizes this option
(event 4) it activates (handler 4) which then triggers a swi tch_i p() system call to replace the
‘destination IP field in the TCP/IP stack with the newly received IP number. Meanwhile, at the mobile
node (handler 2) aso makes a similar system call which changes the ‘source IP filed in its own TCP/IP
stack. When the previous ‘SW TCH_| P’ segment is ACKed at the mobile node (event 3), the mobile node
advertises a non-zero window to the correspondent node which enables it to resume transmission.



57

Table 16. IPMN-Half events
Node Event Layer Event tracked Action taken by event handler
No.
1 LL Wireless signal fading. | Advertises a zero window to the FH. The freeze
Prepare to perform mechanism of TCP will force the FH to stop
handoff to next BS. transmission.
= 2 IP A new IP has been Send a special message to the peer application on the
S assigned to the MN from | FH. The message carries the new IP just assigned to the
= the new BS. MN. When the FH receives the message, it runs a
b module that makes a special system call Switch_IP().
S This system function will replace the destination IP field
® in the IP header with the new IP.
3 LL Handoff has just finished | Advertises a hon-zero window to the FH. This will
unfreeze the connection and enable the FH to resume
transmission.

B) IPMN-Half Mode:

In this mode, we deploy the interactive protocol only at the mobile node. Figure 29 depicts the
conceptual design and Table 16 describes the corresponding events and their handling sequences. Events 1
and 3 have the same meaning and handling as in the previous ‘Full’ mode. Event 2, however, is handled
differently; when (handler 2) is activated, it makes a system call to probe the TCP layer for the new IP
number. It then sends this IP number to the correspondent node using anormal wri t e() socket operation.
Naturally, since the correspondent node can ‘r ead() ’ the new IP directly from the socket, it does not have
to catch any events or activate handlers. When the correspondent node receives the message it strips off the
IP number and makesaswi t ch_i p() system call—as in the previous mode—to change the ‘ destination
IP number in the TCP/IP gtack. The remaining procedure isidentica to the 'Full' mode.

Correspondent
Node (CN)

Gateway

=l

0000

|
BS1
—

Node (MN)

=z
=

Figure 30. Experiment setup



58
C) Freeze TCP:

Advertising a zero window to the correspondent node to temporarily freeze the TCP connection was
proposed in [Gof00] by Goff, et a, to improve TCP level performance over wireless networks. We adapted
this part of the solution in our interactive scheme as a way to avoid packet loss during handoff. Although
this will dlightly disrupt the service while handoff is being performed, but since we avoid packet loss, the

Tablel17. IPMN API

System Call Usage

Let TCP transmit a special segment carrying the new IP to the other
end. Used in ‘full interactive’ mode only.

Switch_Source_IP(IP_addr) |Changes the source IP address in local TCP/IP stack.
Switch_Dest_IP(IP_addr) Changes the destination IP address in local TCP/IP stack.

Let TCP freeze its transmission by advertising a zero window to the
other end.

Resume_TCP() Let TCP resume its transmission by advertising a nhon-zero window.

Relay_IP(IP_addr)

Freeze_TCP()

Table 18. Correspondent node locations

Name Location IP number Average RTT Hops from MN
Local Kent, Ohio 131.123.36.11 1ms 3

Virginia Chantilly, Virginia 66.94.95.235 90 ms 19

Al-Quds Palestine 62.90.25.58 356 ms 25

correspondent node will not resort to congestion control procedures avoiding unnecessary retransmissions
and sender rate throttling. As we show later, this will definitely improve TCP performance and save
network resources.

6.4  Experiment Setup and Traffic Generation

We have implemented the scheme on FreeBSD-4.5 by extending the kernel source code with InTraN
components. In addition to that, we have created a number of system calls that implement the system’s API
shown in Table 17. These functions were used by the TMs as we described earlier in the IPMN architecture.

6.41 Experiment Setup

Figure 30 explains the experiment setup. We used three machines with AMD 1.6 GHz processor (BS1,
BS2, and BS2) as our Base Sations and a laptop with Intel P-I11 processor as our mobile node. The (GW)
machine was our gateway to the Internet and was also used to configure each one of the Base Stations as a
separate subnet with four IP numbers per subnet. We installed FreeBSD-4.5 on all BS machines, the mobile
node, and the correspondent node. For IPMN experiments we installed the BSD-interactive on the mobile
node and the correspondent node only. For the MIP experiments we installed the MIP implementation of
the Portland State University [Bin99]-also known as PSUMIP—on the mobile node and the three BS
machines. One of the three Base Stations machine (BS1) was configured as the Home Agent (HA), and the
other two (BS2 and BS3) were configured as Foreign Agents.

For MIP signaling to work correctly, the time must be synchronized on all machines which run the
MIP daemons. To achieve thiswe used the (nt pd) utility in FreeBSD to synchronize with three STATUM-
2 external time servers. We used the simplest possible MIP configuration to reduce unnecessary overhead.
We placed the correspondent node in three locations, one locally (in our lab) and two remotdly: at Al-Quds
University in



59

Call Arrival Distribution

3000

2500

i

i i
. I I

|

I
"L 4

Interarrival time (ms)

41 51 61 71

31
Call number

Figure 31. Sampling of call interarrival

30
—0—L1=0.004168

—0— 2= 0003334 1
—4—13=0.002778

25 A

. /\
15 S‘? A H o
olo 8 3 Je“”‘ﬁ /\ nf M/\
i

1 11 21 31 41 51 61

Figure 32. Sampling of call duration over 5hours

Palesting, and in Virginia, U.S.A. Correspondent node locations and their characteristics are shown in
Table 18. In each run, we let the correspondent node generate traffic and transmit to the mobile node. We
also et the mobile node move along the cyclic path (BS1—-BS2—BS3—BS2—BS1—...). We configured
the mobile node to perform handoff every 3 minutes. We used a switch to simulate L2 wirel ess handoff; for
example, in Figure 30 the mobile node is connected to BSL1 through the switch. To perform L2 handoff
from BSL to BS2, we manually unplugged BS1 from the switch and instantly plugged BS2 to an empty port
in the switch. We kept the mobile node connected to the switch all the time.

6.4.2 Traffic Characteristics

In order to model real-world traffic, we used a tool called NetSpec [Jon98] which was developed at
The University of Kansas—to generate traffic at the correspondent node. Netspec offers several source
models which can generate simulated traffic for Telnet, FTP, Video, Voice, and WWW [Lee9d5]. We ran
the experiment with three types of traffic: Voice, WWW, and FTP. Below, we explain the statistical
properties of these three traffic types.



60

A) Voice Traffic:

In NetSpec, voice has been characterized by a constant bit rate (CBR) source. Sampling rate is 8 kHz
and each sample is 8 hits. This gives the standard bit rate of 64 Kb/sec for acceptable voice quality. Call
arrivals are modeled by a Poisson process with fix hourly rates within one-hour periods. This means that
the interarrival time between two calls is exponentialy distributed. The probability density function of
exponential distribution is given by:

fy (X) = A ,A =1/mean

Session duration (holding time) for voice calls was aso modeled by a Poisson process and followed
the exponentia distribution. Figure 31 shows an example of call arrivals with A=1 over 5 hours sampling,
and Figure 32 shows an example of call duration over 5 hour sampling with three values of &: 21=0.004167,
12=0.003333, 1.3=0.002777. If we take the inverse of these ks, we get mean cal durations 3, 4, and 5
minutes respectively. At the call level, the source is presented to the network as a constant-bit stream. To
generate a 64 Khb/sec voice stream, talk burgts were generated by a 144-byte blocks separated by 18 ms
silence periods.

B) WWW Traffic:

WWW traffic is modeled at two levels: call level and session level. The cal level models the
interarrival times of multiple sessions. The session level on the other hand models the document sze.
Request arrivals are modeled by a homogenous Poisson process within one-hour intervals. The interarrival
time between two requests is exponentially distributed. The distribution of document size is a Pareto
distribution. The probability mass function of a Pareto digtribution is:

fy(X)=ak¥x 9t

And its cumulative distribution function is given by:

k) 0.4<a <0.63
Fx () =1 [}j k<21

C) FTP Traffic:

Like www traffic, FTP traffic is modeled at two levels: call level and session level. The cal level
models the interarrival times of multiple sessions. The interarrival time between two FTP sessions is
exponentially distributed. During a single FTP session multiple data items of varying sizes are transferred.
NetSpec used a fixed distribution to model the number of items per session called (ftpNOfltems), and a
fixed distribution to model items szes caled (ftpltemSize). Both models were based on the log-normal
distribution. For a detailed discussion on these distributions and other traffic types in NetSpec please refer
to [Leeds].

