

INTERACTIVE PROTOCOLS FOR EXTENSIBLE NETWORKING,
2000-2005

A dissertation submitted
to Kent State University in partial

fulfillment of the requirements for the
degree of Doctor of Philosophy

by

Raid Y. Zaghal

August 2005

ii

Dissertation written by
Raid Y. Zaghal

B.Sc., Yarmouk University, Jordan, 1993
M.S., American University, Washington DC, 1996

Ph.D., Kent State University, Kent OH, 2005

Approved by

___________________________________, Chair, Doctoral Dissertation Committee
___________________________________, Members, Doctoral Dissertation Committee

Accepted by

___________________________________, Chair, Department of Computer Science
___________________________________, Dean, College of Arts and Sciences

iii

TABLE OF CONTENTS

Acknowledgements .. ix
1 Introduction..3

1.1 Motivation ...3
1.2 New Requirements...3
1.3 End-to-End vs. Direct Modification ...4
1.4 Methodology..4
1.5 Main Contributions..5
1.6 Solution Classes...5
1.7 Dissertation Outline...6

2 Related Works..7
2.1 Programmable and Active Networks..7

2.1.1 Networking Technology...7
2.1.2 Level of Programmability...7
2.1.3 Communications Abstractions..8

2.2 Protocol Composition ..8
2.3 Discussion ...8

3 Interactive Transparent Networking (InTraN)...10
3.1 Background..10
3.2 A Framework for the InTraN paradigm..12

3.2.1 Components and Architecture ..12
3.2.2 SP-SM Interfacing: Subscription Mechanism ..14
3.2.3 TM-SM-PE Interfacing: Access Mechanism...14
3.2.4 Protocol Meta-Engineering...17
3.2.5 Security Model...17

3.3 Conclusion...18
4 iTCP part I: InTraN Meta-Engineering ...20

4.1 Introduction ...20
4.2 Congestion Control in TCP..21

4.2.1 Congestion Control Algorithms..21
4.2.2 Congestion Control Events...22

4.3 TCP Meta-engineering...23
4.3.1 The SDL Model ...24
4.3.2 EFSM of iTCP...24

4.4 A Complete TCP EFSM/SDL Model ...25
4.4.1 Remarks and Simplifying Assumptions: ...25
4.4.2 The Complete TCP EFSM..25

4.5 Classification of EFSM Components..26
4.5.1 Events..28
4.5.2 States...28
4.5.3 Variables..28

4.6 Conclusion...28
5 iTCP part II: Implementation and Performance...34

5.1 Implementation Details..34

iv

5.1.1 System Architecture...34
5.1.2 API ..37
5.1.3 Internal Data Structures..37
5.1.4 Subscription and Probing Scenarios..38

5.2 Symbiosis Throttling Model...39
5.2.1 Analysis of Symbiotic Throttling..39
5.2.2 Critical-delay-point inequality..39
5.2.3 Recovery-point inequality ..40
5.2.4 Frugal State Determination...40

5.3 Symbiosis Mechanism: The Transientware..41
5.3.1 Estimation of the Model Parameters from iTCP States...........................42
5.3.2 Transientware Implementation ...44

5.4 Experiment and Performance Analysis...45
5.4.1 The ABone Testbed..45
5.4.2 Experiment Setup...46
5.4.3 Impact on Video Frame Delay..47
5.4.4 Symbiotic Rate Control ..48
5.4.5 Observation at Application Level: ..51
5.4.6 Interactivity Overhead..51

5.5 Conclusion...52
6 IPMN: Interactive Protocol for Mobile Networking..53

6.1 Introduction ...53
6.2 Related Work...54
6.3 Interactive Protocol for Mobile Networks (IPMN) ...54

6.3.1 The Scheme..54
6.3.2 The Architecture ..55

6.4 Experiment Setup and Traffic Generation ..58
6.4.1 Experiment Setup...58
6.4.2 Traffic Characteristics..59

6.5 Performance Results and Analysis ...60
6.5.1 Handoff Latency ..60
6.5.2 Traffic Arrival Trace..62

6.6 Conclusion...65
7 Protocol Modeling..66

7.1 Snoop ..66
7.2 WTCP..67
7.3 Performance Issues..69

7.3.1 Overhead Cost..69
7.3.2 Security and Practice..71

7.4 Conclusion...72
8 Conclusion ...74
9 References..75

v

TABLE OF FIGURES

Figure 1. InTraN basic methodology .. 19
Figure 2. T-type channel extension... 20
Figure 3. Subscription example .. 23
Figure 4. SM state after performing the four operations.. 24
Figure 5. Interfacing between the PE and theTM .. 24
Figure 6. Protocol meta-engineering extension ... 28
Figure 7. SM handling of the WriteVar() operation... 30
Figure 8. Slow Start/Congestion Avoidance mechanism (SSCA) 36
Figure 9. Fast Retransmit/Fast Recovery mechanism (FRFR) 36
Figure 10. Changes on TCP's sending window due to congestion control events........... 37
Figure 11. Simple TCP system composition ... 39
Figure 12. EFSM of TCP.. 40
Figure 13. Classification of the EFSM components and their TCP counterparts............ 46
Figure 14 SDL description of a simplified TCP transmitter... 49
Figure 15. iTCP's (Slow Start) state extended with InTraN components........................ 53
Figure 16. The TCP-interactive extension and API ... 54
Figure 17. iTCP internal data structures.. 57
Figure 18. Subscription and probing scenarios.. 59
Figure 19. Symbiosis throttling model .. 62
Figure 20. (a) Signal Handler, (b) Loss TM and (c) Recovery handler 72
Figure 21. Video transcoder experiment setup.. 74
Figure 22. Congestion Injector mechanism... 74
Figure 23. Frame Arrival .. 78
Figure 24. Number of frames accepted for three values of delay tolerance.................... 79
Figure 25. Symbiotic Rate Reduction ... 81
Figure 26. Frame Arrival time and frame SNR quality tradeoff..................................... 83
Figure 27. Interactivity service overhead .. 84
Figure 28. IPMN-Full architecture.. 93
Figure 29. IPMN-Half architecture... 95
Figure 30. Experiment setup... 97
Figure 31. Sampling of call interarrival .. 99
Figure 32. Sampling of call duration over 5 hours... 99
Figure 33. Voice stream arrival trace.. 105
Figure 34. Block interarrival times at the MN (Jitter).. 107
Figure 35. WWW traffic trace.. 107
Figure 36. FTP traffic trace... 109
Figure 37. Conventional Snoop mechanism.. 113
Figure 38. The interactive version of Snoop.. 114
Figure 39. Conventional WTCP mechanism... 116
Figure 40. The interactive version of WTCP... 116
Figure 41. iTCP CPU time overhead... 120
Figure 42. iTCP context switching overhead... 121

vi

TABLE OF TABLES

Table 1. Main components of the InTraN framework.. 81
Table 2. Types of variables and their access privileges... 21
Table 3. Types of Transientware Modules.. 21
Table 4. Subscription API... 21
Table 5. InTraN Access API and Signals.. 25
Table 6. Definitions.. 26
Table 7. TCP Congestion Control Internal Events... 37
Table 8. The API Extension of iTCP... 56
Table 9. Implementation details evtInfo{ } and subInstant{ } ... 58
Table 10. Player locations on the ABone.. 75
Table 11. Experiment control flags and running modes... 75
Table 12. Average frame delay and acceptance ratio... 77
Table 13. hbest and Trecovery statistics for three ABone nodes.................................... 80
Table 14. Percentage of total bits delivered for each mode.. 82
Table 15. IPMN-Full events... 94
Table 16. IPMN-Half events... 96
Table 17. IPMN API .. 98
Table 18. Correspondent node locations... 98
Table 19. Handoff Latency ... 103
Table 20. Cost parameters for Snoop and iSnoop.. 118
Table 21. Algebraic overhead cost of Snoop and iSnoop... 118
Table 22. Running modes for the getrusage() experiment ... 119
Table 23. CPU time.. 119
Table 24. iTCP context switching overhead.. 119

1

Dedication

To Iman, Raghad and Omar,

To my mother, Zakia and the memory of my father Yousef Zaghal.

2

Acknowledgements

First, I praise Allah Almighty for enabling me to complete my degree and for all the bounties that He

had bestowed on me and my family.

I would like to express my deepest gratitude to my advisor, Dr. Javed I. Khan, for his invaluable

guidance and support throughout the past four years. He taught me how to do research, encouraged me to

publish and travel, and inspired me with his endless bright ideas. I was also honored to have Professors

Kenneth Batcher, Hassan Peyravi, and Mohammad K. Khan on my dissertation committee. My sincere

thanks are due to all of them for their constructive comments, suggestions, and inspiration. I extend my

gratitude to the faculty and staff of the Computer Science Department at Kent State University for all their

efforts and support which made my academic experience at Kent State University fruitful and successful.

I owe this work to my beloved wife, Iman, whom without her help and support I would not have been

able to finish. I thank her for standing besides me during the most difficult times and for her patience and

understanding. I thank my lovely children Raghad and Omar for bringing light and liveliness into my life.

Last, but not least, I thank my mother Zakiah and my late father Yousef for their continues love, care,

encouragement, and sacrifice, and for their strong commitment to give me the best education despite all the

hardships.

3

CHAPTER 1

Introduction

1.1 Motivation

The layered organization of the classic OSI reference model has been used as a framework for
designing almost every network system known today. The OSI model divides the complex task of host-to-
host networking into layers, where each layer provides a specific communication service, and the collective
effort of all layers ultimately provides the high level communication between the application end-points.
The semantics of the OSI model emphasize the independency and separation of these layers, and thus, it
draws a clear interface between these layers that allow them to exchange data and control messages in a
relatively strict manner.

Another key principle that has also influenced the classical design of the Internet suggests moving
specialized application-oriented functionalities up into the upper network layers and out of the core of the
network. The core—which includes lower layers and covers the backbone and routers—should be kept as
simple and generic as possible, and should only provide general-purpose data transfer services that can be
used by all kinds of network applications. This principle is referred to in the literature as the end-to-end
arguments [Sal84]. These classical principles are supported by the following arguments: (1) reducing the
complexity of the core network which also increases its robustness, (2) increasing the generality of the
network by allowing new applications to use the same core services without change, and (3) increasing the
reliability of the network—if specialized application-oriented functions were built inside the core of the
network, then applications will have to depend on their successful implementation and operation in the
network.

It is believed that these fundamental principles, which have served as the architectural model for the
Internet, are mainly responsible for the successful operation and stability of the Internet during the past 30
years. However, over the last decade, as applications became more sophisticated (streaming audio/video, e-
commerce) and their communication needs have increased (more bandwidth, more security, mobility
support), new requirements have emerged which are challenging these principles; on one hand, these
requirements are demanding that new mechanisms and services should be added to the core of the network,
and on the other hand, the current organization of network software layers seems to be too rigid for such
modifications to be practically realized.

1.2 New Requirements

The emerging requirements for the Internet are mainly due to its explosive growth in terms of size,
speed, number of connected users, and the diversity of applications. Here we show few such examples to
demonstrate the need for new services.
1. Streaming Applications: the 'best effort' communication service that the Internet provides for any
particular application does not give any guarantees regarding the quality of service (e.g., throughput and
bandwidth). While some applications can tolerate variations in transmission rate or even disconnections,
like FTP and e-mail, a newer type of streaming applications (e.g., audio and video) demand specific service
guarantees, for example, providing a certain throughput. This has created a need to design creative
solutions for the Internet to provide acceptable streaming services for such demanding applications, and at
the same time to ensure that Internet resources are being used fairly by all types of applications—known in
the literature as transport-friendly.
2. Secur ity Needs: the growing numbers of Internet users have a wide range of motivations which may
eventually lead to misuses and abuses. In addition, many newer applications that communicate highly
sensitive information over the Internet (e.g., banking, e-commerce, and medical applications) need to
protect their communication channels and backend servers. But, since end-points cannot be trusted

4

anymore, newer protection mechanisms must to be installed to deal with all kinds of security threats and
attacks, and even to block undesirable forms of interaction like spam e-mails.
3. Mobile and Wireless Networks: all protocols in the classic core network were originally designed with
wire-line networks in mind. In the last decade, we have seen the advent of wireless technology and the
tremendous growth of wireless devices and services. New protocols/services were added to the core
network (e.g., 802.11, Mobile-IP) to cope with these changes. But still, many issues are still open and need
to be resolved, such as security, performance, and handoffs.

1.3 End-to-End vs. Direct Modification

Most solutions that were proposed to deal with these emerging requirements can be classified into two
main approaches: (1) the end-to-end approach: implements the solution in the upper layers while trying to
adapt to whatever 'best-effort' service the core network can provide, and (2) the direct modification
approach: applies custom modifications (or enhancements) to the core of the network by direct
implementation or by injecting customization programs.

Since the 'end-to-end' approach tries to stick to the principle of keeping the core simple and generic, it
treats the core of the network as a 'black box' which cannot be altered or accessed except through the
standard API. But, usually, a solution that implements a network adaptation strategy or a service extension
should be aware of certain events and states within the network that cannot be 'seen' via the standard API.
Networking solutions that are based on this approach usually try to compensate this limitation by
employing application-level functions to estimate an approximation of these states. Unfortunately, the
accuracy and timeliness of such estimations are often questionable, and sometimes they resort to redundant
means that are naturally being used in the core network anyway. But the key advantage of this approach is
the deployment of the solution at the upper layers. This is much easier and practical to implement and
deploy—even on a large scale—since it does not require modifications in the software layers of the core
network. On the other hand, the 'direct modification' approach seems to be more effective since the solution
is manually implemented right inside the core of the network—so accessing the network state is not a
problem. The difficulty here comes in practice; since these enhancements require customized changes
within lower network layers, they are often difficult, time-consuming, and impractical. Many smart
solutions that have been shown to achieve significant improvements could not make it beyond the
experimental phase and were only tested in the lab or through simulation. Besides, the 'direct modification'
approach clearly violates the end-to-end model, and therefore, is raising concerns among experts who want
to preserve the benefits of the original Internet design.

The paradigm of active and programmable networks attempted to simplify the deployment of new
services in the core of the network. They provide means to inject customized programs (or methods) into
the network which in essence enables the user to 'program' the communication channel between the two
end-points to fit the application's needs. In a way, this approach can be seen as diametrically opposite to the
'end-to-end' approach. Action codes are installed right into the core network where all the events (triggers)
and state information are readily available. Unfortunately, active networks are still facing another set of
challenges. Typically, the network system space has not been designed for multi-user execution
environment, and thus, issues like resource sharing, scalability, and security have remained unresolved.

1.4 Methodology

In this work we propose a third approach which may be able to keep the best of both approaches by
creating a decoupling mechanism between the information trigger needed to initiate adaptation (or service
extension), and the actual action code that implements the customization. The 'direct modification'
approach—as well as active networks—kept both inside the core network, while the 'end-to-end' approach
kept both at the upper layers.

The fundamental idea of our approach is to perform a simple, light-weight re-organization (or meta-
engineering) on the protocols of the core network to make them interactive and transparent. These
protocols become (interactive) since they can provide event notification to service subscribers, and they
become (transparent) since they also allow controlled access to their internal state information. Actual
protocol extensions (or customizations) can then be performed at the application space by programmable
modules called transientware modules. We call this mechanism Interactive Transparent Networking

5

(InTraN) and we label the re-organized network protocol as InTraN-enabled. The proposed methodology
has three types of components:
1- InTraN-enabled Protocol: A meta-engineered protocol with added handles for event notification

and state information exchange. The protocol designer who performs this meta-engineering
designates a subset of the protocol's events (i.e., state transitions) to be subscribeable, and a subset of
its state information (i.e., internal variables) to be accessible.

2- Transientware Module: A user-level program specifically written to provide the protocol extension
or to implement adaptation. It is triggered at the application layer by event signals from the
underlying InTraN-enable protocol, and it is provided by means to access protocol's state
information.

3- Subscr iption Manager : An interface between application layer components (i.e., subscriber
applications and transientware modules) and network components (i.e., InTraN-enabled protocols).
It handles subscription requests and state information exchange operations.

A complicated adaptive solution can now be formulated by designing one or more transientware modules
and binding them with events from the InTraN-enabled kernel. These modules can then pull-up the
protocol's state information needed for adaptation or service extension, perform the required action, and if
needed push-down any results or state updates. The Subscription Manager manages all correspondence
(subscription, signaling, read state, and write state) between the network kernel and the application-level
components and imposes safety measures to ensure the stability and correctness of the system.

1.5 Main Contr ibutions

The InTraN paradigm offers a number of unique features that can be considered as the main
contributions of this work:
1- Implementation path via application layer : InTraN allows kernel-level enhancements (or

modifications) to be performed at the application layer, which is especially important since it opens
a more practical implementation path for such modifications to be realized—which otherwise would
have been performed inside the core of the network. This relieves lower network layers from
housing costly custom components, and thus, it preserves the benefits of the 'end-to-end' model by
keeping the core simple and generic. Also, it becomes more effective to handle other complex issues
like security and resource sharing. The attraction is that the application space has plenty of means to
deal with these issues effectively—much of that can be reused.

2- Light-weight core design: Although InTraN still requires some re-organization of lower network
protocols to facilitate event notification and state information exchange, but as we will show, it is
much lighter than the re-organization needed to run the customized actions inside the network.

3- Small inter -component communication overhead: The InTraN paradigm still incurs some
overhead in terms of signaling and state information exchange between the transientware and the
kernel. Though, we will show by real measurements that this overhead is very small—even
negligible in some cases. Therefore, the performance of the InTraN paradigm is expected to be no
less than that of active networks, and even much faster than the 'end-to-end' approach since the state
information can now be retrieved directly from the local end-point.

4- Backward compatibility: we have designed the InTraN paradigm to comply with the following
three principles for backward compatibility: (i) the InTraN-enabled version of a protocol remains
functionally compatible with legacy silent versions, (ii) the API is an extended set, and thus classical
applications remains fully usable with the interactive versions of the end-point components, and (iii)
the meta-engineering of a protocol does not change its original dynamics, and thus, the dynamics of
the network.

1.6 Solution Classes

The distinguished features of the InTraN paradigm can support the following solution classes for
general networking problem solving: (1) application adaptation, (2) cross-layer optimization, and (3)
protocol extension. We have realized a FreeBSD implementation of InTraN and used it to design a novel
solution for the first two types:

6

1- Application adaptation: We have designed a TCP-friendly, congestion management scheme for
time-sensitive elastic traffic. The scheme allows a video transcoder to adjust its sending bit rate in
real-time based on the feedback (loss events and TCP state updates) it receives from the InTraN-
enabled TCP (or iTCP). The scheme exposes the overall benefits of application adaptation for time-
sensitive traffic, and takes a different approach to achieve true TCP-friendly traffic where both the
application and the network cooperate to recover from congestion.

2- Cross-layer optimization: We have designed a connection-oriented mobility scheme for IP
networks. In this scheme, a smart employment of InTraN by three layers (namely: Link layer, IP,
and TCP) was able to (i) freeze the TCP connection right after L2 handoff has started, (ii) perform
handoff on the IP level directly by updating the actual IP addresses on both endpoints (i.e., mobile
node and correspondent node), and (iii) resume the connection on the TCP level right after handoff
has finished. This scheme offers a number of benefits over conventional Mobile-IP such as faster
handoffs and direct triangulation-free routing.

3- Protocol extension: In the literature, many networking protocols have been manually extended (or
modified) to cope with emerging communication needs. We have chosen two such modifications
that were proposed to improve TCP performance over mobile and wireless networks, namely, Snoop
[Bal95] and WTCP [SiV99], and then we illustrated how to transform them into an InTraN-enabled
version where the protocol extension is implemented as application layer transientware.

1.7 Disser tation Outline

In chapter 2, we preview related works. In chapter 3, we present a formal EFSM-based framework for the
proposed meta-engineering and relevant issues like interfacing and security. In chapter 4 we illustrate the
principles of InTraN meta-engineering by showing a real example based on the TCP protocol; first, we
discuss the congestion control model of classic TCP, and then we present an SDL description of a
simplified TCP and its InTraN extension—we call the new protocol iTCP. In chapter 5, first we show
relevant implementation details of iTCP, and then we design a transientware solution for a TCP-friendly
elastic video traffic. The solution also includes an adaptive video transcoder that can adjust its transmission
rate based on feedback signals from iTCP. In chapter 6, we present our second InTraN-based solution—
IPMN. This is a mobility scheme for IP networks that can provide loss-free, rapid handoffs and eliminates
triangular routing. It chapters 5 and 6 we also present extensive experimental results and performance
analysis for both projects (iTCP and IPMN). In chapter 7 we show how the InTraN paradigm can be used
to model other solutions or protocol extensions. Here we show a modeling examples of two well-known
protocols proposed in the literature to improve TCP performance over wireless networks: Snoop [Bal95]
and WTCP [SiV99]. In chapter 8 we give concluding remarks.

7

CHAPTER 2

Related Works

We have selected two main paradigms from the literature that were proposed to address the issue of

protocol reconfiguration and network service extension. These are the Programmable and Active Networks
paradigm, and the Protocol Composition paradigm.

2.1 Programmable and Active Networks

Introducing new services into the existing 'best effort' networks was usually a manual, time
consuming, and costly process. Programmable Networks were proposed to simplify the deployment of new
network services, leading to extensible networks that explicitly support service creation and deployment.
Programmable networks architectures provide programmable interfaces that can support a variety of
service composition methodologies. In Active Networks, service delivery and control is achieved through
code mobility. A number of research groups have been developing programmable network prototypes, with
each group focusing on different set of characteristics [Cam99], namely (1) networking technology, (2)
level of programmability, and (3) communications abstractions. Below; we briefly discuss these three
categories and in each one, we preview some of its most prominent prototype implementations.

2.1.1 Networking Technology

Different programmable network projects have been designed to target certain networking
technologies which ultimately decide the type of programmability that can be carried to the higher levels.
By making the targeted networking technology more programmable, it becomes easier to overcome
particular deficiencies in the communication services supported by that technology. For example, xbid
[Chan96] by Chan, et al, was designed for ATM technology to support better QOS features like admission
control and resource reservation. By separating control algorithms from the hardware, xbid was able to
provide interfaces that allow open access to node resources and functions. Another example is Smart
Packets [Kul98] by Kulkarni, et al, which introduced a code-based packet concept to create programmable
IP environment.

2.1.2 Level of Programmability

New services can be established into the network with a range of methodologies and granularities.
Programmability level can vary from highly dynamic (e.g., capsules [Ten96]) to highly conservative
models (e.g., RPC interfaces [Vin97]). Among the most prominent works is ANTS [Wet98] by Wetherall,
et al, which provides a set of core services (transportation of mobile code, loading of code on demand and
caching techniques) that facilitates the introduction or extension of existing network protocols, these in turn
can be used to introduce programmable network services such as enhanced multicast, mobile IP routing and
application level filtering. In ANTS, Capsules serve as atomic units for network programmability that can
support processing and forwarding interfaces. Other proposals put more focus on security requirements
such as Switchware [Alex98] by Alexander, et al. In this prototype, a component in the active router allows
active extensions to be safely loaded via a set of secure methods such as encryption, authentication and
program verification. A thirds example is the CANEs project [CANE] which provides composition
methods (programming languages with enhanced language capabilities) to construct composite network
services from components.

8

2.1.3 Communications Abstractions

The programmability of network infrastructure can enable different levels of virtualization (i.e.,
virtual middleware and node support). Communications abstractions include programmable virtual routers,
virtual links and mobile channels. Among these, is a node operating system called NodeOS [Pet99] by L.
Peterson which represents the lowest level of DARPA's architectural framework for active networking
[Calv98]. NodeOS provides node kernel interfaces at routers that enable them to host multiple execution
environments (EEs). These EEs support communication abstractions such as threads, channels and flows.
The architectural framework for active networking is being implemented in the ABone testbed [ABone].
Another example is the Netscript project [Yem96] which takes a functional language-based approach to
capture network programmability using universal language abstractions. Netscript supports Virtual Active
Networks as programmable abstractions that can be systematically composed, provisioned and managed.

2.2 Protocol Composition

This paradigm suggests designing a new networking infrastructure that supports creating complex
protocols from smaller off-the-shelf components. The composition can be perceived as a whole middleware
offering complex services for distributed applications. These services include: (1) providing
communication abstractions (e.g., reliable multicast, mobility support), (2) allowing adaptation (e.g.,
switching protocols to overcome a security threat, changing data rates to accommodate a slower link), and
(3) supporting the creation (and coordination) of multiple communication channels with different QOS
requirements.

The protocol composition paradigm offers a number of advantages over traditional monolithic
approaches [Bir87] [Dol96] [Mal96], such as, higher configurability, reusability, and extensibility. [Men03]
has classified protocol composition frameworks that have been proposed in the literature into two families;
the first family contains the x-Kernel [Hut91], and its successors Coyote [Bhat96], [Bha98] and Cactus
[Hil98], and the he second family contains Horus [Van93] [Van96] and its successors Ensemble [Hay98],
Appia [Mir99] [Mir01] and JavaGroups [Ban02].

The x-Kernel [Hut91] is an early and influential work on protocol composition and was the first to
propose building a system in which protocol layers could be arbitrarily configured. A main feature of the x-
Kernel is its support for a uniform interface to all protocols which allows two protocols providing the same
semantics to substitute each other. However, the x-Kernel had a few shortcomings; for example,
configuration was done before system compilation and not at run-time. Also, the x-Kernel was intended
mostly for point-to-point communication, and had limited support for dynamic membership. Cactus [Hil98]
is an evolution of the x-Kernel that inherits and extends its composition and concurrency model to provide
a finer-grain level of composition. In Cactus, the internal structure of an x-kernel protocol consists of the
composition of several protocols (called micro-protocols). These protocols are event-driven and their
composition is not hierarchical, allowing them to directly interact without artificial restrictions imposed by
protocol stack hierarchy. Cactus allows several event handlers to be bound to the same event so that all
these handlers are executed upon occurrence of this event.

 In Horus [Van93] [Van96] and Ensemble [Hay98], protocol layers can be arbitrarily stacked in a
variety of ways, and thus, they were able to offer more flexible and configurable group communication
support for distributed applications. Both frameworks use a single generic architecture and separate the
basic group communication interfaces from their implementations. This configuration enables the designer
to plug-in certain implementations that match the specific needs of the application, and also to arrange a
stack of micro-protocols that provides the needed properties (or service guarantees). Appia [Mir99] is a re-
engineering of Ensemble and it inherits all its features, but its composition model has been extended to
offer more flexibility. In Appia, as in Ensemble, protocol modules are composed on top of each other to
form a stack. The main difference is the possibility, in Appia, to have more than one protocol module at the
same level in the stack.

2.3 Discussion

Despite the fact that many of these frameworks were able to achieve their goals in providing complex
services and creating communications abstractions, they are still facing critical challenges in terms of

9

security, complexity, and scalability. For example, a weak protocol module design may incur a big
overhead cost that surpasses the overall advantage of the protocol composition system, also, a really
complex middleware may become difficult to maintain and scale-up as the number of group members
grows substantially. Although the InTraN paradigm will still face the same challenges, but we believe that
due to its light-weight, structural design, these challenges will be much easier to handle. Though, it will still
require careful design especially with the transientware.

10

CHAPTER 3

Interactive Transparent Networking (InTraN)

3.1 Background

The proposed interactivity and transparency is achieved via formal meta-engineering of the network
protocols so that a selected subset of their states can be engineered to be accessible by upper-layer service
subscribers in a controlled manner. We use SDL (Specification and Description Language) [Ell97, SDLfrm]
to formally describe (a) the protocol meta-engineering process, and (b) the network software organization
needed to support interactivity and transparency. In this chapter, we first give some background
information on SDL, and then we discuss the InTraN framework and its security model.

SDL (Specification and Description Language) is an ITU-standardized language for the formal
description of communication protocols. It is also suited for any application based on the finite state
machine concept, such as circuit design. The programming model used by SDL is based on extended finite
state machines (EFSM) [Ell97, Byu01]. SDL augments the finite state machine model by providing
variables and timers and by supporting object-oriented programming. We describe the protocol meta-
engineering mechanism of InTraN by assuming an abstract communication protocol whose behavior is
described by an EFSM. We demonstrate how InTraN exposes protocol’s internal state to achieve controlled
yet secure transparency. Informally, the EFSM is composed of states and transitions among them. For a
transition to occur, the system must receive an event from the environment which triggers corresponding
actions. After performing the actions, the EFSM produces output signals to the environment. An SDL
system is composed of several protocol entities; each entity is designed as a single EFSM. Formally, An
EFSM is a 6-tuple (S,

0s , E, f, O, V), where S is a set of states,
0s is an initial state, E

is a set of events, f is a state transition function, O is a set of output signals, and V is a set of variables. The
function f returns a next state, a set of output signals, and an action list for each combination of a current
state and an input event. An EFSM also uses predicates to control the behavior of the protocol. These
predicates usually allow similar states to be grouped therefore reducing the total number of states [Ell97].
Upon receiving an event, the machine checks a predicate that is composed of variables, logical operators

Table 1. Main components of the InTraN framework

Component Definition

Protocol Entity (PE) A communication protocol instance that provides specific communication
service in the protocol stack (e.g., TCP). It is described as an EFSM and
has been meta-engineered according to the InTraN paradigm—we use
PE and EFSM interchangeably in the text.