For WWW traffic, we repeated the experiment with two choices of the interarrival parameter A and
shape parameter o; we combined %;=0.000001 and o;=0.4 in one set of runs and we combined
%,=0.000005 with 0;=0.55 in another set. For Voice and FTP traffic we ran all experiments with the same
two choices of the interarrival parameter L. Since & isthe inverse of mean interarrival, k, will yield longer
interarrival intervals.

6.5 Performance Resultsand Analysis
6.5.1 Handoff Latency

One of the most important features of our interactive scheme is its short handoff latency. In Table 19
we show the handoff latency (in milliseconds) of the three traffic types (FTP, WWW, and Voice) on two
cases of the correspondent node location (Local, and Virginia). The columns show the three running modes
of the experiment (IPMN-Full, IPMN-Half, and Mobile IP). For each running mode we show two sub-
columns (Protocol Latency, and Total Latency). The Protocol Latency column shows the time needed by
the protocol (i.e. IMPN or MIP) to finish L3 handoff and become ready to resume its communication



Table 19. Handoff L atency

61

IPMN-Full IPMN-Half Mobile IP
Protocol Total Protocol Total Protocol Total
Latency Latency Latency | Latency Latency Latency Difference
91 98 517 520 40615 60017 19402
Local 102 109 543 552 52655 58841 6186
94 103 541 545 34767 57067 22300
- 89 94 540 550 37690 57966 20276
% 109 110 131 134 70934 185907 114973
Virginia 110 120 126 132 78928 130120 51192
111 116 130 139 203575 204395 820
109 113 129 135 64684 122791 58107
Average 101.88 107.88 332.13 338.38 72981 109638 36657
108 118 527 532 28687 29600 913
Local 90 91 544 551 53636 58148 4512
88 93 521 524 74728 122712 47984
s 92 96 539 547 54417 64867 10450
=3 91 92 166 171 40533 54872 14339
= virginia 87 96 170 178 49610 57733 8123
87 91 178 182 20564 59801 39237
92 101 167 173 39057 61007 21950
Average 91.88 97.25 3515 357.25 45154 63592 18438
106 107 146 153 12654 90615 77961
Local 107 110 148 155 7124 87099 79975
111 117 140 146 1524 70140 68616
< 115 124 148 152 48945 154591 105646
% 114 121 124 134 58669 121124 62455
m Virginia 106 114 139 144 24975 25763 788
106 106 129 139 22672 25570 2898
102 126 133 136 77414 125582 48168
Average 110.63 115.63 138.38 144.88 31747 87560 55813

service. The Total Latency column shows the time needed to resume communication at the application
level. We show the first four handoffs of each run. For example, for the (IPMN-Full/FTP/Local) run, in the
first handoff the Protocol Latency timeis 91 ms, and the Total Latency timeis 98 ms. Also, for each traffic
type, we add an extrarow (the shaded one) to show the average of all eight runs of that traffic type.

We can make three observations on Table 19. Firgly, we observe a big difference in handoff latency
between IPMN and MIP that can reach up to three orders of magnitude. For example, in (FTP/IPMN-Full)
the average protocol latency is 101.88 milliseconds, while in (FTP/MIP) the average protocol latency is
72,981 milliseconds. This substantial reduction in handoff latency highlights the advantage of event-based
protocols like IPMN over timer-based protocols like MIP. The former allows protocols in different layers
to interact and pass events and new state information—ike the new IP number in our case—to upper layers
instantly. This enables peer protocols to respond immediately cutting down overhead time. Timer-based
protocols on the other hand usualy use a periodic probing mechanism to discover state changes. For
example, in this particular implementation of MIP that we have tested, the foreign agent sends beacon
signals (agent advertisements) to discover mobile node movement every 60 seconds! A best case scenario
will happen if L2 handoff was performed right before the periodic beacon signal arrives. Therefore, this
process will take haf of that time on average-i.e. 30 seconds. Adding to this communication and
registration overhead we can easily reach one minute latency or more. Secondly, actual application-level
latency on MIP was even longer; by the time MIP has recovered and is ready to resume service, TCP has
already timed out and will probably need even more time to discover the change and then resume
communication on its own level. We show this quantity in the Total Latency column as we explained
earlier. In IPMN-based protocols (Full and Half), the difference between these two quantities was very
small (3 to 10 milliseconds) which can be regarded as negligible. Therefore, we only show this difference
for the MIP case in the column labeled (Difference). A closer look at the Difference column, we see a great
variation; it can be as low as 788 milliseconds, or as big as 114,974 milliseconds. This variation is due
mainly to the dynamics of TCP congestion control and how it responds to long disconnections. But in



62
general, this Difference hasreally added yet another long delay (between 18.4 and 55.8 seconds on average)
to the aready high MIP handoff latency. Actually, the column Difference highlights another advantage of
IPMN which takes into consideration TCP performance in addition to its main purpose as a mobility
solution.

(A) Trace from Local Node

800

MIP
700

—FULL

e

20 /
/

100 /

1 5001 10001 15001 20001 25001 30001
Block number

Arrival time (sec)
B

(B) Tracefrom Virginia Node

500

MIP

w0 | =FULL

——HALF

300

200 /

100 /

1 5001 10001 15001 20001 25001 30001
Block number

Arrival time (sec)

Figure 33. Voice stream arrival trace

The third observation is IPMN-Full superiority over IPMN-Half; IPMN-Full handoff took 91 to 110
milliseconds on average, while IPMN-Half handoff took 138 to 351 milliseconds on average. Again, this
observation also emphasizes the benefit of interactivity. Recall that IPMN-Full employs interactivity on
both endpoints while IPMN-Half uses interactivity on the mobile node only. As we can see this feature was
to the advantage of IPMN-Full which managed to perform handoff in amost half the time needed by
IPMN-Half.

6.5.2 TrafficArrival Trace

A) Voice Stream Trace:

Here we show application level performance by observing voice stream arriva trace. At the MN, we
kept alog file to register the arrival time of each 144-bytes block (talk burst) in the voice stream. Figure 33
plots the arrival times of the first 30,000 blocks at the MN from two of the correspondent nodes: Local and
Virginia The figure shows the case of interarrival parameter 1,=0.000001. The %,=0.000005 case showed a
similar trace but we did not includeit for space limitation.



63

(A) IPMN-Full
150 150
130 130
110 110
@ @
% 90 MIMYTIN ITYAATYTMN TVPIRATAMTMTT TV R MAneT s AapnanTimimm T % 90
£ 70 | £ 7
B ®
1= 50 Z 50
3 3
$ 30 S 30
< <
10 10
1 3001 6001 9001 12001 15001 1 3001 6001 9001 12001 15001
Block number Block number
Figure 34. Block interarrival timesat the MN (Jitter)
(A) WWW messagetrace from Local node (B) WWW message tr ace from Virginia node
1000 MIP-L1 800 VP
—— HALFL1 —— FULL-L1
800 MIP-L2 MIP-L2
/ 600
—— HALFL2 —— FULL-L2
E 600 ’gﬁ
2 &
£ / £ 400
T 400 g
< z i
200
200
0 0
1 5001 10001 15001 20001 25001 30001 1 5001 10001 15001 20001 25001 30001
Fragment number Fragment number
(C) WWW message trace from Al-Quds node (D) WWW document tr ace from Al-Quds
2000 1000 MIP-
MIP-L1 % ‘
——FULL-L1 0 = FULL-L1 ‘
1600 MIP-L2 50 MIP-L2 \
—— FULL-L2 70 - FULL-L2 “
— ~ 0
8 1200 8 50
[} [}
£ E 50 =
= % 0 ———
E 800 é 30 =
< < 30 -
0 ‘__'_,3
20 -
400 — 5 -—'J_..r*
/ 01— T
0 ™ —
0 0
1 5 101 15 20 25 30 35 40 451 50
1 2001 F?%?‘rl]ent numbgrOOl 8001 10001 1 1 Dbcumert number 1 1 1

Figure 35. WWW traffic trace

We can make two observations on these plots; firstly, in the Local node plot, MIP actually outperformed
IPMN-Half and amost tied with IPMN-Full. Maybe the only advantage of both IPMN schemes was the
smoothness of the arrival trace—which is gill important for voice traffic. This behavior can be explained
by the fact that al nodes were in the same room. In such situation, only handoff latency can be seen as a
performance metric, other issues will be dictated by TCP dynamics and LAN load. However, in red
Internet scenario the two endpoints are usually far a part—as in case (B)—and there we can see the
relevance of the interactive scheme. In Figure 33 (B), we see that both IPMN schemes outperformed MIP
mainly due to the huge step jumps on the MIP trace. These step jumps and the impact of TCP dynamics



(A) FTP msg tracefrom Virginia (B) FTP msg trace from Al-Quds
900 1400
MIP-L1 MIP-LL
8001 ___FuLLL1 — 1200] —FULLL1 i
700 MIP-L2 MIP-L2
—— FULLL2 1000{ — FULL-L2
,g 600 g
o 500 < 800
£ E
s 400 T 600
2 >
= 300 =
< / < 400
200 /ff_/_/f:
100 200
0 0
1 5001 10001 15001 20001 25001 30001 1 1001 2001 3001 4001 5001 6001
Message number Message number
(C) FTPfiletracefrom Virginia (D) FTPfile trace from Al-Quds
900
MIP-L1 R YR
8004 = FULL-L1 | - FULL-L1
700{ °MIPL2 8004  MIPL2
- FULL-L2 « FULL-L2
_600 .
8 8 600
250 ¥
£ —1| |E
=200 — T
g — < 400
300 e =z
P D |
100 e —
= el
0 Lo o= i
1 51 101 151 201 251 301 1 51 101 151 201 251
Document number Document number

Figure 36. FTP traffic trace

created jitter on the voice stream as we will show in the next section. Also, it is worth noting that IPMN-
Full was dlightly more efficient than IPMN-Half.

B) Jitter on the Voice Stream:

Figure 34 plots the interarrival times of the first 16000 blocks arriving a the MN from Virginia node,
(A) on IPMN-Full, and (B) on MIP. On IPMN-Full dmost all blocks were delivered at (75 to 90)
milliseconds apart, except (mainly) those that faced a handoff —only 22 blocks were delayed for more than
100 milliseconds. In Figure 34 we show a maximum of 150 ms on the y-axis to be able to see the
mainstream case. Average interarrival time for al blocks on IPMN was 85.57 milliseconds. On MIP the
Situation is different; about 177 blocks in the stream faced more than 100 milliseconds interarrival —10 of
these blocks faced more than 8000 milliseconds delay—and average interarrival time for all blocks was
129 milliseconds.

C) WWW Traffic Trace:

To trace WWW and FTP traffic, we kept two log files at the mobile node: one that registered the
arrival time of each document and one that regarded the incoming stream as a whole sequence and
registered the arrival time whenever 1 KB-fragment was received. Figure 35 (A) plots the arrival timesin
seconds of the first 30,000 fragments that arrived at the mobile node from the Local node, (B) traces the
first 30,000 fragments from Virginianode, (C) tracesthefirst 10,000 fragments from Al-Quds node, and (C)
plots the arrival times of the first 500 documents that arrived from Al-Quds node—we show only this
sample of documents' trace for space limitations. In each plot there are four runs: two for MIP and two for
IPMN (al plots shows IPMN-Full except (A) which shows IPMN-Half). For each mode we generated
WWW traffic using the two values of interarrival parameter & that were mentioned earlie—shown in the
figureas L1 and L2. Again, on the Local plot (A), MIP seems to outperform IPMN especially with L1
traffic. But on the Virginia plot (B), IPMN managed to deliver all fragments 2 — 3 times faster than MIP.



65
On the Al-Quds plots (C) and (D), the difference was even bigger. A closer look at the (C) plot reveals the
impact of TCP's congestion control dynamics on the trace due to long disconnections on the MIPruns. This
coarse behavior disappeared on the smoother IPMN traces. From this pattern of behavior, we can say that
IPMN performs better when the two endpoints are furthest apart.

D) FTP Traffic Trace:

We show FTP traffic trace in Figure 36. Plot (A) of the figure shows the arrival times in seconds of
the first 30,000 1 KB fragments that arrived at the mobile node from the Virginianode, plot (B) traces the
first 6,500 fragments from Al-Quds node, plot (C) traces the first 300 files from Virginia node, and (D)
plots the arrival times of the first 250 files that arrived from Al-Quds node. Asin the WWW case, there are
four runsin each plot: two for MIP and two for IPMN with the same interarrival parameters L1 and L2 that
were used before. These plots further confirm the obvious advantage of IPMN over MIP as we saw with
Voice and WWW traffic. It isworth noting the great impact of the long handoff disconnections on the trace
of MIP casesin Al-Quds plots (B) and (D).

6.6 Conclusion

IPMN uses true end-to-end signaling to update the current state of the mobile node's location at both end-
points. Using interactivity, the mobile node was able to freeze the TCP connection and to perform loss-free,
rapid handoff by simply changing the 'source IP fidd in TCP/IP stack of the mobile node and the
'destination 1P field in the TCP/IP stack of the correspondent node. As a mobility solution on the IP leve,
IPMN offered two key advantages over conventional timer-based MIP; (a) it alowed direct end-to-end
communication between the correspondent node and the mobile node at a very little overhead cost, and (b)
it dramatically reduced handoff latency by canceling movement detection and address registration. On the
TCPleve, IPMN managed to significantly improve TCP performance by the successful employment of the
Freeze TCP technique in the InTraN paradigm. We have demonstrated these features of IPMN by real
experimentation with Voice, WWW, and FTP traffic on remote nodes over the Internet. The results
demonstrate the benefit of the principle of interactivity in networking. It enables event based action and
response. It distinguishes from the traditional timer-based MIP which depends on periodic actions. The
periodic agent advertisements used in MIP is one of the prime reasons for its duggishness. MIP has to
maintain a delicate balance between advertisements frequency/size and their impact on network
throughput®. Event-based scheme such as the one demonstrated by IPMN does not require this compromise.
Indeed the benefit of instant interactivity was so dramatic that it could easily wipeout the seeming
advantage of MIP' s low layer implementation.

! The original MIP proposal [Per96] recommended shortest agent advertisement rate of 1 per second. The implementation that we
have tested in this paper (PSUMIP) uses a much dower rate of 1 per minute. We tried to lower this rate, but it did not work. Since
PSUMIP was the only available implementation compatible with FreeBSD-4.5 kernel at the time, we could not test with faster agent
advertisement rate. Many other MIP implementations allow the user to set a preferred rate of one or more seconds. The best rate that
would yield optimal network throughput is ill controversial and is highly dependent on mobile node's movement frequency and
traffic load.



CHAPTER 7
Protocol M odeling

In this chapter we briefly describe two well-knows protocols;, Snoop [Bal95] by Balakrishnan et d.,
and WTCP [SIV99] by Sinha et al. They are among many other schemes proposed in the literature to
improve TCP performance over wireless links. Then, we show how they can be modeled with the meta-
engineering of the InTraN paradigm.

Wireless networks have certain characteristics that are not handled properly by regular TCP such as
high bit error rate (BER) and long disconnections due to handoffs or bad reception. When a packet is lost,
regular TCP assumes that it is due to congestion and will aways trigger congestion control procedures at
the fixed host. However, in a wireless environment, radio transmission errors or handoffs can also cause
packet loss. This will result in significant reductions in throughput that can severely degrade overall
performance. A good survey on proposed protocols for improving TCP performance over wireless
networks can be found in [Anj03] [Bal96] [Ela02].