Subscriber Program (SP) A user program that uses network services (e.g., video server). It is
regarded as a potential subscriber of the InTraN service.

Transientware Module (TM) A piece of code that is specifically designed to handle one or more events
in a certain PE. One or more TMs can implement a protocol
modification/extension at the application layer instead of embedding the
code in the network layer itself.

Subscription Manager (SM) An interface between application layer components (i.e., SPs, TMs) and
network components (i.e., PEs). One SM manages the subscription
preferences of a single SP. It handles subscription requests, maintains
updated information about active TMs, and handles their read/write
requests.

11

(e.g., AND, OR), and relational operators (e.g., <, =, >). If a predicate is true, the EFSM performs the
actions and produces output signals (if applicable).

Figure 2. T-type channel extension

Transientware Module
(TM)

Subscription Manager
(SM)

Protocol Entity (PE3)

Protocol Entity (PE2)

Protocol Entity (PE1)

P
ro

to
co

l S
ta

ck

Subscriber
Program (SP)

CP1

CP2

CP3

TP1

TP2

TP3

Figure 1. InTraN basic methodology

U
ser space

Subscriber Program
(SP)

Access API Subscription API

TM
 (2)

S
ystem

 space
N

etw
ork

Subscription Manager
(SM)

TM
(1)

TM
 (n)

InTraN-Enabled Protocol Entity
(PE)

Network
Service

Connection

12

3.2 A Framework for the InTraN paradigm

3.2.1 Components and Architecture

The main components of the InTraN framework are shown in Table 1 and its basic architecture is
shown in Figure 1. A Subscriber Program (SP) starts by binding an event in a specific PE with a TM via a
special Subscription API. The SM maintains updated information about all active subscriptions. When a
subscribed event occurs in a PE, it signals the SM which responds by activating the TM bound to the event.
A special Access API allows active TMs to access PE's internal data through the SM.

According to the SDL language, EFSMs can communicate only through specific channels. Protocol
Entities (PEs) can perform input and output operations to exchange user data and control messages through
these channels. In order to integrate InTraN in this setup, we need to create a communication channel
between every PE and the Subscription Manager (SM). These channels will serve as interaction mediums
between PEs and TMs through the SM. Figure 2 shows the basic architecture of an abstract system with a

stack of three protocols. Normal information flow from/to user application goes through channels (CP3, CP2,
and CP1), to augment with InTraN, we added channels (TP3, TP2, and TP1). These new channels—which we
call T-type channels—are used by PEs to pass event signals and exchange data between PEs and the SM.
The T-type channel is defined in Table 6.

TMs are also classified into three types based on their access privileges to protocol's internal variables.
These types are described in Table 4. A TM is granted read-only access to a subset of PE's local data. In
certain circumstances the TM is allowed even to modify a subset of these accessible variables as long as

Table 4. Types of Transientware Modules

TM Type Definition

Signal-Only

If TM Ti is bound to an event ei in protocol P. When event ei occurs, Ti is only
activated. It is not allowed to access protocol's internal variables. No TM-instance
record is created for Ti in the SM.

Read-Only

If TM Ti is bound to an event ei in protocol P. When event ei occurs, Ti is activated
and a TM-instance record is created for Ti in the SM. Ti is granted read-only access
to readable variables in P (i.e., all variables v

PV ′∈).

Read-Write

Same as Signal-Only mode, but in addition to that, Ti is granted write access to
modifiable variables in P (i.e., all variables v

PV ′′∈).

Table 3. Subscr iption API

Primitive Meaning

Bind(e, P, T) Associates a TM with an event e in protocol P. The TM T is invoked whenever the
specified event occurs.

Unbind(e, P, T) Remove the association between the TM T and the event e.

Update(e, P, T) Remove the current association of event e and replace it with a new association
with the TM T.

Table 2. Types of var iables and their access pr ivileges

Variable Type Set TM access privilege

A PP VV ′− No access

B PP VV ⊆′ Read only

C PP VV ′⊆′′ Read and write

13

this modification serves the intentions of the protocol designer. Let
PV be the set of all variables in the PE,

the designer can designate a subset of
PV called

PV ′ as read-only, and a subset of
PV ′ called

PV ′′ as read-

write (i.e.,
PPP VVV ⊆′⊆′′). In Table 2 we define three types of variables: A, B, and C, based on their access

level. In addition, the protocol designer should designate a subset of protocol's events as subscribable. Let

PE be the set of all events in protocol entity P, and PE′ be the set of subscribable events in P,

then
PP EE ⊆′ .

Figure 4. SM state after performing the four operations

e1/ P/ T1 e1/ P/ T1 SP1

e3/ P/ T3 SP2

Subscription instances

PE ′ ={e1, e3}

A = {a}

B = {b, c, d}

C = {d}

Subscription Manager (SM)

Protocol P preferences

SP2 SP1
T1 T2

T3 T4

TM Pool
Application Layer

PE ′ ={e1, e3}

A = {a}

B = {b, c, d}

C = {d}

Subscription Manager (SM)

Protocol Stack

},,,{ 4321 eeeeEP =

},,,,{ edcbaVP =

Upper protocol

Lower protocol

Protocol P

Protocol P preferences

Figure 3. Subscr iption example

14

3.2.2 SP-SM Inter facing: Subscr iption Mechanism

The InTraN paradigm offers a Subscription API for SPs to manipulate their subscription preferences at the
SM. The three primitives of the Subscription API are shown in Table 3. A Subscriber Program (SP) which
opts to subscribe with protocol entity P must associate an event in

PE′ with a TM via the Bind() operation.
The binding between events and TMs is one-to-many relationship. i.e., a SP can bind one or more events to
a specific TM, but a specific event can be bound to one TM only by a specific SP. This restriction is needed
to avoid ambiguity when event signals are sent to the SM. The SP can use the Unbind() operation to cancel
an existing subscription, or the Update() operation to replace the current association of an event with a
new one. The three subscription primitives can be used dynamically during run-time for maximum
flexibility. For example, a SP can start by binding e1 to TM1 by calling Bind(e1,P,TM1). Later (e.g., after a
certain time has elapsed), it may call Update(e1,P,TM2) to change the association of e1 from TM1 to TM2.

Example: We present a simple example in Figure 3 to illustrate these concepts. The figure shows a system
with two subscriber programs (SP1 and SP2) and a pool of four TMs (T1, T2, T3, and T4). In this example we
only highlight one protocol (P) from the protocol stack. Therefore, we assume that all four TMs can be
bound to subscribable events in P. The Subscription Manager (SM) maintains the subscription preferences

of P—among other protocols in the stack as well. P has four events and five local variables shown in PE

and PV respectively. Among these, two events are subscribable (PE′), three variables are read-only
accessible (type B), and only one variable is modifiable (type C). Assuming the following operations were
performed in this order by their respective SPs:

1. SP1: Bind(e1, P, T1)
2. SP2: Bind(e3, P, T2)
3. SP1: Bind(e3, P, T1)
4. SP2: Update(e3, P, T3)

Figure 4 shows the state of the SM after these four operations are performed. Here we show two
subscription threads for the two SPs represented as linked lists for easy update. A record in the list
represents a live subscription instance which creates the binding between a protocol event and a TM. Notice
that the Update() operation has replaced the binding of e3 on the SP2 thread from TM2 to TM3.

3.2.3 TM-SM-PE Inter facing: Access Mechanism

All communication between the TM and the PE must go through the SM. The SM provides the
interfacing between all TMs and the PEs through a special Access API and Signals—these are shown in

Figure 5. Inter facing between the PE and theTM

Transientware Module
(TM)

Subscription Manager
(SM)

(1)WriteVar(bi,val)

Protocol Entity
(PE)

(2)SetVal(bi,val)

(1)ReadVar(Ti, bi)

(2)GetVal(bi)

Transientware Module
(TM)

Subscription Manager
(SM)

Protocol Entity
(PE)

(4)Return(val)

(3)ExpVal(bi,val)

Transientware Module
(TM)

Subscription Manager
(SM)

(2)Invoke(Ti)

Protocol Entity
(PE)

(1)Event(ei,PE)

(b) Read (c) Write (a) Signal

15

Table 5. We impose this mode of communication to preserve the integrity of the system and to let the SM
enforce access privileges as specified by the designer.
Figure 5 explains the interfacing provided by the SM. The figure shows the sequence of operations that gets
executed when (a) a PE issues an Event() signal, (b) a TM issues a ReadVar() request, and (c) a TM issues
a WriteVar() request. We explain the three scenarios below:

(a) TM Invocation and Termination

When a subscribed event (signal) is consumed in the EFSM of a PE (P), the signal Event(ei, P) is sent
to the SM indicating the event type and the protocol. The SM searches its subscription lists to find the TM
that is currently bound to such (event, protocol) pair. Assuming a TM (Ti) was found, the SM activates Ti
via the Invoke(Ti) operation. Whenever the SM activates a TM, it also creates a record in its data store that
we call (TM-Instance) to be able to handle any future requests that might be made by the TM—the TM-
Instance is defined in Table 6. When the TM finishes, and before it is terminated, it sends a Finish(TM)
message to the SM. The SM then removes the TM-Instance record of the terminating

Table 6. Definitions

Name Definition

T-type
channel

 A private bidirectional channel that connects every PE in the system with the SM.
Every T-type channel has a unique name (

PT) where P is the protocol connected to the

SM through this channel.

TM-instance A record created by the SM whenever a new TM process is activated. The TM-
instance enables the SM to handle future read/write requests that might be made by
the TM to access the protocol's local variables. The SM stores the following information
in a TM-instance:

a) The process ID of the TM.
b) The name of the T-type channel connecting the SM to the target PE.
c) Temporary copies of protocol's variables targeted by read/write requests.

Table 5. InTraN Access API and Signals

Access API (TM-SM interface)

ReadVar(T, V) The TM (T) issues a read request to the SM to retrieve the value of variable (V)
from its correspondent PE.

WriteVar(T, V, val) The TM issues a write request to the SM to write the value (val) to the variable (V)
in its correspondent PE.

Return(val, F)
The SM returns the value (val) of a variable (V) to a TM which is blocking on a
ReadVar() request. If the Boolean flag (F) is (true), then (val) is valid, otherwise,
the TM just ignores (val).

Return(F)
The SM returns a feedback to the TM that has issued a WriteVar() request. If the
Boolean flag (F) is (true), this indicates a successful write operation, otherwise, it
indicates a failed write operation.

Invoke(T) The SM invokes a registered TM (T) after receiving an Event() signal from a PE.

Finish(T) The TM (T) informs the SM that it is going to terminate. The SM responds by
removing the TM-instance of the terminating TM.

T-type Channel Signals (SM-PE interface)

GetVal(V) The SM signals the PE to read the value of the local variable (V)

SetVal(V, val) The SM signals the PE to write the value (val) to the local variable (V)

SetFlag(SF, val)
The SM signals the PE to set the subscription flag (SF) by sending (val=true) or to
reset the flag (SF) by sending (val=false). This signal will enable/disable the event
that is associated with (SF).

Event(evt, PE) The PE Notifies the SM that event (evt) has just occurred in protocol (PE)

ExpVal(V, val) The PE exports the value (val) of local variable (V) to the SM

16

TM.

(b) Read Access
When a TM (Ti) wants to read the value of a certain variable vi from the underlying PE, it sends a

ReadVar(Ti, vi) request to the SM, then it blocks waiting for the value of vi. The SM checks if the requested
value is accessible (i.e.,

Pi Vv ′∈) and if Ti is eligible to issue a read request (i.e., it is Read-Only or Read-

Write type). If this is true, the SM issues a GetVal(vi) signal to the PE specifying the name of the requested
variable, otherwise it replies with a Return(-1, false) to Ti. When the PE receives a GetVal(vi) signal it
returns the value of vi to the SM via a signal ExpVal(val). The SM then forwards the value val to Ti via a
Return(val, true) operation.

(c) Write Access

As we mentioned earlier, some TMs can modify certain variables in the EFSM of the PE. If a variable
v is modifiable (i.e.,

PVv ′′∈), then, its value can be overwritten by a Read-Write-type TM. However, the

protocol designer should be careful when choosing the members of
PV ′′ in each PE. Technically, since a TM

in the InTraN paradigm represents a soft alternative for hardcode protocol modifications, this relaxation
should make TMs even more dynamic and powerful. On the EFSM level of the PE, modifying a variable
can trigger a state transition; this, of course, should reflect the designer's intention. Therefore, protocol
modifications can be realized through a group of carefully designed TMs which can manipulate certain
properties of the EFSM through interaction, i.e., (reading from) and (writing to) protocol's local variables.
As with the reading case, writing to PE's local variables must go through the SM. A TM (Ti) makes a write
request by passing the variable name and its new value to the SM via a WriteVar(Ti,vi,val) operation. If vi
is modifiable and Ti is Read-Write type, the SM generates a signal SetVal(vi,val) to the PE and issues a
Return(true) message to Ti. Otherwise, it issues a Return(false) message to Ti indicating a failed write
operation. When the EFSM of the PE consumes the SetVal() signal, it simply runs the assignment vi := val.

Figure 6. Protocol meta-engineer ing extension

Protocol Entity P

Ei

Ui

di := val

ExpVal
(di)

GetVal
(di)

InTraN Transitions

Subscribable Events

Si

SetVal
(di, val)

(true)

(false)

Original
Transition

Event
(Ei, P)

SEi

Un-subscribable
Events

Original
Transition

SEi := val

SetFlag
(SEi, val)

17

3.2.4 Protocol Meta-Engineer ing

The meta-engineering of a PE involves adding new events and transitions to its EFSM. Basically, the
SM should be able to tell the PE which events in its

PE′ set are currently subscribed by SPs. These events
will be marked in the EFSM, so that, whenever any one of them occurs, the EFSM sends a signal to the SM
over its T-type channel.

Figure 6 depicts the necessary meta-engineering of the EFSM of any classical protocol entity P in
order to make it InTran enabled—new components are shown in shaded SDL symbols. Let Si be any state
in P, Ei be any subscribable event, and Ui be any un-subscribable event, then the following components are
added to the EFSM:

� A new transition triggered by the signal SetVal(di, val).
� A new transition triggered by the signal GetVal(di).
� A new transition triggered by the signal SetFlag(Ei, val)
� For every Ei a Boolean flag (SEi) is created in P to remember the current subscription status of Ei.

SEi is set to true if Ei is currently subscribed. We augment the transition of Ei right after the SDL
input symbol as shown in Figure 6. After consuming Ei, the EFSM checks the associated
subscription flag (SEi) of the consumed event. If SEi = true (i.e., an SE is currently subscribed to
Ei), the EFSM outputs the signal Event(Ei, P) to the SM. Otherwise, no action is taken.

The SM uses the SetFlag() signal to manage subscription flags (i.e., SEi flags) as follows: Assume an
SP made the subscription: Bind(Ei, Pj, TMk), the SM registers this subscription instance in its internal data
store, and then it checks if there are other SPs currently subscribed to Ei. If no active subscription instance
is found, the SM sends the signal SetFlag(Ei, true) to the EFSM of protocol Pj. When the EFSM consumes
this signal, it enables Ei signaling by setting the subscription flag SEi associated with Ei to true. However, if
the SM does find at least one active subscription instance to Ei in its data store, this indicates that Ei
signaling is already enabled in the EFSM, and therefore the SM takes no further action. Conversely, if an
SP made Unbind(Ei, Pj, TMk), the SM updates its internal data store, and also checks if any SP is still
subscribed to Ei after executing the Unbind(). If at least one such instance is found, the SM takes no further
action, but if the Unbind() has caused the last subscription instance of Ei to be deleted from the data store,
the SM sends the signal SetFlag(Ei, false) to the EFSM of protocol Pj to disable the signaling service of Ei.
The SetVal() and GetVal() signals correspond to the write-access and read-access operations which were
described in the previous sub-section.

3.2.5 Secur ity Model

Since the InTraN framework exposes the internal state of the protocol to entities running in the user
space (i.e., TMs), it must address the correctness and safety issues of the underlying protocol appropriately.
We can claim that access modes that only involve signaling or reading are safe (i.e., Signal-Only and Read-
Only TMs) since they do not alter protocol's internal state. We have to be concerned only when a TM is
allowed to write to protocol's variables (i.e., Read-Write mode). Here, we propose a security model which
allows controlled access to protocol's internal variables and at the same time maintains system stability. We
define two types of designers who can be involved in any InTraN-based solution: (1) protocol designer, and
(2) TM designer. The protocol designer must be a super-user. He basically performs the meta-engineering
on protocol entities. This includes, deciding the three classes of protocol's variables (A, B, and C),
identifying subscribable events (i.e.,

PE′), and extending the EFSM by adding InTraN components as in
Figure 6. The TM designer can be any user; he simply implements a particular protocol solution/extension
by coding one or more TMs. He uses the services offered by the underlying InTraN-enabled system through
the Access API to implement the intended solution.

Only when a Read-Write type TM tries to update a C type variable, then system stability can be
compromised—we define this combination as the dangerous combination. The danger may come from two
sources: (1) a flaw in the protocol design, and (2) a malicious TM of type Read-Write. When a system is
running with a dangerous combination, the operating system activates a guarding program that verifies any
attempts made by TMs to update C type variables. If the update is safe, it is allowed to proceed. But, if the
update may cause instability in the system (i.e., it is attempting to change a timer or index variable in the
protocol) then the write operation is blocked immediately and the offending TM is shut down. The guarding
program itself is simple and can be implemented as utility program that belongs to the operating system.

18

Basically, it needs to know which updates on any PE's internal variables are safe and which are not
regardless of protocol designer classifications in Table 2. This way, the integrity of the InTraN-enabled
system can be preserved even in the presence of design flaws.

What are the performance implications of this added security? We can show that by careful
implementation the overhead should be very small. Here, we propose an implementation path using event-
driven run-time screening, but other choices can be taken as well, such as static analysis of the TM source
code (similar to that of [Hau04]). The SM can be programmed to initiate a special thread program to handle
the WriteVar() operation and the dangerous combination. Figure 7 describes the basic algorithm;
Assuming a TM called (Tw) has issued the following write operation: WriteVal(Tw, v, val). First, the SM
consults the TM-instance of Tw to retrieve the protocol entity P associated with it. Next, this operation must
pass the initial screening at the SM (i.e., the SM checks if Tw is a Read-Write type TM and v is a C type
variable). If the write operation passes this test successfully, then the SM invokes the guarding program to
perform a second-level independent screening and waits for its decision. The SM passes two parameters to
the guarding program: target variable v and target protocol entity P. If the guarding program finds that this
write operation is safe, it sends a GREEN signal to the SM to allow it, the SM then continues normally by
issuing a SetVal(v, value) signal to P. Otherwise (i.e., the write operation is not safe), it sends a RED
signal to the SM which responds by canceling the write operation and shutting down Tw. Let N be the
number of PEs and let K be the maximum number of unsafe variable updates in any PE. Then, the guarding
program will make O(N+K) comparisons in the worst case.

3.3 Conclusion

The proposed InTraN meta-engineering presented in this chapter has a number of distinguishing
features; first, it is light-weight and requires only limited changes (and additions) on the original protocol.
Secondly, it is generic and can be applied to any protocol as far as it has some state information and
programmable interface, and finally, it leaves the InTraN-enabled protocol fully compatible with legacy

definitions

v A variable in protocol entity P

val A new value to be written into v

Tw The TM that issued the write
operation

P The target protocol entity

Get P from the TM-
instance of Tw

Tw is RW type
&&

v is C-type

WriteVar
(Tw, v, val)
received

 Call guarding prog
(v, P)

Output to P
SetVal(v, val)

End thread

GREEN

Terminate Tw

End thread

RED

Return (Falso) to Tw

End thread

False

True

The SM thread that handles the WriteVar()
request.

Figure 7. SM handling of the WriteVar() operation

19

network components and non-subscribing applications. Furthermore, it allows maximum flexibility since it
puts most of the work in programmable components that can be updated or changed at anytime.

20

CHAPTER 4

iTCP part I : InTraN Meta-Engineering

4.1 Introduction

With the advent of advanced applications and their advanced transport needs current transport
services are increasingly becoming inadequate. This inadequacy has also prompted recent attempts towards
recreating new and more complex functionalities inside the network or system middle layers. For example,
Congestion Manager [And00], [Bal99] is a system layer component that provisions aggregate congestion
control when multiple streams from the same endpoint attempt to send. Unfortunately, majority of these—
though they offer specific functional advantages—enormously increase the network or system layer
complexity. Such complex permanent addition to the network software appears questionable. When the
complexities of such solutions are weighted against their general advantage over a broad range of
applications, they do not seem to be gaining any acceptance. Due to the same inadequacy, in the past few
years it has also been felt that for advanced applications (e.g., real-time streaming), it is better to engage the
applications themselves in the solution. Particularly promising are the research in the new TCP friendly
paradigm [Pra00], [Rej00], [Sis98]. Due to the lack of convenient means to obtain real-time information
about network state, these systems had to rely exclusively on application layer techniques to compensate
for the network impairment. Several works such as [Bri99], [Wol97] suggested sending multilevel
redundant information which will eventually increase the burden on the network. Also, due to the inherent
round trip delay involved, adaptation time can be unbearable for more time-critical applications. Overall, it
is very difficult to build a network friendly application if the network itself is non-friendly and unwilling to
interact.

A particular problem we address with iTCP is the congestion management and particularly the one for
time-sensitive streaming traffic. Most of the network level schemes for congestion control are based on
delaying traffic at various network points. The more classical schemes depend on numerous variants of
packet dropping in network, prioritization (graceful delay in router buffer), admission control (delaying at
network egress points), etc. However, a key aspect to note in all is that they introduce time distortion in the
transport pathway of the application. Though this is harmless to time-insensitive traffic such as email or
FTP, but they distort the temporal characteristics of time-sensitive traffic such as multimedia streaming or
control data. Recent solutions are also based on complex network or system layer addition (such as
[And00]). We demonstrate a simple InTraN-based congestion management scheme for time-sensitive
elastic traffic. In contrast to network or system layer solutions, the general principle we follow is simple
and intuitive; it seems an effective delay conformant solution for time-sensitive traffic may be designed if
the original data volume can be reduced by its originator—the application.

To demonstrate the efficacy of the principle, we have also designed a corresponding advanced video
rate transcoder system [Kha01] that works in symbiosis with the network. This transcoder actively
participates in a custom symbiotic back-off scheme in the application layer with deep application level
knowledge resulting in much more effective joint quality/delay sensitive communication. The adaptation is
applicable for traffic where it is possible to dynamically adjust the data generation rate—we call it elastic
traffic. Most perceptual data, such as audio and video streams generally belongs to this traffic class. The
resulting scheme is similar in spirit to the TCP-friendly approaches. However, there is a fundamental
difference in how it is done. The network or system layers remain as simple as possible. The responsibility
of the network layer is simply to pass on only selected end-point events to the application. Since, the
solutions are now implemented at application level; therefore these can be made much more sophisticated
without and significant increase in network layer complexity.

In this chapter we first give some background information on congestion control mechanisms in TCP
and then we discuss the InTraN meta-engineering of TCP that will yield iTCP. In the next chapter we
discuss implementation details and present experimental performance results of the controlled iTCP/video
symbiosis.

21

4.2 Congestion Control in TCP

TCP is a connection-oriented unicast protocol that offers reliable data transfer as well as flow and
congestion control. TCP maintains a congestion window that controls the number of outstanding
unacknowledged data packets in the network. Sending data consumes slots in the window of the sender and
the sender can send packets only as long as free slots are available. When an acknowledgment (ACK) for
outstanding packets is received, the window is shifted so that the acknowledged packets leave the window
and the same number of free slots becomes available.

4.2.1 Congestion Control Algor ithms

On startup, TCP performs slow-start, during which the rate roughly doubles each roundtrip time to quickly
gain its fair share of bandwidth. In steady state, TCP uses an additive increase, multiplicative decrease
mechanism AIMD) to detect additional bandwidth and to react to congestion. When there is no indication
of loss, TCP increases the congestion window by one slot per roundtrip time. In case of packet loss
indicated by a timeout, the congestion window is reduced to one slot and TCP reenters the slow-start phase.
Packet loss indicated by receiving three duplicate ACKs results in a window reduction to half its previous
size. Therefore, the two principal mechanisms that TCP uses to detect network congestion are (a) when the
retransmission timer times out and (b) when three ACKs arrive. Two algorithms then contribute to TCP's
congestion control behavior; these are the classic algorithm of slow start/congestion avoidance [Jac88], and
the augmentation of fast retransmit/fast recovery [Jac90]. The two algorithms are outlined in Figure 8 and
Figure 9 respectively.

initially, cwnd = 1 (one segment);
ssthresh = 65535 bytes;
win_size = min (cwnd, snd_wnd);
When congestion occurs, do:

ssthresh = max(win_size/2, 2);
if congestion was due to timeout

cwnd = 1;
for every ACK received:

if (cwnd <= ssthresh)
 cwnd = 2 * cwnd;
else

 cwnd = cwnd + segment_size;

Figure 8. Slow Start/Congestion Avoidance mechanism (SSCA)

When a 3rd duplicate ACK is received:
 ssthresh = max(2, min(cwnd, snd_wnd)/2);
 Retransmit missing segment;
 cwnd = ssthresh + 3;

Each time another duplicate ACK arrives, do:
 cwnd = cwnd + 1;
 transmit a new segment;

When a new ACK arrives, do:
 cwnd = ssthresh;

Figure 9. Fast Retransmit/Fast Recovery mechanism (FRFR)

22

4.2.2 Congestion Control Events

Table 7 lists six events that internally occur when the TCP invokes congestion control algorithms.
Although many other TCP events might occur during a TCP session (e.g., flow control events or
connection establishment and termination events), we are only interested in congestion control events.
In Table 7, the column labeled (SSCA) refers to events that take place in the Slow Start/Congestion
Avoidance algorithm, and the label (FRFR) refers to events that take place in the Fast Retransmit/Fast
Recovery algorithm. These events are also presented in Figure 10. Plot (a) of the figure shows the sequence
of events of the SSCA algorithm and their affect on effective window size, and plot (b) shows the same
sequence for the FRFR algorithm. However, in general design we expect only a subset of the internal
events of the protocol to be of interest to the subscriber application. Only a subset of these is made
accessible via the interface. An application instance typically subscribes even to a subset of the accessible
events. The column (Sub) shows subscribable events in our design.

Table 7. TCP Congestion Control Internal Events

Event Meaning Description SSCA FRFR Sub

1
Retransmission timer
timed out

Possibly congested network or the
segment was lost X X

2
A new ACK was
received

Increment snd_cwnd either exponentially
(if less than sstheresh) or linearly
otherwise

X

3
snd_cwnd has reached
the slow start threshold
ssthresh

Switch incrementing snd_cwnd from
exponential to linear X

4 A third duplicate ACK
was received

A segment was probably lost, perform fast
retransmit

 X X

5
A fourth (or more)
duplicate ACK was
received

One segment has left the network; we can
transmit a new segment X

6
A new ACK was
received

Retransmitted segment has arrived at the
destination and all out of order segments
buffered at the receiver are ACKed

 X X

Figure 10. Changes on TCP's sending window due to congestion control events

E
ffective

w
indow

 size

time

winsize

Slow start threshold

(a)

E
ffective

w
indow

 size

time

winsize

Slow start threshold

(b)
one RTT

evt(1)

evt(2)

evt(3)

evt(4)

evt(5)
evt(6)

23

4.3 TCP Meta-engineering

Now we show how to perform the meta-engineering extension on TCP and make it InTraN-enabled—
we call the extended protocol iTCP.

Data
Transfer

Fast
Recovery

Slow
Star t

Window
Closed

T7,9,10

T8

T11

T6

T0

T1,2,3,5

T4

T16

T12,13,14,15

T18,20

T19

Figure 12. EFSM of TCP

T17

Figure 11. Simple TCP system composition

Transmitter Entity
(TE)

[AppWrite]

Receiver Entity
(RE)

Unreliable Medium (UM)

Sending Application Receiving Application

[AppRead]
ST

[RecvACK]

[SendData] [SendACK]

[RecvData]

MT

SR

MR

24

4.3.1 The SDL Model

First, we formally describe the abstract protocol using SDL, and then we augment the protocol by
adding InTraN components. [Tur93] described a simple sliding window protocol in SDL that featured
positive acknowledgments and retransmission mechanisms. We transformed this protocol into simplified
TCP by adding congestion control support. The simplified TCP can be modeled as a composition of three
blocks, Transmitter Entity (TE), Receiver Entity (RE), and Medium. The Medium represents the underlying
unreliable service (e.g., IP and lower layers) while TE and RE represent the two endpoints of a TCP
connection. Figure 11 describes the composition. The sending and receiving applications are located in the
environment. They interact with the system via two service access points modeled by two unidirectional
channels, ST (from the environment to the TE) and SR (from RE to the environment). The channel ST
carries the AppWrite signal from the sending application to the TE, and the channel SR carries the AppRead
signal from the RE to the receiving application. The TE uses a bidirectional channel MT to send data (via a
SendData signal) and to receive acknowledgments (via a RecvACK signal) over the Medium. One the
opposite side, the RE also uses a bidirectional channel MR to receive data (via a RecvData signal) and to
send acknowledgments (via a SendACK signal) through the Medium.