Base Station
1
: P :
1 1
1 1
1 1
: 11 :
! Snoop Agent !
1
! 1
i Data !
P 1
' & Snoop < > Processing !
'z State !
| 8 :
e P o ACK !
i b "] Processng !
1
1 1
1 1
! 1
: S S :
i Link Layer ;
1
| A Y I
Data segmentsto Data segments
MH from FH
ACK segments ACK segmentsto
from MH ) FH

Figure 37. Conventional Snoop mechanism

7.1  Snoop

The Snoop protocol introduced a module, called Snoop, at the base station that monitors every packet
that passes through in both directions. The Snoop module maintains a cache of TCP packets sent from the
fixed host that have not yet been acknowledged by the mobile host. A packet loss is detected either by the
arrival of duplicate acknowledgment or by a local timeout. To implement the local timeout, the module
employs its own retransmission timer. The Snoop module retransmits the lost packet if it hasit in the cache.
Thus, the base station hides the packet loss from the fixed host, therefore avoiding its invocation of an
unnecessary congestion control mechanism. Figure 37 describers the basic architecture of the classic Snoop
protocol and Figure 38 shows the InTraN-enabled model of Snoop. The scheme represents part of the
snoop protocol that handles one direction of the traffic only (Data segments from FH to MH and ACK
segments from MH to FH). The Snoop protocol uses a different technique to handle traffic on the other

66



67
direction, but it can be easily modeled with the InTraN framework in a similar fashion. The mode shown
in Figure 38, assumes that data segments are cached in the network as in conventiona Snoop for
performance reasons.

Base Station
P | Read
: Snoop Agent Data | | a?g;e
:" !
1
el Snoop !
= !
8 Sae e »| ACK -} | Read Data
: g ™ : heséier/
iy 1 i Update
1 2 A ; icache.
& Subscribe r :
i v v V. | peeeesenneeeesssssssnees
i Sub. APl AccessAPl |1 iR ACK
I " 1 theader/
1 1
1 i Update
E_ __ SM _ 1 icache.
A 1
| T-type channel :
i v 1
1
i InTraN enabled IP !
L ____ A_______] A_________!
Data segmentsto Data segments
MH +— from FH
ACK segments ACK segmentsto
fromMH ——— L 5 FH

Figure 38. Theinteractive version of Snoop (iSnoop)

Assuming that the *Snoop Agent’ shown in Figure 38 has subscribed with the InTraN-enabled 1P
protocol (or ilP) for two events: an ACK received from MH event (evt. ACK_MH), and data segment
received from FH event (evt DAT_FH). Whenever any one of these two events occurs, ilP sends a signd
to the SM which invokes the appropriate TM: TM-Data or TM-ACK. The Shoop Agent is a process that runs
in the application layer. Its main role is to initialize and maintain the Shoop Sate, subscribe with the
InTraN service. Afterwards, most of the work is done by the TMs. The Snoop State is similar to the one
used in the conventional snoop protocol. The TM-Data handles the (Data segment received) event. It
implements the Data processing algorithm of the snoop protocol. The TM-ACK handles the (ACK segment
received) event. It implements the ACK processing algorithm of the snoop protocol. Both algorithm are
describes in detail in [Bal95]. Both TM-Data and TM-ACK need to interact with ilP; they use the Access
API of the InTraN service to (i) probe the IP layer and Read relevant header parameters from the TCP
segment that has just arrived and (ii) to update the cache of TCP segments. The TM-Data adds segmentsto
the cache and the TM-ACK clears the cache or part of it as decided by their respective algorithms. We
assume that both TMs have full access to the Snoop State; they can read and update gtate variables as
necessary.

72 WTCP

Wireless Transmission Control Protocol (WTCP) is specifically designed for wireless wide area
networks. WTCP is based on the following two key principles: (i) it uses rate-based rather than window-
based transmission contral, i.e., it does not use ACKs for self clocking, and (ii) it uses the ratio of the inter-
packet separation at the receiver and the inter-packet separation at the sender as the primary metric for rate
control rather than using packet loss and retransmit timeouts. WTCP uses a heuristic based on the average
per-packet separation to distinguish congestion losses from random losses. In this heuristic, the receiver
initialy predicts that all losses are non-congestion losses. The following example from the WTCP original
paper [SiV99] explains the main concept of this heuristic: consider that packetsi and j were received (i < j),



68

Mobile Node Fixed Host
Application layer Application layer
WTCP WTCP

- Rate Control __ . Reliability _ _,
! - ! Data Packets 1 1
! Inter-packet time ‘I“ 1 SACK 1
' computation ACKs and SACKs ! Processing '
1 1 .

ACKing Frequenc ! !
! Sender rate ' 9 7Ted y + ACK !
| heuristic : Updated Sender Rate ' Monitoring '
e ————— Lo ------_- !

Figure 39. Conventional WTCP mechanism

Mobile Node Fixed Host Update
Application layer Application layeg Is?;eénd
1~ - - Rate Control + S B N — r - - - Reliability —*— -
Events | | Update i 1 h
1| Inter-packet Time |1 internal stete; Events : SACK =
1| Computation [[¥ LR i|  Processing ™,
New ] 1 New : il.] iRequest
packet 'T-| SenderRate |! Ack | A 1| iaretrans:
arriva I Heuristic 1 ; “] || ACK Manitaring, |1 mission
1 | Send arriva Al Ay -
—AF------- L et A - - - - — - — ;=
oo updated
fime | ...... SM rate to FH 5] 7. Send' H
d ACKing i
update Data Packets ; frequency :
| mmanTcP [ | nTraNTCP | | itoMN
| ACK Packets .

Figure 40. Theinteractive version of WTCP (iWTCP)

but packetsi+1 ...j—1 were al lost. In this case the receiver computes the average inter-packet separation
for each of the lost packets as.
recvTimej —recvTimei
j-i

Where recvTimg is the time at which the last bit of packet i arrive. If the value of perPktSep is close
to the measured inter-packet separation at the receiver (i.e., within the band [average — K x mean deviation,
average + K x mean deviation], where K is a constant), then the receiver predicts that the losses were all
random losses. Otherwise, the receiver predicts that there was at least one congestion loss, and the sending
rate is reduced. The basic mechanism of the WTCP's rate-based scheme is shown in Figure 39. The
receiver computes the desired sending rate via its rate control mechanisms, and notifies this rate to the
sender in the ACK packets. ACKs, thus, carry both reiability information (SACK) and rate control
information. The sender monitors the reception of ACKs, and adjusts its rate accordingly. It also monitors
the ACKs to tune the ACKing frequency, which it then natifies to the receiver in future data packets. We
show the InTraN-enabled model of WTCP in Figure 40. Basically, we have moved most of the processing
to the application layer as TMs; i.e,, therate control algorithm at the receiver (MN) and reliability algorithm
at the sender (FH). The InTraN extension provided the necessary API that allows TCP to trap events on
both ends. On the MN, when a new packet is received, this event triggers the (inter-packet time
computation) TM, which calculates new timers and updates the interna state of WTCP. When it istime to
perform the periodic update, this event triggers the (sender rate heuristic) TM to calculate a new rate for the
sender. The updated rate is tranamitted to the sender through the API. On the sender side, when an ACK
packet is received, one TM handles (ACK monitoring) and (SACK processing) since the ACK packet
carries both ACK and SACK information. The (SACK processing) part of the TM discovers holes in the
transmitted packet sequence, i.e., discovers lost packets, and issues retransmission request through the
InTraN API. The (ACK monitoring) part of the TM cal culates a new ACKing frequency rate based on the
current transmission rate and the internal state and sends the updated rate to the receiver periodicaly.

perPktSep




Table 20. Cost parametersfor Snoop and i Snoop

69

Name Meaning

Cack Overhead cost per ACK segment

Coar Overhead cost per Data segment

Nack Number of ACK segments

Npat Number of Data segments

Un Update State/Cache cost in normal mode

Ui Update State/Cache cost in interactive mode. We assume that U; > U,
since U, might involve making a system call.