In Figure 14 (a 4-pages figure at the end of the chapter) we formally present in SDL notation the
fundamental part of TCP's congestion control and flow control mechanisms at the sender (Transmitter
Entity). The system describes a unidirectional data service. In this abstract description, we only focus on the
sliding window and congestion control aspects of TCP, many of the details in conventional TCP are hidden,
such as: buffer size issues, sequence number calculations (e.g., sequence number wrap around), and
checksum tests. Furthermore, many of the irrelevant details are hidden inside procedure calls, e.g.,
CalcRTO().
The EFSM of this system is depicted in Figure 12 and can be described as:

• S = {Slow Start, Data Transfer, Fast Recovery, Closed Window},
•

0s = Slow Start,

• E = {AppWrite, RecvACK, rexmt timeout},
• O = {SendData},
• V = {seqno, ackno, RAW, dACK, pACK, FRFlag, RTO, rexmt, Cwnd, Swnd, LU, LS, ExpBoff}.
• f = {T0, T1, …, T20}, The transitions of f are labeled in Figure 14.

4.3.2 EFSM of iTCP

We want iTCP to track two events: ‘ retransmission timer timeout’ and 'receiving third duplicate
ACK’ . Both events signify packet loss and usually cause TCP to trigger congestion control procedures.
Therefore, the augmented EFSM of our Transmitter protocol becomes: (InTraN additions are shown in
bold)

� S = {Slow Start, Data Transfer, Fast Recovery, Closed Window},
�

0s = Slow Start,
� E = {AppWrite, RecvACK, RexmtTimeout, GetVal, SetVal, SetFlag},
� O = {SendData, ExpVal, Event},
� V = {seqno, ackno, RAW, dACK, pACK, FRFlag, RTO, rexmt, Cwnd, Swnd, LU, LS, ExpBoff, RA,

RT}.
� f is augmented as we described in Figure 6 (i.e., by adding three transitions for the GetVal, SetVal,

and SetFlag events, and modifying existing transitions of subscribable events in every state).
RA and RT are the Boolean subscription flags associated with events RecvACK and RexmtTimeout

respectively. We chose the sets
PE′ , B, and C as follows:

•
PE′ = {RecvACK, RexmtTimeout} ,

• B = { dACK, Swnd, RAW} ,
• C = { } .

The InTraN-added members of E (i.e., GetVal, SetVal, and SetFlag) are for internal SM use only.
Therefore, they are not included in

PE′ (i.e., they cannot be subscribed by a SP). The same applies to the
subscription flags (RA, RT) which cannot be included in the set B or C. In Figure 15 (at the end of this

25

chapter) we show the InTraN-enabled SDL version of the (slow start) state only. The remaining states can
be extended by adding exactly the same components.

4.4 A Complete TCP EFSM/SDL Model

In this section we provide an EFSM model for the original TCP standard that was proposed in RFC
793 [Pos81]. We have augmented the original standard to include the congestion control mechanism of
TCP Reno described above. We have posted the complete SDL description of this EFSM in a technical
report [Zag05] which is posted on our web server. We have developed this model as a supplement material
for the InTraN paradigm. Using this model, any InTraN-enabled protocol extension solution can be

formulated as we described earlier by selecting the sets PE′ , B, and C and by writing a set of TMs that
implement the proposed extension. We felt that this model can be beneficial for other researchers who
might be interested in the formal description of the TCP standard using the EFSM/SDL notation.

4.4.1 Remarks and Simplifying Assumptions:

1- The EFSM always remembers the current state in the variable (CurrState) and the previous state in
the variable (PrevState),

2- The TCP endpoint has unlimited buffer space (e.g., buffer space to queue SENDs and RECEIVEs
is always available)

3- In any state, whenever a segment is sent, the segment is added to the Retransmission Queue
(RexmtQueue) and the retransmission timer (REXMT) is started.

4- The (REXMT TIMEOUT) event has been modeled in all states except (FIN-WAIT-2, TIME-
WAIT, CLOSED), since in these states the endpoint have already received an ACK of its FIN
segment (i.e., will not transmit any segments afterwards).

5- The (TIMEWAIT TIMEOUT) event has been modeled in (TIME-WAIT) state only. In all other
states, this timer is irrelevant.

6- The following were not modeled from RFC 793:
a) Security/Compartment and Precedence processing.
b) The STATUS user call.
c) The PUSH mechanism (i.e., PSH control bit)
d) The URGENT mechanism (i.e., URG control bit)

4.4.2 The Complete TCP EFSM

The TCP EFSM=(S, s0, E, f, O, V) can be described as follows:
1. States (S) = {CLOSED, LISTEN, SYN-SENT, SYN-RCVD, ESTABLISHED, FIN-WAIT-1, FIN-

WAIT-2, CLOSING, CLOSE-WAIT, LAST-ACK, TIME-WAIT} .

2. Initial State (s0) = {CLOSED}

3. Events (E)

User Calls (subscr iber events) = {Active OPEN, Passive OPEN, SEND, RECEIVE, CLOSE,
ABORT} .

Arr iving Segments (service events) = {SEGMENT ARRIVE (SYN, ACK, RST, FIN)} .

Timeouts (internal events) = {
REXMT TIMEOUT: The Retransmission Timer (REXMT) has timed out,
, TIME-WAIT TIMEOUT, USER-TIME TIMEOUT} .

4. Transition Function (f) = {described in [Zag05]}

26

5. Output Signals (O) = {Return (message), Return Error (error message), Signal User (message), and
Segment (SEG)} .

6. Var iables (V)

A. Segment Var iables
SEG.SEQ: segment sequence number
SEG.ACK: segment acknowledgment number
SEG.LEN: segment length
SEG.WND: segment window (Receiver Advertised Window)
SEG.CTL: control bits (ACK, RST, SYN, FIN)

B. Send Sequence Var iables

SND.UNA: send unacknowledged
SND.NXT: send next
SND.WND: send window
ISS: initial send sequence number

C. Receive Sequence Var iables

RCV.NXT: receive next
RCV.WND: receive window
IRS: initial receive sequence number

D. Timers

REXMT: Retransmission Timer.
TIMEWAIT: Time-wait Timer
USERTIME: User Timer

E. Counters

dACK: duplicate ACK counter
ExpBoff: exponential backoff counter

F. Other

CurrState: Current State
PrevState: Previous State
RTO: Retransmission Timer Out value
RTT: Round Trip Time—used to calculate RTO
SRTT: Smoothed RTT—used to calculate RTO
CWND: Congestion window
MSS: Maximum Segment Size
SSthresh: Slow Start Threshold
MSL: Maximum Segment Lifetime

G. Buffers

Send Buffer: Send Buffer
RCV Buffer: Receive Buffer
OO RCV Buffer: Out of Order Receive Buffer
Rexmt Queue: Holds sent but unacknowledged segments
User Calls Queue: Holds outstanding user calls (e.g., SEND, RECEIVE, CLOSE)

4.5 Classification of EFSM Components

Figure 13 classifies the main components of a generic communication protocol EFSM and connects
those to the EFSM components of TCP. The upper part of the figure (shown in yellow) presents the generic
classification with three main components: Events, States, and Variables. The lower part of the figure
(shown in green) classifies the TCP components.

27

EFSM

Events States Variables

Timers

Internal External

Subscriber
Events

Service
Events

Simple Complex

Objects

Active
OPEN

Passive
OPEN

SEND

RECEIVE

CLOSE

ABORT

SEGMENT
ARRIVE

SYN

ACK

RST

FIN

REXMT
TIMEOUT

TIME-WAIT
TIMEOUT

USER-TIME
TIMEOUT

REXMT

TIME-WAIT

USER-TIME

SND Buffer

RCV Buffer

OORCV
Buffer

Retransmit
Queue

User Calls
Queue

CLOSED

LISTEN

SYN-SENT

SYN-RCVD

ESTAB

FIN-WAIT-1

FIN-WAIT-2

CLOSING

CLOSE-WAIT

LAST-ACK

TIME-WAIT

Segment

Send
Sequence

Receive
Sequence

REXMT

TIME-WAIT

USER-TIME

USER-TIME

USER-TIME

REXMT

TIME-WAIT

USER-TIME

REXMT

TIME-WAIT

USER-TIME

Figure 13. Classification of the EFSM components and their TCP counterpar ts

28

4.5.1 Events

Events can be External (i.e., they are triggered by receiving a signal from an external entity), or
Internal (i.e., they are triggered when a timer times out). Signals that trigger external events can come from
two types of entities: Service Providers (i.e., lower-level protocols that provide communication services to
this EFSM), or Service Subscribers (i.e., upper-level protocols that uses the communication services
offered by this EFSM). A signal received from a Service Provider triggers a Service Event, and a signal
received from a Service Subscriber triggers a Subscriber Event. In the TCP part, the Service Provider is
IP and the Service Subscriber is the user, therefore, user calls like (OPEN, SEND, RECEIVE, etc) are
classified as Subscriber Events, and receiving a segment from IP (SEGMENT ARRIVE) is classified as
a Service Event. Whenever one of the three timers in TCP expires, it generates an Internal Event.
Internal Events in TCP happen whenever one of the timers expires.

4.5.2 States

States can be classified in a hierarchy, where the top level contains the states in this EFSM. Each state
on the top level can itself contain a smaller EFSM whose states can be considered as second level states.
For example, the four states of the congestion control EFSM presented in the previous section (i.e., Slow
Start, Data Transfer, Window Closed, and Fast Recovery) are all considered to be part of the
(ESTABLISHED) state of this EFSM, and therefore they can be classified as second level states. In Figure
13 we only show the 11 states of the complete TCP EFSM at the top level.

4.5.3 Var iables

We have classified Variables into two categories: Simple and Complex. Simple variables have
simple data types like integers or character strings. Complex variables are class objects defined with
methods and values. Timers are special type of complex variables since (i) they have built in methods in
SDL (e.g., SET, RESET) and (ii) they trigger internal events when they expire. In the TCP part we classify
simple variables into three parts: Segment, Send Sequence, and Receive Sequence (the EFSM has
additional variables but we did not include them in the figure due to space limitation). We also show the
three timers (REXMT, TIME-WAIT, and USER-TIME) and all the Buffers/Queues as Complex variables.

4.6 Conclusion

In this chapter we have first reviewed some of the issues concerning congestion control in TCP and
the need for application involvement in designing adaptive TCP-friendly solutions. Then, we have shown a
real application of the InTraN meta-engineering on TCP which gave an InTraN-enabled version of TCP (or
iTCP). In the next chapter we demonstrate a TCP-friendly, congestion management scheme based on iTCP
and the InTraN Transientware mechanisms.

29

Figure 14. SDL descr iption of a simplified TCP transmitter

Process TCP Transmitter

/* This process has four states: (1) initial
state is slow start, (2) data transfer, (3)
fast recovery, and (4) window closed. The
EFSM diagram of this process is given in
Figure 12 */

seqno : Header field (sequence number)
ackno : Header field (ACK number)
RAW : Hearder field (Receiver Advertised
Window)
dACK : duplicate ACK
pACK : previous ACK
FRFlag : Fast Recovery Flag (Boolean)
RTO : Retransmission Timer Out value
Cwnd : Congestion window
Swnd : Send Window
LU : Least Unacked byte
LS : Last Sent byte
ExpBoff : Exponential Backoff
SBuff : Sender Buffer.
rexmt: Retransmission timer.

Slow Start

RecvACK
(H, data)

AppWrite
(data)

rexmt
(seqno)

Add data to SBuff

LS - LU < Swnd

SendData
(H, Data)

CalcRTO (RTO)

set (RTO, rexmt)

LS := LS + 1

Window
Closed

Cwnd
�
 ssthresh

Cwnd := Cwnd × 2

Cwnd := Cwnd + 1

(true)

(false)

Swnd := min
(Cwnd, RAW)

ExpBoff < 64

ExpBoff :=
ExpBoff × 2

(true)

(false)

CalcRTO (RTO)

set (ExpBoff × RTO,
rexmt)

LU := seqno+1

ExpBoff := 1

Cwnd
�
 RAW

(true)

(false)

Data Transfer

 seqno � LU

(true)

(false)

Initialize
variables

(1)

T0

T1

T2

T3

T4

T5

Remove ACKed
bytes from SBuff

ReleaseTimers
(seqno)

Retransmit
(seqno)

(true)

(false)

30

Figure 14 (continued)

Data Transfer

RecvACK
(H, data)

AppWrite
(data)

rexmt
(seqno)

Add data to SBuff

LS - LU < Swnd

SendData
(H, Data)

CalcRTO (RTO)

set (RTO, rexmt)

LS := LS + 1

Window
Closed

seqno = pACK

dACK := dACK+1

pACK := seqno

(true)

(false)

dACK = 3

Fast Recovery

(true)

(false)

LU := seqno+1

ssthresh :=
max (Swnd/2, 2)

Cwnd := 1

Slow Start

temp := min (Cwnd,
Swnd/2)

ssthresh := max(2, temp)

Cwnd := ssthresh + 3

seqno � LU

(true)

(false)

 (false)

(true)

Process TCP Transmitter

(2)

T6

T7

T8

T9

T10

T11

Remove ACKed
bytes from SBuff

ReleaseTimers
(dACK-1)

Retransmit
(dACK-1)

ReleaseTimers
(seqno)

ReleaseTimers
(seqno)

Retransmit
(seqno)

31

Figure 14 (continued)

Process TCP Transmitter

(3)

Fast Recovery

RecvACK
(H, data)

AppWrite
(data)

rexmt
(seqno)

Add data to SBuff

seqno = pACK

FRFlag := True

(true)

(false)

ssthresh :=
max (Swnd/2, 2)

Cwnd := 1

Slow Start

LU := seqno+1

Data Transfer

FRFlag

(true)

(false)

SendData
(H, Data)

CalcRTO (RTO)

set (RTO, rexmt)

seqno � LU

(true)

(false)

FRFlag := False

LS := LS + 1

T12

T13

T14

T15

T16

T17

ReleaseTimers
(seqno)

Retransmit
(seqno)

Remove ACKed
bytes from SBuff

ReleaseTimers
(seqno)

32

Figure 14 (continued)

Process TCP Transmitter

Window Closed

RecvACK
(H, data)

rexmt
(seqno)

seqno � LU

(true)

(false)

LU := seqno+1

Data Transfer

AppWrite

(4)

T18

T19

T20

Remove ACKed
bytes from SBuff

ReleaseTimers
(seqno)

ReleaseTimers
(seqno)

Retransmit
(seqno)

33

Figure 15. iTCP's (Slow Star t) state extended with InTraN components

Process iTCP Transmitter

All variables in 'TCP Transmitter' (Figure 14) in
addition to the following:

RA: Boolean subscription flag for (RecvACK)
RT: Boolean Subscription flag for (rexmt)
Fval: Boolean parameter for the (SetFlag) event