Sub Subscription cost

S Software Interrupt ‘Signal’ cost

H Signal Handler cost

R Retransmit cost

T Total transfer size (Mbytes)

Choff Handoff cost

R Wireless link bit rate (Mbps)

7.3  Performance | ssues

7.3.1 Overhead Cost

The transparency model implementation of both protocols adds some extra cost to the original scheme
asaresult of the added signaling and system calls overhead. Here, we show an abstract comparison of both
interactive and conventional schemes of the Snoop protocol. In Table 20 we show several quantities that

Table 21. Algebraic over head cost of Snoop and iSnoop

Scenario Classic Snoop Interactive Snoop (iSnoop)
Error-free, handoff-free SNOOP¥fee = iISNOOPsee =
wireless link Npat (Cpat + Up) Sub + Npat (S +H + Cpar + U)) +

+ Nack (Cack + Un)

Nack (S + H + Cack + Uy

Error-prone link with BERx
=1 error / x MB

SNOOPyee + (T/ BERy)

iSNOOPyree + (T / BERy)

Handoff every n seconds

SNOOP#ee + Chott (8-T/n -R)

iISNOOPee + Croft (8- T/ N -R)

Table 22. Running modes for the getrusage() experiment

Mode name Description
Classic TCP No interactivity overhead. This is the reference case.
Invoke only Subscribe with a Signal-only type TM. The TM does not perform any
Read/Write operations.
File access Subscribe with a Signal-only type TM. We let the TM open a disk file and
iTCP perform one read operation and one write operation.
modes | Protocol access Subscribe with a Read-only type TM. We let the TM perform one ReadVar()

operation from TCP.

Protocol & File

Subscribe with a Read-only type TM. We let the TM perform both a disk
read/write and a ReadVar() operation from TCP.

define cost variables and wireless link characteristics. The first column in Table 21 shows the estimated
cost incurred by deploying the Snoop protocol for three wireless link scenarios: (1) error-free, handoff-free
wirelesslink, (2) error-prone link with BER = 1 error for each x Mbytes, and (3) a moving mobile node that
triggers a handoff every n seconds. The second column represents the InTraN version of Snoop. In the first
scenario (a reference case) iSnoop added overhead came from Sub, S H, and U; - U,. Actualy, in rea
practice these added costs should be very small (almost negligible). For example Sub, H, and U; all involve



70
Table 23. CPU time

User CPU Time System CPU Time Total CPU Time

iTCP% SD iTCP% SD iTCP% SD
Invoke only 1.10% 55.68 3.80% 67.62 2.53% 200.08
File access 2.70% 116.47 3.70% 106.94 3.23% 272.28
Protocol access 0.90% 44.65 3.10% 59.37 2.07% 167.89
Protocol & File 1.30% 81.09 4.10% 77.95 2.82% 224.89

Table 24. iTCP context switching over head

Voluntarily CSW Forced CSW Total CSW
Invoke only 24.10% 0.19% 4.16%
File access 25.10% 0.22% 4.39%
Protocol access 24.30% 0.20% 4.22%
Protocol & File 24.20% 0.20% 4.19%

running a small system call and OS context switch cost. Besides the reference case, the other two scenarios
were identical in both protocols. The same kind of analysis holds for the WTCP case. To get a red
measurement of interactivity service overhead we performed a smple experiment on iTCP. We ran the
video session (server, transcoder, and player) on classical TCP (the reference case) and on iTCP with four
different modes by varying the access complexity of the TM. These five modes are explained in Table 22.
We used the FreeBSD utility getrusage() to collect statigtics about system resources used by the video
transcoder (our subscriber program) in the five running modes. In the four iTCP modes, we measured the
overhead cost of invoking the InTraN service which can be summarized by (1) subscription cost, (2) SM
cost, and (3) TM cost. The most significant part of theseisthe TM cost since it implements the real protocol
extension and its complexity can vary significantly. Therefore, we used TM complexity as a criterion to
classify iTCP runsinto four modes. Also, in each mode, we ran the video session ten times by varying the
number of TMs that were invoked during the session from 1 to 10—we will cal this number N. We
collected the following resource usage information from the getrusage() function:
1) utime: Thetotal amount of time spent executing in user mode.
2) dime: Thetotal amount of time spent in the system executing on behalf of the process.
3) wvesw. The number of times a context switch resulted due to a process voluntarily giving up the CPU
before itstime dice was completed (usually to await availability of aresource).
4) fcsw: The number of times a context switch was forced by the OS due to a higher priority process
gaining the CPU or because the current process exceeded itstime dice.
The performance results of the first two parameters are plotted in Figure 41 and the latter two are
plotted in Figure 42.

A) CPU time Analysis

In Figure 41 iTCP overhead time is shown on the |eft Y-axis at the lower part of the figure, and the
total application running time is plotted on the right Y-axis. Here we see that (utime) overhead varied
between 0 and 220 msec, while (stime) overhead varied between 0 and 360 msec. This is a small
percentage of the total running time in both cases as we show in Table 23. In the table we also show the
standard deviation of thei TCP overhead over the 10 runs. Also, we could not determine a consistent pattern
of CPU time overhead as N increases. This means that once the InTraN service is deployed in the system, N
will not have a significant impact on CPU time. But it can be seen that iTCP modes which involve a file
access took more CPU time—which isreasonable.

B) Context Switching Analysis

In Figure 42 we show context switching overhead and in Table 24 we show the rdated statigtics. It
can be seen that approximately 20% of the total number context switching was voluntarily (vesw) and the
rest was forced (fcsw). But, iTCP added more to (vesw)—between 1000 to 4400 context switches—than



71

(A) User CPU Time (utime)
1000 3800 o
Q
/Q\ & 0
o \% / -
Q
800 L % 7/\\ 3600 £
 —_— D <. e R N S e =
< \‘\ \ ~ c
700 ~<7 \\,‘// W / 3500 %
600 5 3400 =
— Q
g 500 3300 <
a —¥— iTCP.Invoke only —o— iTCP.File access —+— iTCP.Protocol access
E 400 - 3200
‘EJ’ —»—iTCP.Protocol & File =~ = App.Classic —¥— App.Invoke only
—o— App.File access —+— App.Protocol access —<— App.Protocol & File
£ 500 i PP i 3100
i
£ 200 %/\ 3000
[
g 100 I~ 2900
§ B e B N\
.9 0 s < < ¢ 3 X + F 2800
= 1 2 3 4 5 6 7 8 9 10
No. of Transientware Modules (N)
(B) System CPU time (stime)
1000
+ 4400
900 —
/\/ /\ 8
800 LK P 4200 @
700 —
\/\ W X 4000 g
600 e 5
—¥— iTCP.Invoke only —o— iTCP.File access —+— iTCP.Protocol access 1 3800 %
i 500 1 —s«—iTCP.Protocol & File - App.Classic —%— App.Invoke only ] (_EJ_
3 —o— App.File access —+— App.Protocol access —>— App.Protocol & File Q
£ 400 3600 <
£ VAN
E 300 R
= > 3400
® 200 SK /
E 4 X 3
5 T 3200
100 . +
& o4 ‘ ‘ % ‘ ‘ : ‘ ‘ 3000
= 1 2 3 4 5 6 7 8 9 10
No. of Transientware Modules (N)

Figure 41. iTCP CPU time over head

that it added to (fcsw)—between 70 to 170 context switches. Percentage wise, as shown in table Table 24,
iTCP overhead is 25% of (vcsw) versus 0.22% of (fcsw). Overall, iTCP added less than 4.5% to the total
context switching. Another observation isthe increase pattern of (vesw) asalinear function of N which can
be described by f = 252 N + 1500. This means that iTCP service deployment will add at least 1500 to
(vesw), and then (vesw) grows linearly with a dlope = 252 as N increases.