Slow Start

RecvACK
(H, data)

AppWrite
(data)

rexmt
(seqno)

(1)

 RA

(true)

Event
(RA, TCP)

(false)

 RT

(true)

Event
(RT, TCP)

(false)

Rest of transition as
in TCP Transmitter

Rest of transition as
in TCP Transmitter

No change, same as
in TCP Transmitter

SetFlag
(RT, Fval)

GetVal
(RAW)

SetFlag
(RA, Fval)

GetVal
(dACK)

GetVal
(Swnd)

RA := Fval

RT := Fval

ExpVal
(dACK)

ExpVal
(Swnd)

ExpVal
(RAW)

34

CHAPTER 5

iTCP part I I : Implementation and Performance

5.1 Implementation Details

5.1.1 System Architecture

Figure 16 depicts the conceptual architecture of the system on FreeBSD. The scheme works in three spaces:
user space, system space, and kernel space. Once it establishes a TCP connection, the user process starts by
binding the TCP kernel with a set of chosen events from Table 7 using a Subscription API that extends the

standard socket API (1). An entity called Event-Monitor runs in the TCP kernel space and monitors all
subscribed events for every socket (2). Assuming at some point event (evt) occurs in socket (sock). The
Event-Monitor sends a (SIGIO) signal that is caught by the (Signal Handler) (3a), and at the same
time writes the socket descriptor of the socket (sock) in the process structure proc{} of every process
that is currently subscribed with this socket. Also, it marks all subscriptions of event (evt) in the socket
(sock) as outstanding (3b)—i.e., waiting to be handled. The OS activates the signal handler
(SigHandler) associated with the (SIGIO) signal whenever this signal is caught. The (SigHandler)
first uses the probing API to retrieve the socket id (sock) of the socket that generated the event. Then, it
uses the probing API again to access the socket (sock) and get relevant information about the outstanding
subscription of event (evt). The information retrieved includes the event type and the name of the TM
bound to it (4a,b). Immediately after that, the (sighandler) invokes this TM (5). TMs are usually small
programs supplied by the user or by a third-party as ready to run executables custom-designed to handle
certain events. One TM is forked by the (sighandler) for each valid (SIGIO) signal. The probing API
allows the TM to probe additional information about the state of the TCP connection (6a, b). We show two
TMs in Figure 16, LossTM1 and LossTM2 to handle the two loss events mentioned above. These TMs

Figure 16. The TCP-interactive extension and API

3b

user space

1

Reduce

FreeBSD TCP
kernel

2

4a

Event
 Information

Connection
State

Video Transcoder

Probing API Subscription
API

LossTM1

TCP
Connection system

K

ernel

5

SigHandler

4b 6b

LossTM2

Event
Monitor

Socket
API

rate.par

Reduce

6a

SIGIO
signal

Increase

Recovery
Handler

Recovery timer

8

7

35

employ a symbiosis throttling mechanism based on the TCP state to calculate an optimized reduced bit rate
(hbest) to put the transcoder in a frugal state. They also calculate an optimal duration (Trecovery) for the frugal

Table 8. The API Extension of iTCP

Level Caller Descr iption

void GetEvents (int *NumOfEvents, evtInfo *EventList[]);

User User process Retrieve the complete list of available events in the TCP kernel. Retrieve evtInfo{} struct for each
event in the list.

int SubscribeEvt (int sock, int evt, int T-ware);

User User process Subscribe with the socket sock for event type evt. Register handler T-ware for this event. This call
will add a subInstance{} structure to the evtList list in the subscribed socket.

int UnsubscribeEvt (int sock, int evt);

User User Process Unsubscribe a previously subscribed event. Afterwards, no signal will be sent when this event occurs.
Remove the subInstance{} from the evtList list in the subscribed socket.

int GetSockid (void);

System Signal Handler Get the descriptor of the socket that sent the signal when the subscribed event had occurred. This is
necessary since a process can subscribe to many sockets, and the Signal Handler needs to know which
socket triggered the event.

int ProbeEvtInfo (int sock, struct evtInfo *info);

System Signal Handler Get the number and the Handler name of the event that has just occurred in the socket sock.

int ProbeSocket (int sock, struct connState *conn);

User Event Handler Probe the socket sock to retrieve the current state of the TCP connection is the connState{}
structure.

int GetSubPerm (int sock, int evt, int *perm);

User User Process Get the current access permission string perm for the event evt subscribed with socket sock. Get four
flags: (Read, Write, Subscribe and Trigger) for two levels (System and User).

int GetSubPriority (int sock, int evt, int *priority);

User User Process Get the Priority Level of the event evt subscribed with socket sock. Returned Priority is between
1 and 3.

int GetHandlerPerm (int sock, int evt, int *mask);

System Root Process

Get the Connection Access Mask mask for the event evt subscribed with socket sock. The returned
value in mask specifies which fields in the connState{} struct are accessible by the T-ware and
which fields are not.

int SetSubPerm (int sock, int evt, int perm);

System Root Process

Set a new access permission string perm for the event evt in the socket sock. The integer perm
should specify four flags: (Read, Write, Subscribe and Trigger) for two levels (System and User).

int SetSubPriority (int evt, int priority);

System Root Process Set a new Priority Level for the event evt in the socket sock by assigning a value to priority.

int SetHandlerPerm (int sock, int evt, int e_hand, int mask);

System Root Process

Set a new access mask mask for the event evt in the socket sock. The integer mask should specify
which fields in the connState{} structure are accessible and which fields are not.

int GetEvtState (int evt, int *state);

User User Process Get the Subscription State of event evt. Return zero in state i f the event is subscribable or one
otherwise.

int DelEvent (int evt);

System Root process Set the deleted flag in the evtInfo{} structure to true. Afterwards, evt will be ignored by subsequent
system calls.

int AddEvent (int evt);

System Root Process Reset the deleted flag in the evtInfo{} structure to false. Afterwards, evt will be reported by
subsequent calls.

int UntriggerEvt (int sock, int evt, int status);

User User process Trigger/untrigger subscribed event evt.

36

Figure 18. Subscr iption and probing scenar ios

struct evtInfo *evtList[]
int n;
s = makeSocket();
SubscribeStub{
 GetEvents(&n, evtList);
 For(i=0; i<n; i++){
 if (evtList[i]->subscribable == 1)
 if ((i == REXMT_TOUT) ||
 (i == THIRD_DACK))
 SubscribeEvt(s, i, EvtHandler[i]);
 }

 iSockets = iSockets ∪ s;
}

struct evtSubInfo *ESinfo;
Probe{
 s = GetSockid();
 if (s ∈ iSockets){
 ProbeEvtInfo(s, ESinfo);
 if (ESinfo->evt in (REXMT_TOUT,THIRD_DACK)){
 Switch (ESinfo->Tware){
 case 1: Tware1();
 case 2: Tware2();
 ...
 }
 }
 }
}

Figure 17. iTCP internal data structures

proc{} socket{}

subList

proc{}

p_fd p_fd

subInstance{}

P1 P2

evtList

 0

evtInfo{}

subscribable=1

deleted=0

triggerable=0

importance=3

description

eventPerm

event

priority

handler

handlerPerm

prev_sub

next_sub

subProcess

socketfd socketfd

status

…

subInstance{}

eventPerm

event

priority

handler

handlerPerm

prev_sub

next_sub

subProcess

status

evtInfo{}

subscribable=1

deleted=0

triggerable=1

importance=2

description

1

2

3

37

state—after which the transcoder returns to its normal rate. They convey this rate reduction to the
transcoder by writing the new rate to the file named "rate.par" (7) and they start a timer that will expire
when Trecovery time has passed after which a recovery handler is invoked to write the normal rate into
"rate.par" (8).

5.1.2 API

Table 8 shows the complete API system designed. In this table for each system call we list its
prototype, the level of its caller (user or system), its potential caller (application, signal handler, or TM),
and a brief description about its functionality. Some of these functions are designed for the network
administrator (root process) to manage event subscription by granting priority levels and access
permissions for the user process.

5.1.3 Internal Data Structures

We have implemented the scheme on FreeBSD 4.5 kernel. Here, we discuss some of the internal
details of iTCP implementation. A user process can open one or more TCP sockets. At the same time a
socket can be used by more than one process. Figure 17 shows the relevant data structures needed to
implement the subscription and probing scenarios in iTCP. An open socket maintains a list of events called
(evtList) as an inventory of all events supported by iTCP. The socket uses the (evtList) field to
retrieve the static information related to any event type. The list is implemented as an array of pointers to a
structure called evtInfo{}. The structure evtInfo{} shown in Table 9 (a) represents one event type
and stores information about the event such as its description and relevant attributes. The socket also
maintains a doubly linked list of subscribed events for every subscriber process called (subList).

Table 9. Implementation details evtInfo{} and subInstant{}

(a) struct evtInfo{}

Field type Field Name Description
char * Description A brief description text about the event and its

meaning.
int Deleted A flag to mark the event as deleted.
int Subscribable A flag to decide if the event is subscribable.
int triggerable A flag to decide if the event can be triggered by the

subscribing process.
int Importance Importance level of the event.

(b) struct subInstance{}

Field type Field Name Description
Struct subInstance * next_sub A pointer to the next entry in the linked list
Struct subInstance * prev_sub A pointer to the previous entry in the

linked list
int event Event number/name.
int status The status of the signal.
int eventPerm Access permission string for this

subscription instance.
int Priority Priority of the event in this subscription

instance.
int handler The number of event handler for this

subscription instance.
int handlerPerm Access pattern mask for the connection

state variables.
struct proc * subProcess A pointer to the subscribing process.

38

 Whenever a user process subscribes with a new event, the socket adds a new entry to this list called
subInstance{}. The structure subInstance{} represents one subscription instance for a given
process/socket pair. It contains information such as event number, status and name of the TM bound to the
subscribed event. Table 9 (b) shows the complete subInstance{} structure. The socket removes a
subInstance{} entry from the (subList) if a user process decides to unsubscribe from a previously
subscribed event.

5.1.4 Subscr iption and Probing Scenar ios

Figure 18 demonstrates subscription and probing scenarios. We explain an application stub routine
SubscribeStub() which handles this stage. After creating a socket (s), the SubscribeStub()
routine uses the GetEvents() system call to retrieve the set of events available from the socket in
evtList[] and their number (n) from the kernel. Let's assume that the application wants to subscribe to
two events: The retransmission timer time-out event (REXMT_TOUT) and the third duplicate ACK event
(THIRD_DACK). Here, we let the index (i) represent the event number in the list evtList[].
SubscribeStub() first checks if the current event (i) is either (REXMT_TOUT) or (THIRD_DACK),
if this is true; it makes a SubscribeEvt() system call to subscribe to the event. After finishing the loop
this system call adds the socket (s) to the set (iSockets), which includes all sockets that the application
had subscribed with. When the kernel sends a SIGIO signal, a system routine catches it. This routine then
uses the probing function Probe{} (shown in Figure 18) to handle the signal. The Probe{} routine calls
GetSockid() to find out which socket has sent the event, and stores its descriptor in (s). If the socket (s)
was among the set of subscribed sockets (iSockets) of this application, it calls ProbeEvtInfo() to
retrieve the subscription information for this subscription instance. Internally, when the ProbeEvtInfo()
system call is made, the kernel traces the subList[] of socket (s) and looks for a subscription instance
subInstance{} whose status field equals 1, i.e., this is an outstanding instance waiting for the signal
handler attention. Normally there should be only one outstanding instance per application in the socket’s
subList[]. Once found, the kernel returns two fields from the outstanding instance to the application in
the evtSubInfo{} structure: the event number (evt), and the TM name (Tware). When the
ProbeEvtInfo() returns, the Probe() checks if the event (evt) is iTCP related, i.e., it is either
(REXMT_TOUT) or (THIRD_DACK), and then it executes the proper TM as dictated by the value
returned in ESinfo->Tware.

Figure 19. Symbiosis throttling model

tloss tactual tequal tcritical

Relaxation period (λλλλ)

Critical delay period (d)

Frugal state rate (h)

Reaction delay (ττττ)

trecovery

Generator Function g(t)

Window Function w(t)

time

39

5.2 Symbiosis Throttling Model

The key to the system is the intermediate event gluing mechanism—or as we call it symbiosis
throttling. It performs the key task of dynamically specifying the target rate for the application based on
the event notification interrupt. The idea is to accept the event feedback provided by the underlying
interactive transport layer, and generate a corresponding rate feedback for rate formation capable
applications. This feedback is estimated in a way that ensures transport service with applications specified
delay conformation over the otherwise classic transport service.

The main idea is that when a time-out event (1=ξ) occurs in the transport, we let the subscriber rate

retract to a smaller rate. We call this retraction state as frugal state. The key issue is how to optimally
design the frugal state’s retraction point so that the overall system meets the delay bound of the application.

5.2.1 Analysis of Symbiotic Throttling

Let g(t) be the generation function denoting the data rate at which the rate formation capable application
produces data as a function of time. Let w(t) is the bandwidth function provided by the transport channel
over which, the application sends the data. Figure 19 explains the model. During normal operation w(t)

�

g(t). When a loss event is detected (e.g., timeout) the transport bandwidth retracts to some smaller effective
value due to window resizing. The underlying cause might be a packet loss or a congestive delay deep
inside network. In either case, the sender transport buffer builds up and results in increased communication
delay. In response to the loss event, we let the subscriber adjust its generation rate to a lower generation
state (we call this state the frugal bandwidth state). The normal operation is however by a satisfied
bandwidth state. In any practical feedback system there is also always a reaction delay in the feedback loop.
Let τ be the reaction time needed by the subscriber process to react and adjust its rate. Given the above
model, the particular design problem we address is the following:

Here the delay bound dQ is the maximum delivery delay an application can sustain between generation

endpoint and delivery endpoint of the application layer. We now further define two additional concepts
important for the derivation to be presented.

5.2.2 Cr itical-delay-point inequality

Assuming the loss is detected at time tloss. After the loss assume it takes tequal time for the transport
system to again equalize the transport bandwidth with the frugal state generation rate of the subscriber. This
is the point where w(t)= g(t). We call this point the even-point. Since the generation rate is larger than the
transport rate before the even-point is reached, therefore the transport buffer will build up until the even-
point is reached. The buildup will gradually decrease after the even-point. Thus the bytes entering the
buffer exactly at the even-point will face maximum delay. Let this time be called critical-delay-point tcritical.
Thus, if the transport buffer already has Q bytes in it (before moving to the frugal state), the buffer size at
even-point is given by the LHS of equation—(1a). Let d be the maximum acceptable delay, then the
following inequality must hold. We name it critical-delay-point constraint:

� �
⋅≤⋅−+ equal

loss

cri ti cal

equal

t

t

t

t
dttwdttwtgQ)()()(),0max(

Or, � � +
⋅≤⋅+ equal

loss

equal

loss

t

t

dt

t
dttwdttgQ)()(),0max(--(1a)

Given the bandwidth function w(t), the generation function g(t), the satisfied state bandwidth (Bsat), and
the upper bound on the acceptable data delivery delay (dQ), determine the best possible frugal state
(generation rate and its duration) for which the bound dQ can be ensured.