7.3.2  Security and Practice

The added small overhead cost can be justified for many practical gains alowed by the InTraN
paradigm. As we mentioned earlier, since TMs run in the application space, they will enjoy a well
developed provision tuned to run custom codes, share resources, and manage security issues. Actually, the
security issue is of great importance in such engagement. Running the Active modules inside the network
raises many security concerns that usually require complex techniques to maintain acceptable security level
and gability within the network domain. Moving these modules up to the application layer makes security
management a much easier task. Actualy, Subscriber Programs and TMs can only access internal network



72

(A) Voluntarily Context Switching (vcsw)

20000
~—— App.Classic —*— App.Invoke only —o— App.File access
18000 | —+— App.Protocol access —>— App.Protocol & File —¥— iTCP.Invoke only
—<o— iTCP.File access —+— iTCP.Protocol access ——iTCP.Protocol & File
16000
14000

12000

10000

8000

6000

No. of context switching times

4000

2000

No. of Transientware Modules (N)

(B) Forced Context Switching (fcsw)

500

—%—iTCP.Invoke only —o— iTCP.File access —+— iTCP.Protocol access 4 55900
450 - —*—iTCP.Protocol & File ——— App.Classic —*— App.Invoke only 1 55700
—o— App.File access —+— App.Protocol access —— App.Protocol & File
400 55500
250 1 55300 %
@ _—® 55100 ©
300 = z
+ 54900 |9
250 + 54700
°
$ 200 54500
c
5] >
9 150 & 54300
§ & 54100
100 3
A L 53900
& %0 1 53700
'_
- 0 T T T T T T T T 53500
1 2 3 4 5 6 7 8 9 10

No. of Transientware Modules (N)

Figure 42.iTCP context switching over head

services through the APl extension. Therefore, by imposing the appropriate access restrictions on each
party, we can guarantee certain security level. Furthermore, since the APl extensions can be implemented
as system calls, we can simply extend the OS security model and reuse available OS facilities like memory
management and resource sharing to achieve even better performance. These characteristics make the
InTraN model an attractive and a practical choice to implement and deploy many useful protocols which
thus far had been only simulated or tested on a small-scale controlled testbed.

7.4  Conclusion

In this chapter we have shown that the Interactive Transparent Networking (InTraN) paradigm can be used
to remode existing protocol modifications by protocol meta-engineering and application level
Transentware Modules (TMs). Actudly, the InTraN verson of the remodeled solution can be further
enhanced without changing the lower level implementation. For example, a protocol like WTCP which was
intended to improve TCP performance over wireless links can also be augmented with extra TMs to add
TCP-friendly features. We have particularly chosen two ‘original source’ examples for demonstrating an



73
implementation path via transparent networking—but this is not to endorse them. Please note because of
their basic usefulness researchers have subsequently proposed several improved variants [Anj03] [Ela02].
The proposed trangparency via interaction and triggered TM deployment will provide them implementation
paths as well. In fact, since TMs operate at the application layer it will be much easier even to upgrade a
certain TM from its current version to another improved one.



CHAPTER 8
Conclusion

In this dissertation we have presented and investigated InTraN, a new paradigm for extensible and
adaptive networking that can dynamically meet the emerging requirements of modern networking, and the
increasing demands of distributed applications (e.g., QOS guarantees, security, mobility, fault-tolerance,
etc). The InTraN paradigm retains a good balance between the classical Internet design principles and the
more contemporary aggressive approaches like programmable networks and protocol composition tools.
On one hand, InTraN maintains the benefits of the classical design principles by (i) keeping the core of the
network as simple and generic as possible, and (ii) maintaining the origina semantics of the network layers.
On the other hand, it can ill achieve the goals of contemporary approaches for extensible and adaptive
networking.

The InTraN paradigm has a number of unique features that distinguish it from other approaches; firt,
it offers an event/response mechanism (vs. timer-based or probing-based mechanisms) which makes it
faster and more responsive especially for time-critica applications. Secondly, it requires only a light-
weight re-organization of the existing kernd infragtructure (vs. heavily customized modifications or
complex middleware) which adds minimal overhead to the network and tolerates high scal ability. Thirdly,
it dlows kerndl level enhancements to be performed at the application level, and thus, they become much
practical/easier to deploy and implement (as opposed to direct kernel modifications). Furthermore, this
feature can greatly simplify other critical issues like security management, maintenance, and resource
sharing since the application layer has been optimized to handle these issues effectively. We have
illugtrated these principles by presenting three types of solutions based on the proposed InTraN paradigm;
(1) adaptive applications via a video transcoder, (2) cross-layer optimization via a mobility solution for 1P
networks, and (3) protocol extensions. The experimental results reported in this work—from real prototype
implementation and world-wide Internet experiments—have shown substantial improvements in network
level performance aswell as application level performance.

A number of issues are yet to be investigated though; for example, we have proposed a security model
for InTraN, but we have not implemented that in the prototype, and even though we know—theoretically at
least—that the proposed security model should be effective in maintaining the safety and correctness of the
overall system, a real prototype may be needed to expose its real capabilities and complexity. Another
unresolved issue is scalability; the SM (Subscription Manager) has been designed as a central handler, and
thus, it might become a bottleneck during heavy traffic or with an increasing number of transientware
modules. In this current prototype we have used one SM to handle all modules/applications. Another
alternative approach is to use one M per application instance. Therefore, a future research can revea
which approach is more effective, and to which extent it can scale-up to support bigger, more complicated
scenarios. Finaly, this current design of InTraN does not offer any guarantees that event signas will be
handled in the same order by which they have occurred. However, in a more sophisticated scenario (e.g.,
multicasting) where potentially many signals might arrive at the SM smultaneoudly, the issue of event
synchronization and timing should be addressed. This can also be picked up as a future research topic.

74



[ABone]

[Alex9g]

[AIm9g]

[Ando0]

[Anj03]

[Ayad5]
[Bakr97]

[Baks97]

[Bal95]

[Bal96]

[Bal99]

[Ban02]
[Ber024]

[Ber02b]

[Bhaos]

[Bhat96]

[Bin9g]

References

ABone, Active Network Backbone, http://www.isi.edu/abone/

Alexander, D.S,, Arbaugh, W.A., Hicks, M.A., Kakkar P., Keromytis A., Moore J.T., Nettles
S.M., and Smith J.M., “The SwitchWare Active Network Architecture’, IEEE Network
Special Issue on Active and Controllable Networks, vol. 12 no. 3, 1998,

Almes G., Kalidindi S., and Zekauskas M., "A one-way packet loss metric for IPPM,"
RFC2680, 1999.

Andersen D., Bansal D., Curtis D., Seshan S., and Bd akrishnan H., “ System Support for
Bandwidth Management and Content Adaptation in Internet Applications,” Proc. of
OSDI’00, Oct. 2000, San Diego, CA.

Anjum F., and Tassiulas L., “Comparative Study of Various TCP Versions Over aWireless
Link With Correlated Losses,” |IEEE/ACM Transactions On Networking, Vol. 11, No. 3, June
2003.

Ayanoglu E., Paul S, LaPortaT. F., Sabnani K., and Gitlin R., "AIRMAIL: A Link-Layer
Protocol For Wireless Networks," Wireless Networks Val. 1, pp. 47-60, 1995.

Bakre A., and Bardinath B. R., "Implementation and Performance Evaluation of Indirect
TCP," IEEE Transactions on Computers, Vol. 46, No. 3, pp. 260-278, 1997.

Bakshi B., Krishna P., Vaidya N. H., and Pradhan D. K., Improving Performance of TCP
Over Wirdess Networks," 17" International Conference on Distributed Computing Systems,
pp. 365-373, 1997.

Balakrishnan H., Seshan S,, and Katz R., “Improving Reliable Transport and Handoff
Performance in Cellular Wirdess Networks,” ACM Wireless Networks, Val. 1, No. 4, pp.
469-481, 1995.

Balakrishnan H., Padmanabhan V., Seshan S., and Katz R., “A comparison of mechanisms for
improving TCP performance in wireless networks,” ACM SIGCOMM Symposium on
Communication, Architectures and Protocols, Aug. 1996.

Balakrishnan H., Rahul H., and Seshan S., “An Integrated Congestion Management
Architecture for Internet Hosts,” Proc. of ACM SIGCOMM, Cambridge, MA, Sep 1999.
pp.175-187.

Ban B., JavaGroups 2.0 User’s Guide, Nov 2002.

Berson S., Branden B., and Dawson S., “Evolution of an Active Networks Testbed,”
Proceedings of the DARPA ActiveNetworks Conference and Exposition 2002, pp. 446-465,
San Francisco, CA, 29-30 May 2002.