40

5.2.3 Recovery-point inequality

The bytes entering the transport buffer after the even-point will face less but non-zero delay. This data
too will be entering into the buffer quite full. Additional bytes, those generated between the even-point and
the critical-delay-point, will still populate the buffer. Therefore our ultimate goal is to take the buffer into
pre-event state before returning to normal generation. Thus, the subscriber system should still continue to
operate at somewhat less than satisfied state. This extended frugality will allow remaining buffer buildup to
dissipate—completely erasing the effect of the timeout event. We define this time as the full-recovery-point.
Let’s call it the recovery time trecovery, then the following second inequality in equation—(1b) must hold.
We call it full recovery-point constraint. � �

⋅≤⋅+ eryre

loss

eryre

loss

t

t

t

t
dttwdttgQ

cov cov
)()(),0max(

--(1b)

5.2.4 Frugal State Determination

The two inequalities respectively can provide a general solution for the level and duration of the
frugal state for any general transport bandwidth and generation function. It can also predict the
corresponding recovery time.

Below, we solve specifically for the case where the iTCP transport control is similar to TCP (binary-
back-off and additive-increase) and a piecewise step g(t). For simplicity, we assume that when a loss event
is detected the window function decelerates to zero (i.e., w(tloss)=0). We first solve for a fast reacting
system, where the reaction time is very small and let the buildup before subscriber reaction is Q. Let g(t) is
a piece-wise step function. We further assume that the post-fault w(t) is a linear function with bandwidth
acceleration m.

Let dQ is the maximum buffer delay tolerable by the application data. Given a maximum propagation
delay limit TP, and bandwidth w(t), we can say that dQ= d+TP+(1/w(t)) where d is the total delay faced by
the byte entering at critical-delay-point. Since, typically w(t)>>1, then d can be approximated by d = dQ -
TP. Let T be the time it takes the system to reach the even-point (i.e., T = tequal – tloss). Then critical buffer
equality (1a) can be expanded into:

0
2

2

][
2

1

22

2

≤⋅+−−

+⋅⋅≤+

m

Q
dTdT

dTmmTQ

--(2)

It solves to:

m

Q
ddT

2
2 2 −±=

--(3)

Only positive real solutions are practical. For any given system arbitrary delay bound cannot be met.
In that case both the solutions are imaginary. The model can now be used to determine the limit on the
maximum acceptable delay. For the real solution the minimum delay requirement cannot be smaller than:

m

Q
d ≥min

--(4)

T can have two solutions. Both solutions are positive if:

m

Q
d

2≤
--(5)

Otherwise, only one solution is positive. From T, we can determine the frugal state bandwidth of the
generator function. It should be stepped down to:

���
����� −±==

md

Q
mdmTh

2
21

--(6a)

Out of the two solutions, the best possible frugal state (the one which allows higher transmission rate
in the frugal state) is:

41

���
�

���
�

−+==
md

Q
mdmThbest

2
21

--(6b)

And the other solution is:

���
�

		

�

−−==
md

Q
mdmThother

2
21

--(6c)

The second solution, when exists, provides a second possible frugal state with lower generation rate.
If this solution is taken, the data-generation allowance at frugal state will be lower. However, it will result
in faster recovery.

The next question we ask is how long the system should stay in frugal state. We first derive a lower
bound. This is given by the critical recovery time:

��

�

���
�

−±==
md

Q
dTTcritical

2
2122

--(7)

For the special case, when, the initial buildup (or reaction time) is zero, the corresponding height and
duration of the frugal state is:

)21(2

)21(

+=

+=

dT

mdh

critical

best
--(8)

For step g(t), between the critical-point and recovery-point the system continues to be in frugal state
accelerating the recovery. Corresponding recovery time is the complete duration of the frugal state. It can
be determined by solving equality—(2), and is given by:

���
�

���
�

++=
2cov

2
11

h

Qm

m

h
T eryre

--(9)

For the general case, when there is a buffer buildup due to the reaction delay=τ, the buildup can be
estimated from the satisfied state generation rate and the reaction delay. Let H be the bandwidth satisfied
state generation rate, when τ is small, B can be approximated by:

)
2

(
ττ m

HQ −=
--(10)

The slop m can be approximated from the effective RTT and the segment size (up to the current
threshold TCP window grows exponentially).

RTT

I

I

B

I

B
RTT

B
m

channelchannel

channel 2

22
log 2

≈��
����

+
= --(11)

Here Bchannel is the target channel bandwidth, I is the increment step or segment size and RTT is the
round trip delay estimate used by TCP to resize its window. For symbiosis with the underlying transport
protocol, each time a retransmission timeout event (at t=0), reported the frugal state bandwidth is
determined as following.

eryreTtattw

when
dm

Q
md

twhentwtg

cov)(

1
.

2
21

0,0)()(

>=

=���

!!"
#

−+=

===

ξ

ξ

--(12)

5.3 Symbiosis Mechanism: The Transientware

The important task of gluing between the transport layer and the application unit (MPEG-2 rate
transcoder) is finally performed by the symbiosis unit (Transientware Module or TM). The TM essentially
executes the throttling model. It estimates the parameters required to execute the model by probing iTCP as

42

needed and finally it provides the rate parameter to the application as it requires operating in symbiosis.
Below we describe its parameter estimation process and invocation operations.

5.3.1 Estimation of the Model Parameters from iTCP States

To be able to use the symbiosis throttling model described above, we now show how the model
parameters can be estimated from the TCP state and event times made accessible by the iTCP. Namely, we
want to find � , H, RTT, and I from the TCP internal state variables now made available by iTCP.

A) Reaction Delay (τ)

The reaction time τ was approximated as following:

TCPrateEvenTtimesponseTime uutt ++−=)(Reτ --(13a)

EventTime is when the signal handler was invoked. The quantity uTCP is a constant approximating
the time taken by iTCP’s kernel signaling. We assume uTCP =0. Thus EventTime is used here as an
approximation of the real time when the event has occurred deep in the TCP layer. ResponseTime
approximates the time of the real rate reduction (i.e. when the calculated hbest is saved to “r at e. par ” file).
Quanltity urate is the estimate of the rate control systems reaction time after receiving the new rate, we also
assume urate=0.

B) Round Trip Time (RTT)

RTT is directly returned by TCP from its state variable TCPstate->t_rtttime. TCP
implementation uses the following process to measures round trip time (RTT) and retransmission timer out
(RTO). First, TCP measures the RTT between sending a byte with a given sequence number and receiving
an acknowledgment that covers that sequence number (M denotes the measured RTT). Afterwards, TCP
updates a smoothed RTT estimator R using the low-pass filter:

MRR).1(. αα −+← --(13b)

Where α is a smoothing factor with a recommended value of 0.9. The smoothed RTT is updated
whenever a new measurement M is made. This means that 90% of each new estimate R is from the
previous estimate and 10% is from the new measurement M. TCP then calculates a new retransmission
timer out value (RTO) based on the mean and variance of the RTT measurement. The technique was
proposed by Jacobson [Jac88]. He used the mean deviation as a good approximation of the standard
deviation since it is easier to compute. In each RTT measurement M, the following calculations are made:

DARTO

DErrhDD

gErrAA

AMErr

gain

4

)(

+=

−+←
+←

−=

--(13c)

Where A is the smoothed RTT (an estimator of the average) and D is the smoothed mean deviation.
Err is the difference between the measured value just obtained and the current RTT estimator. Both A and D

43

are used to calculate the next RTO. The gain g is for the average and is set to 1/8. The gain for the deviation
is hgain and is set to 1/4.

C) Maximum Segment Size (I)

RTT is directly returned by TCP from its state variable TCPstate->t_maxseg. Maximum
segment size MSS (we called it I in our model), is the largest ‘chunk’ of data that TCP can send to the other
end. When a connection is established, each end has the option to announce the MSS it is willing to receive.
When TCP sends a SYN segment, it can send an MSS value up to the outgoing interface’s MTU, minus the
size of the fixed TCP and IP headers. In our experiment, TCP chose an MSS of 1460 bytes.

D) Satisfied State Bandwidth (H)

1: Loss- TM(socket s , event Ti me) {
2: s t r uct connSt at e * TCPst at e;
3: pr obeSocket (s , TCPSt at e) ;
4: f scanf (t i meFi l e, “ %l d” , v i deoSt ar t Ti me) ;
5: H = (TCPSt at e- >t _r t seq – TCPSt at e- >t _i ss) * 8
 / (v i deoSt ar t Ti me - event Ti me) ;
6: get t i meof day(r espTi me) ;
7: r esponceDel ay = r espTi me - event Ti me;
8: m = 2* (TCPSt at e- >t _maxseg) *
 8 / TCPSt at e- >t _r t t t i me;
9: B=r esponceDel ay * (H –(m* r esponceDel ay) / 2) ;
10: h_best = m* d* (1 + sqr t (2- (2* M/ m* d))) ;
11: T_r ecover y = (h_best / m) *
 (1 + sqr t (1+(2* B* M) / (h* h))) ;
12: r at ef i l e = f open(“ r at e. par ” , “ w”) ;
13: f wr i t e(h_best , r at ef i l e) ;
14: St ar t Recover yTi mer (Recover y- TM) ;
15: } / / end LossTwar e
16: }

(b)

1: Recover yHandl er (s i gnum) {
2: i f (s i gnum == SI GALRM) {
3: wai t Ti mecount ++;
4: i f (wai t Ti mecount && ! r at eOK &&
 (wai t Ti me > T_r ecover y)) {
5: r at ef i l e = f open(“ r at e. par ” , “ w”) ;
6: f wr i t e(or i gi nal Rat e, r at ef i l e) ;
7: r at eoK = 1;
8: } / / end i f
9: } / / end i f
10: } / / end Recover yTwar e

(c)

1: Si gnal Handl er (s i gnum) {
2: s t r uct evt SubI nf o * handI nf o;
3: i f (s i gnum == SI GI O) {
4: get t i meof day(event Ti me) ;
5: s = Get Socki d() ;
6: Pr obeEvt I nf o(s, handI nf o) ;
7: i f (! (chi l d = f or k())) {
8: execl (handI nf o- >handl er , s , event Ti me) ;
9: ex i t (0) ;
10: } / / end i f
11: } / / end i f
12: } / / end Si gnal Handl er

(a)

Figure 20. (a) Signal Handler, (b) Loss TM and (c) Recovery handler

44

H can be calculated by finding the ratio: number of bytes transmitted so far over elapsed time since
the video has started. This is estimated from two TCP state variables (t_rtseq and t_iss) and two local
measurements:

eventTimeTimevideoStart uu

isstTCPstatertseqtTCPstate
H

−
×→−→= 8)__(

The difference:
isstTCPstatertseqtTCPstate __ →−→

Between the state variables gives how many bytes have been transmitted so far. We multiply it by eight to
convert it to bits since all our calculations will be in bit/second units. The time uvideoStartTime is the time when
the video started; it was saved in a file by the encoder prior to sending the first frame.

5.3.2 Transientware Implementation

The Symbiosis Throttling of equation 12 is actually implemented in the loss event handler or the TM.
Basically, we need to calculate hbest and Trecovery every time the TM is invoked. The role of the signal
handler was merely to catch the signal from the kernel and invoke the appropriate TM. To simplify things
we let the encoder subscribe with the retransmit timer out event only. Figure 20 (a) outlines a sketch of the
signal handler code. After catching the SI GI O signal, it needs to know which socket generated the event
(line 5) then it probes the socket to get the event number and the TM id (line 6). Once retrieved, it forks a
new child and executes the appropriate TM for the event type (lines 8-10). If a loss event is detected, e.g.,
timer out event, the handler activates the TM shown in Figure 20 (b) which we call Loss- TM. The signal
handler passes the socket id (s) and time when the event occurred (event Ti me) to the TM. Once
activated, the Loss- TM first probes the socket to retrieve the following parameters from TCP:
t _r t t t i me (round trip time), i ss (initial send sequence number), t _r t seq (sequence number
being timed), and t _maxseg (maximum segment size). Then it calculates the satisfied state bandwidth
generation rate H, the reaction delay � as explained before. Afterwards, the Loss- TM calculates m, B, hbest,
and Trecovery in a straightforward manner (lines 8-11). In line 13, it stores the reduced rate hbest in the
“rate.par” file which will be noticed immediately by the symbiotic encoder. Finally, it starts a timer for
recovery and associates a handler (Recover yHandl er) with this timer—this handler is outlined in
Figure 20 (c). When the timer reaches Trecovery, the recovery handler writes the normal rate (i.e., original rate
before reduction) into the file “rate.par” .

Figure 21. Video transcoder experiment setup

Transcoder-

ABone node

XCODER

iTCP

Router

TCP-classic

Congestion
Injector

Player-
ABone node

 Internet

Server

SERVER

TCP-classic

TCP-classic

PLAYER

45

5.4 Experiment and Performance Analysis

We ran the experiment using the real implementation of iTCP kernel and the MPEG-2 Symbiotic
Transcoder. The performance results were obtained from a live experiment of video delivery sessions over
the Internet. Before presenting our results first we will describe the testbed and the setup.