Berson S., Branden B., and Ricciulli L., “Introduction to the ABone,” Feb. 2002, available at
http://mww.isi .edu/abone/ DOCUMENTS/ABarch/

Bhatti N., Hiltunen M., Schlichting R., and Chiu W., "Coyote: A system for constructing fine-
grain configurable communication services," ACM Trans. On Computer Systems, 16 (4), pp
321-366, November 1998.

Bhatti N. T., "A system for constructing configurable high level protocols," PhD thesis,
University of Arizona, 1996.

Binkley J., and Singh S., The Portland State University Secure Mobile Networking Project
(PSUMIP), http://www.cs.pdx.edu/research/SMN/, 1999.

75



[Bir87]

[Blu01]

[Boc79]

[Brigg]

[ByuO1]

[Cac99]

[Calvog]

[Cam01]

[CamQ9]

[CANE]
[Chan9e]

[Che6]

[Dol96]

[Ela02]

[EI197]

[Fik01]

[Fik9g]

[Gof00]

[Guad4]

76
Birman K., and Joseph T., "Reliable Communication in the Presence of Failures," ACM
Transactions on Computer Systems, Vol 5, No 1, pp. 47-76, Feb. 1987.

Blumentha M., and Clark D.D., "Rethinking the design of the Internet: the end-to-end
arguments vs. the brave new world,” ACM Transactions on Internet Technology (TOIT), Val.
1,no. 1, pp. 70—109, August 2001.

Bochmann G. V., and Vogt F.H., "Message link protocol (MLP): functional specification,”
ACM SIGCOMM Computer Communication Review, Vol. 9, Issue 2, pp. 7-39, 1979.

Bricefio H., S. Gortler and L. McMillan, “NAIVE--network aware Internet video encoding,”
Proc. of the 7" ACM International Conference on Multimedia, Oct. 1999, Orlando, FL, pp.
251-260.

Byun Y., Sanders B., and Keum C-S,, "Design Patterns of Communicating Extended Finite
State Machinesin SDL," 8" Conference on Pattern Languages of Programs (PLoP01), 2001.

Caceres R., Duffield N.G., Horowitz J., Towdley D.F., and Bu. T., "Multicast-based inference
of network-internal characteristics: Accuracy of packet 10ss estimation,” Proc. of |EEE
INFOCOM' 99, pp. 371-379, 1999.

Calvert, K. et al, “Architectural Framework for Active Networks’, Active Networks Working
Group Draft, July 1998.

Campbell A., et d., “IP Micro-Mobility Protocols,” ACM SIGMOBILE Mobile Computer
and Communication Review (MC2R), Val. 4, No . 4, pp. 45-54, October 2001.

Campbdl A., Meer H., Kounavis M., Miki K., Vicente J., and VilldaD., “A Survey of
Programmable Networks,” ACM Computer Communications Review, Val. 29, No. 2, pp. 7-
23, April 1999.

"CANEs. Composable Active Network Elements’, http://www.cc.gatech.edu/projects/canes/

Chan, M.-C., Huard, J.-F., Lazar, A.A., and Lim, K.-S,, “On Realizing a Broadband Kernel
for Multimedia Networks”, 3 COST 237 Workshop on Multimedia Telecommunications and
Applications, Barcelona, Spain, November 25-27, 1996.

Cheng K-T., Krishnakumar A., "Automatic generation of functional vectors using the
extended finite state machine model," ACM Transactions on Design Automation of Electronic
Systems (TODAES) Volume 1, Issue 1, pp. 57-79, Jan 1996.

Doalev D., and Malki D., "The Transis approach to high availability cluster communication,"
Communications of the ACM, Vol 39, No 4, pp 64-70, 1996.

Elaarag H., “Improving TCP Performance over Mobile Networks,” ACM Computing Surveys,
Voal. 34, No. 3, Sep. 2002, pp. 357-374.

Ellsberger J, Hogrefe D., and Sarma A., "SDL: Formal Object-Oriented Language For
Communicating Systems," Prentrice Hall, Harlow, England, 1997.

FikourasN., Kénsgen A., and Gérg C., “Accelerating Mobile IP Hand-offs through Link-layer
Information,” in Proc. of the International Multi-conference on Measurement, Modeling, and
Evaluation of Computer-Communication Systems (MMB), Aachen, Germany, September
2001.

FikourasN., El Malki K., and Cvetkovic S., “Performance Evaluation of TCP over Mobile
IP,” In Proc. of the International Symposium on Personal Indoor and Mobile Radio
Communications 1999 (PIMRC), Osaka, Japan, September 1999,

Goff T., Moronski J., Phatak D., Gupta V., "Freeze-TCP: A True End-to-End TCP
Enhancement Mechanism for Mobile Environments," INFOCOM'00, Tel-Aviv, Israd, pp.
1537-1545, 2000.

Guan Sheng-Uei and Lim Sok-Seng, "Modeling adaptable multimedia and self-modifying
protocol execution," Future Generation Computer Systems, Val. 20, No. 1, pp. 123-143, Jan



77
2004.

[Gus0l] Gustafsson E., et al. “Mobile IPv4 Regional Registration” draft-ietf-mobileip-reg-tunne-05,
IETF, September 2001.

[Hau04] HuangY-W., YuF., HangC., Tsai C-H., Lee D-T., Kuo S-Y., "Securing Web Application
Code by Static Analysis and Runtime Protection," Proc. of the 13th int. conference on WWW
(WWW2004), pp. 40-52, 2004.

[Hay98] Hayden M., "The Ensemble system," Technical Report TR98-1662, Department of Computer
Science, Cornell University, Jan. 8, 1998.

[Hil98] Hiltunen M. A., and Schlichting R. D., "A configurable membership service," IEEE
Transactions on Computers, Vol 47, No 5, pp. 573-586, 1998.

[Hrio2] Hristea C., and Tobagi F., “A network infragtructure for 1P mobility support in metropolitan
areas,” Computer Networks, 38, pp.181-206, 2002.

[Hut91l]  Hutchinson N. C., and Peterson L. L., "The x-Kernel: An Architecture for Implementing
Network Protocols," IEEE Transactions on Software Engineering, Vol. 17, No. 1, pp. 64—76,
Jan. 1991.

[Jac88]  Jacobson V., “Congestion Avoidance and Control,” Computer Communication Review, val.
18, no. 4, pp. 314-329, Aug. 1988.

[Jac90]  Jacobson V., “Modified TCP Congestion Avoidance Algorithm,” end2end-interest mailing
list, April 1990.

[Jon98]  Jonkman R., Evans J.,, and Frost V., "Netspec: A Tool for Network Experimentation and
Measurement", University of Kansas, 1998. http://www.ittc.ku.edu/netspec/

[KeOQ] Ke J. and Williamson C., “Towards a Rate-Based TCP Protocol for the Web,” Proc. of the 8"
Int. Symposium on Modeling, Anaysis and Simulation of Computer and Telecomm. Systems,
2000.

[Kha0l] Khan J. and Q. Gu, “Network Aware Symbiotic Video Transcoding for Instream Rate
Adaptation on Interactive Transport Control,” IEEE NCA’01, Oct. 2001, Cambridge, MA, pp.
201-213.

[Kha02] Khan J, R. Zaghal, and Q. Gu, “Rate Control in an MPEG-2 Video Rate Transcoder For
Transport Feedback based Quality-Rate Tradeoff,” PV2002, Pittsburgh, PA, April 2002.

[Kha03a] Khan J., Zaghal R., and Gu Q., “Symbiotic Streaming of Elastic Traffic on Interactive
Transport,” IEEE 1SCC'03, Antalya, Turkey, July 2003.

[Kha03b] Khan J,, and Zagha R., “Jitter and Delay Reduction for Time Sensitive Elagtic Traffic for
TCP-interactive based World Wide Video Streaming over ABone,” Proc. of the 12" |EEE-
ICCCN 2003, Dallas, Texas, Oct. 2003, pp.311-318.

[Kha03c] Khan J, R. Zaghal, and Q. Gu, “Dynamic QoS Adaptation for Time Sensitive Traffic with
Transgentware,” IASTED WOC'03, Banff, Canada, July 2003.

[Kul98]  Kulkarni, A.B. Minden G.J, Hill, R., Wijata, Y., Gopinath, A., Sheth, S., Wahhab, F., Findi,
H., and Nagarajan, A., “Implementation of a Prototype Active Network”, Firg International
Conference on Open Architectures and Network Programming (OPENARCH), San Francisco,
1998.

[LeeQ5]  LeeBeng-Ong, "Wide Area ATM Network Experiments using Emulated Traffic Sources,”
Master's Thesis, University of Kansas, Lawrence, Kansas, 1995.

[Mal96] Malloth C., "Conception and Implementation of a Toolkit for Building Fault-Tolerant
Distributed Applicationsin Large Scale Networks," PhD thesis, Federal Ingtitute of
Technology, Lausanne (EPFL), 1996.

[Mat96] MathisM., Mahdavi J., Floyd S., and Romanow A., "TCP Selective Acknowledgment
Options" IETF, RFC 2018, 1996.



[Men03]

[Mir01]

[Mir9g]

[Pax98]
[Per00]
[Per01]

[Per96]
[Pet9g]

[Pos81]

[Pra00]

[Ram00]

[Ram99)]

[Rej00]

[Salg4]

[Scho3]

[SDLfrm]
[Sis98]

[SIT99]

[SiV99]

[Sri99]

[Ste94]

78
MenaS., Cuvellier X., Grégoire C., and Schiper A., "Appiavs. Cactus. Comparing Protocal
Composition Frameworks," 22™ International Symposium on Reliable Distributed Systems
(SRDS03), Florence, Italy, pp. 189-200, October, 2003.

Miranda H., Pinto A., and Rodrigues L., "Appia, aflexible protocol kernel supporting
multiple coordinated channels," In Proceedings of The 21% Int’| Conf. on Distributed
Computing Systems (ICDCS-21), Phoenix, Arizona, USA, pp. 707 — 710, April 2001.

Miranda H., and Rodrigues L., "Communication support for multiple QoS requirements,” In
3" European Research Seminar on Advances in Distributed Systems (ERSADS 99), Madeira
Idand, Portugal, April 1999.

Paxson V., Almes G., Mahdavi J., and Mathis M., "Framework for |P Performance Metric,"
RFC 2330, 1998.

Perkins C.E., and Johnson D.E., "Route Optimization in Mobile IP," IETF, draft-ietf-
mobil el p-optim-10.txt, 2000.

Perkins C.E., "IP Mobility Support for I1Pv4," revised draft-ietf-mobileip-rfc2002-bis-03-txt,
2001.

Perkins C., “1P Mohility Support,” RFC2002, IETF, October 1996.

Peterson L., “NodeOS Interface Specification”, Technical Report, Active Networks NodeOS
Working Group, February 2, 1999

Postel J., “Transmission Control Protocol,” RFC 793, September 1981.

Pradhan P., Chiueh T., and Neogi A., “Aggregate TCP Congestion Control Using Multiple
Network Probing,” Proc. of the 20™ International Conference on Distributed Computing
Systems, ICDCS 2000.

Raman S, “A Framework for Interactive Multicast Data Transport in the Internet,” Ph.D.
thesis, UC-Berkeley, May 2000.

Ramjee R., et d. “HAWAII: A Domain-Based Approach for Supporting Mobility in Wide-
area Wireless Networks,” Proc. IEEE Int’'| Conf. Network Protocols, 1999.

Rejaie R., M. Handley, and D. Edtrin, “ Architectural Congderations for Playback of Quality
Adaptive Video over the Internet,” Proc. of the |[EEE ICON 2000.

Saltzer J., Reed D., and Clark D.D., “End-to-end argumentsin system design,” ACM Trans.
Computer Systems, Vol. 2, No. 4, pp. 277-288, Nov 1984,

Schulzrinne H., Casner S, Frederick R., and Jacobson V., "RTP: A Transport Protocol for
Real-Time Applications,” RFC 3550, July 2003.

SDL Forum Society. SDL specification (z.100 11/99). http://www.sdl-forum.org.

Sisalem D. and Wolisz A., “Towards TCP-Friendly Adaptive Multimedia Applications Based
on RTP;” Proc. of the 4™ IEEE Symposium on Computers and Communications, 1998.

Singh R, Tay Y., TeoW.,and Yeow S, “RAT: A Quick (And Dirty?) Push for Mobility
Support,” 2™ |EEE Workshop on Mobile Computer Systems and Applications, pp. 32, Feb.
1999.

SinhaP., Venkitaraman N., Sivakumar R., and Bharghavan V., “WTCP: A reliable transport
protocol for wireless wide-area networks,” Proceedings of ACM Moaobicom’ 99, Seattle, WA,
pp. 231-241.

Srisuresh P., and Holdrege M., "IP Network Address Trandator (NAT) Terminology and
Considerations,” RFC2663, 1999.

StevensW. R., “TCP/IP lllustrated, Volume 1: The Protocols,” Addison-Wed ey, 1994,



[Teng6]

[Turg3]

[Van93]

[Van9e]

[Ving7]

[Wet98]

[Wid01]

[Wal97]

[WUO1]

[Y ac00]

[Yavo5]

[Y emoe]

[Y 0k02]

[Zag03]

[Zag05]

79
Tennenhouse, D., and Wetherall, D. “Towards an Active Network Architecture’, Proceedings,
Multimedia Computing and Networking, San Jose, CA, 1996.

Turner Kenneth J,, "Using Formal Description Techniques-An Introduction to Estelle,
LOTOS and SDL," John Wiley and Sons Ltd., 1993, ISBN 0-471-93455-0.

Van Renesse R., Birman K., Cooper R., Glade B., and Stephenson P., "The Horus System. In
Reliable Distributed Computing with the 1sis Toolkit," IEEE Computer Society Press, pp.
133-147. 1993.

Van Renesse R., Birman K. P., Glade B. B., Guo K., Hayden M., Hickey T., Maki D.,
Vaysburd A., and Voges W., "Horus: A flexible group communications system," Technical
Report TR95-1500, Department of Computer Science, Corndl University, Apr 1996.

Vinoski, S., CORBA: Integrating Diverse Applications Within Distributed Heterogeneous
Environments,” IEEE Communications
Magazine, Vol. 14, No. 2, February, 1997.

Wetherall, D., Guttag, J. and Tennenhouse, D., “ANTS: A Toolkit for Building and
Dynamically Deploying Network Protocols’, Proc. IEEE OPENARCH'98, San Francisco,
CA, April 1998.

Widmer J.,, Denda R., and Mauve M., “A survey on TCP-friendly congestion control,” IEEE
Network, val. 15, pp. 28-37, May-June 2001.

Wolfinger B., “On the potential of FEC algorithmsin building fault-tolerant distributed
applications to support high QoS video communications,” Proc. of the sxteenth annual ACM
symposium on principles of distributed computing, 1997, pp. 129-138.

Wu Jon Chung-Shien, Cheng Chieh-Wen, Ma Gin-Kou, Huang Nen-Fu, "Intelligent Handoff
For Mobile Wireless Internet,” Mobile Networks and Applications, Val. 6, No. 1, pp. 67-79,
Jan 2001.

Yacoub S., and Ammar H., "Finite State Machine Patterns," Pattern Languages of Program
Design 4, pp. 413 — 440, Addison-Wedl ey Longman, 2000.

Yavatkar R., Bhagawat N., "Improving end-to-end performance of TCP over mobile
internetworks," Proc. of The Workshop on Mohile Computing Systems and Applications,
Santa Cruz, CA, pp. 146-152, 1995.

Yemini, Y., and Da Slva, S, "Towards Programmable Networks', |FIP/IEEE International
Workshop on Digributed Systems. Operations and Management, L'Aquila, Italy, October,
1996.

YokotaH, et al., “Link Layer Assisted Handoff Method over Wireless LAN Networks,” Proc.
of MOBICOM ' 02, Sept. 2002.

Zaghal R., and Khan J., “Event Model and Application Programming Interface of TCP
Interactive,” Technical Report ‘ TR2003-02-02', Feb. 2003.

Zaghal R., Khan J., “EFSM/SDL modeling of the original TCP standard (RFC793) and the
Congestion Control Mechanism of TCP Reno,” Technical Report TR2005-07-22, July 2005.
http://www.medianet. kent.edu/techni calreports.html