5.4.1 The ABone Testbed

We wanted to run the experiment on the real Internet environment. This required running the
symbiotic transcoder, a sender equipped with iTCP transport protocol, and a set of players on remote hosts
around the world. We could have done this manually by conventional methods to reach a number of remote
nodes worldwide. But this would have required extensive overhead to setup the testbed and maintain.
Therefore, we decided to run the experiment on ABone testbed [Ber02b]. The ABone, developed under the
DARPA Active Network program forms a virtual network infrastructure on which a growing set of active
network components can be tested and experimentally deployed. ABone is an operational network and
provides an Internet wide network of routing as well as processing capable nodes. Providers can contribute
confederation of computing capable nodes. Independent application involving multiple trust domains can
be securely launched and executed. It also specifically allows new transport protocol components to be
remotely deployed. ABone nodes are available from Europe, Asia and North America. Individual nodes are
contributed and managed locally and independently by the contributing site administrators. However, the
administrators do not have to manage the remote users. Researchers can remotely install and execute
programmed components on any collection of these nodes via the ABone backbone management and
control backplane being a part of a centralized user pool. The codes are distributed via an enlisted set of
Trusted Code Servers (TCS), which help authenticating them prior to distribution. The security domains are
handled by the backplane control system. The backplane is being maintained by the ABone Coordination
Center (ABOCC) at ISI at the University of Southern California. ABone status can be monitored live from
the ABOCC web site [Ber02b]. In addition to the iTCP machine we have a cluster of 10 registered ABone

Figure 22. Congestion Injector mechanism

i nt bur st s = 3;
i nt bur st Ti me[] ={ 3, 3, 3} ;
i nt i nt er Bur st Ti me[] ={ 10, 10, 0} ;
s l eep(10) ;
f or (i =0; i <bur st s; i ++) {
 r emove ent r y f r om r out i ng t abl e;
 s l eep(bur st Ti me[i]) ;
 r et ur n ent r y t o r out i ng t abl e;
 s l eep(i nt er Bur st Ti me) ;
}

Table 10. Player locations on the ABone

RTT measurment
Target ABone node Country

min average max mean
deviation

Number
of hubs

ave.willab.fi Finland 0.16355 0.16606 0.16647 0.798 24

zzz.abone.supermedia.pl Poland 0.14705 0.14844 0.15701 3.023 23

abone-01.cs.princeton.edu USA 0.03945 0.04002 0.04524 1.319 17

dad.isi.edu USA 0.06548 0.06572 0.06610 0.186 19

46

nodes in our lab at Kent State University (mk00-mk09.maunakea.medianet.kent.edu). Four of these nodes
run on FreeBSD and the rest run on Linux. At the time of our experiment (Nov. 2003), there were 24 Linux
nodes, 5 Solaris nodes, and 12 FreeBSD nodes registered at the ABone. For our experiment we simply sent
our video player to one of the ABone’s trusted code server at (http://bro.isi.edu/KENT). Then we
configured and registered our iTCP-kernel machine (kawai.medianet.kent.edu) as a primary node on the
ABone to run iTCP and the symbiotic transcoder. The server remained in a traditional (non active) node.
The ABone allowed the automatic loading of the sessions on designated machines worldwide.

5.4.2 Experiment Setup

This experiment describes the performance of an MPEG-2 ISO/IEC13818-2 (176×120) resolution
video encoded with base frame rate of 2 Mbps at main profile. Figure 21 illustrates the deployment setup.

Table 12. Average frame delay and acceptance ratio

princeton.edu isi.edu willab.fi supermedia.pl
mode

Average
Delay

Accept
Ratio

Average
Delay

Accept
Ratio

Average
Delay

Accept
Ratio

Average
Delay

Accept
Ratio

iOPT 0.518 0.797 2.018 0.415 2.504 0.319 1.38 0.692

iEXP 2.613 0.529 -0.015 1 -1.239 1 2.411 0.284

iOFF 6.279 0.455 10.82 0.197 8.752 0.155 8.485 0.133
d=2

Classic 3.047 0.461 10.957 0.217 6.615 0.273 8.485 0.147

iOPT 0.897 0.976 2.029 0.737 -0.641 1 0.727 1

iEXP 2.613 0.529 -0.015 1 -1.239 1 2.411 0.777

iOFF 6.279 0.455 10.82 0.197 8.752 0.293 8.485 0.277
d=4

Classic 3.047 0.805 10.957 0.395 6.615 0.299 8.485 0.291

iOPT 0.883 1 3.974 0.679 1.623 1 1.387 1

iEXP 2.613 0.997 -0.015 1 -1.239 1 2.411 1

iOFF 6.279 0.455 10.82 0.329 8.752 0.295 8.485 0.277
d=6

Classic 3.047 0.805 10.957 0.395 6.615 0.535 8.485 0.52

Table 11. Experiment control flags and running modes

Control flag Effect

iTCP Turns on/off the interactivity service.

EVENT Turns on/off the event notification service.

SYMB
Turns on/off the symbiosis feature of the transcoder. When this flag is set, the signal
handler invokes the event handler to reduce the bit rate of the decoder. Otherwise, the
signal handler just records the event type and time.

OPT
Means (OPTimal mode). Used to choose between two modes of Symbiotic rate reduction (i)
optimal backoff mode which uses the symbiosis throttling model described in section 4. or
(ii) exponential backoff mode which uses a preset retraction rate and duration.

Control Flags Running

mode i T C P EVENT SYMB O P T
Comments

iOPT ON ON ON ON Full interactivity. Use the optimal backoff symbiosis throttling.

iEXP ON ON ON OFF Full interactivity. Use the exponential backoff symbiosis
throttling.

iOFF ON ON OFF X Subscribe, report event, but do not change bit rate. Used to
measure overhead.

Classic OFF X X X Turn off all interactivity features.

47

The video server runs on a classic TCP machine (manoa) and feeds the video stream into the transcoder,
which runs on the iTCP active node (kawai). To create some forced congestion in the experiment we also
run a congestion injector program on a first-mile active gateway router (lahaina). The injector creates
congestion bursts. Figure 22 shows the congestion injector. It allows the duration, and the interval between
bursts to be programmed for three consecutive bursts. During a congestion burst the router will simply
disrupt its routing table by removing the entry that leads to the player machine. When the burst time is over,
the router restores the routing table back to normal. In our experiment, we used 3 three-second bursts at 10
second intervals. A three-second burst usually triggers 1 to 2 retransmit timer out events depending on the
player’s location. We ran the players on selected remote ABone node. We repeated the experiment on four
ABone nodes, two in the US and two in Europe. Some general network conditions observed of the four
target nodes are shown in Table 10. The player and transcoder units were enhanced to collect detail frame
arrival, and delivery measurements.

5.4.3 Impact on Video Frame Delay

For detail comparison we have performed several sets of experiment. These are: i OPT, i EXP, i OFF,
and Cl assi c modes. In the i OPT (optimal backoff) mode, we activated the throttling model described
above to calculate hbest and Trecovery with every loss event. We challenged the system to provide the frames
at guaranteed d=6, 4, and 2 seconds. As a base case we also repeated the experiment with the same
congestion schedule in classical mode where the interactive and symbiotic rate adaptation features were
turned-off and the entire system run in classical TCP mode. We call it Cl assi c mode. For comparison we
also included the case of i EXP used in our previous work to demonstrate the effectiveness of iTCP. It is a
non-optimized simple heuristics-based symbiosis which performs a lazy binary back-off scheme for the
generation rate. The method adapts but it can not provide QoS guarantee as of the throttling model. Detail
of this simple scheme is in [Kha03c]. With the i EXP (exponential backoff) mode, we used a predetermined

reduction ratio (� = 0.35) and multiplied that with current bit rate to calculate the frugal state bit rate, we
also used a fixed recovery time of 4.0 seconds. We also repeated the experiments in another mode called
i OFF for overhead estimation. The mode is similar to classic TCP. No symbiosis is performed. But the
event subscription mechanism remains active. This will be explained later. In all the iTCP enabled runs
(i OPT, i EXP and i OFF), the transcoder subscribes with iTCP for the retransmission timer out event. In
the experiment, we took frame-wise detail event trace of the first 750 frames of the video at both sending
and receiving ends. For a given discard threshold time in the receiving end we also traced which frame was
successfully received or not at the MPEG-2 player. As explained earlier, we traced four transport aware
cases (i OPT with three values of delay tolerance d=2, 4, and 6 seconds and i EXP) and two transport
unaware cases (i OFF and Cl assi c). Please, return to Table 11 for running modes details.
Now we show the dramatic impact of iTCP’s interactivity based symbiosis. In Figure 23 we plot the delay
experienced by the video frames in terms of frame arrival time at the player for the six modes mentioned
above. In addition to that, we also show the ideal expected frame delivery time—Expect ed in the
figure—based on linear generation rate. As can be seen iTCP outperformed classical TCP; after every

Table 13. hbest and Trecovery statistics for three ABone nodes

princeton.edu willab.fi supermedia.pl isi.edu
d(sec) event

hbest Trecovery hbest Trecovery hbest Trecovery hbest Trecovery

e1 512240 1.520135 1443311 15.68562 1333511 14.49148 824810 4.952

e2 491954 1.459965 1292875 14.04808 1223663 13.29792 969318 5.81185 2

e3 496552 1.476599 1309004 14.22661 1257601 13.66691 891772 4.94007

e1 279963 0.851075 602184 6.551785 665086 7.228908 453645 2.7236

e2 261526 0.792414 564819 6.145352 584324 6.355469 499010 2.58743 4

e3 259565 0.788820 604674 6.579283 602115 6.550372 399208 2.47848

e1 186117 0.573669 486808 5.301540 467211 5.085250 340233 1.90652

e2 173629 0.525550 419186 4.557723 401019 4.368733 323222 1.73493 6

e3 172046 0.539606 307244 3.343913 411801 4.480751 299405 1.86838

48

congestion burst, the unaware cases (Cl assi c and i OFF) continuously fell behind. The delay built up
and it could hardly recover. This is evident by the step jumps in the delay line. The TCP aware cases also
suffered some step buildup, but it was much smaller and it could recover after few seconds due to the rate
retraction. In Table 12 we present the frame delay and acceptance ratio comparison for the whole stream.
The table shows the performance for three choices of delay tolerance d=2, 4, and 6 seconds. For each value
of d we traced the four running modes (i OPT, i EXP, i OFF, and Cl assi c) and recorded the average
delay in seconds that each frame has experienced and the frame acceptance ratio at the four receiving
player ABone nodes. It can be clearly noticed that iTCP/aware modes achieved low delays and high
acceptance percentages while the unaware/classic modes suffered from higher delays and lower acceptance
percentages. We present this information visually in Figure 24. In this figure we show the number of
frames accepted at by the video player for the three choices of delay tolerance. Clearly iTCP’s TM
mechanism allowed the application to use sophisticated optimization techniques to optimally control the
temporal qualities of its traffic.

5.4.4 Symbiotic Rate Control

In the next set of experiments we present the internals of the symbiosis mechanism in more detail.
Figure 25 depicts the symbiotic frame rate transcoding that occurred due to the joint rate specification at the
rate control logic at the symbiosis unit and in the transcoder for each frame. In the figure we show four
plots for the four target ABone nodes. Each plot represents the iOPT mode run for the delay tolerance case
d=4. Table 13 presents the actual values of hbest and Trecovery that controlled the frugal mode operation as
calculated by the symbiosis controller TM after being activated by each one of the three loss events created
in the experiments. In each plot of Figure 25 we see the target bit rate and the retraction ratio as specified
by the symbiosis controller, and the resulting outgoing actual frame rate generated by the transcoder. The
timer out events (in this case there are 3 timeout events) reported by iTCP resulted in the symbiosis unit to
modify the rate according to the optimal backoff symbiotic rule (equation 12). Though, the precise MPEG-
2 generation rate varied widely from frame to frame to accommodate the frame type, but the general trend
followed the specified target. Table 14 provides the overall stream compression due to symbiotic adaptation
for the entire stream (i OPT and i EXP cases), as compared to the normal non-symbiotic cases (i OFF and
Cl assi c cases). In the Cl assi c and i OFF cases, there were no adaptation (thus retraction =1).
Compared to this both i OPT and iEXP reduced the overall delivered bits about 83-95%. However, it is
interesting to note that i EXP without its optimization logic, operated more aggressively and compressed

Table 14. Percentage of total bits delivered for each mode

 princeton.edu isi.edu supermedia.pl willab.fi

 Target Actual Target Actual Target Actual Target Actual
iOPT, d=2 0.912 0.913 0.898 0.901 0.886 0.886 0.929 0.929

iOPT, d=4 0.966 0.966 0.892 0.897 0.814 0.826 0.789 0.791

iOPT, d=6 0.975 0.98 0.94 0.945 0.87 0.88 0.867 0.874

iEXP 0.843 0.843 0.835 0.835 0.862 0.862 0.86 0.86

iOFF, Classic 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

49

 iOPT iEXP OFF Classic

Figure 24. Number of frames accepted for three values of delay tolerance

abone-01.cs.princeton.edu

0

100

200

300

400

500

600

700

800

D=2 D=4 D=6

N
o. of accepted fra

m
es

Dealy tolerance (sec.)

abone-01.cs.princeton.edu
dad.isi.edu

0

100

200

300

400

500

600

700

800

D=2 D=4 D=6

N
o. of accepted fra

m
es

Dealy tolerance (sec.)

dad.isi.edu

ave.willab.fi

0

100

200

300

400

500

600

700

800

D=2 D=4 D=6

N
o. of accepted fra

m
es

Dealy tolerance (sec.)

ave.willab.fi
zzz.abone.supermedia.pl

0

100

200

300

400

500

600

700

800

D=2 D=4 D=6

N
o. of accepted fra

m
es

Dealy tolerance (sec.)

zzz.abone.supermedia.pl

 iOPT, d=2 iOPT, d=4 iOPT, d=6 iEXP Classic Expected iOFF

abone-01.cs.princeton.edu

0

10

20

30

40

50

60

70

80

1 101 201 301 401 501 601 701

80

70

60

50

40

30

20

10
 1 101 201 301 401 501 601 701

F
ram

e arrival tim
e (sec.)

Frame number

abone-01.cs.princeton.edu

dad.isi.edu

0

10

20

30

40

50

60

70

80

1 101 201 301 401 501 601 701

80

70

60

50

40

30

20

10
 1 101 201 301 401 501 601 701

F
ram

e arrival tim
e (sec.)

Frame number

dad.isi.edu

ave.willab.fi

0

10

20

30

40

50

60

70

80

1 101 201 301 401 501 601 701

80

70

60

50

40

30

20

10
 1 101 201 301 401 501 601 701

F
ram

e arrival tim
e (sec.)

Frame number

ave.willab.fi

zzz.abone.supermedia.pl

0

10

20

30

40

50

60

70

80

1 101 201 301 401 501 601 701

80

70

60

50

40

30

20

10
 1 101 201 301 401 501 601 701

F
ram

e arrival tim
e (sec.)

Frame number

zzz.abone.supermedia.pl

Figure 23. Frame Arrival Trace

50

 iOFF iEXP iOPT, d=4

Figure 26. Frame Arrival time and frame SNR quality tradeoff

abone-01.cs.princeton.edu

0

10

20

30

40

50

0 20 40 60 80

50

40

30

20

10

0 20 40 60 80

S
N

R
 qua

lity (Y
-b

lock)

Frame arrival time (sec.)

abone-01.cs.princeton.edu dad.isi.edu

0

10

20

30

40

50

0 20 40 60 80

50

40

30

20

10

0 20 40 60 80

S
N

R
 qua

lity (Y
-b

lock)

Frame arrival time (sec.)

dad.isi.edu

ave.willab.fi

0

10

20

30

40

50

0 20 40 60 80

50

40

30

20

10

0 20 40 60 80

S
N

R
 qua

lity (Y
-b

lock)

Frame arrival time (sec.)

ave.willab.fi zzz.abone.supermedia.pl

0

10

20

30

40

50

0 20 40 60 80

50

40

30

20

10

0 20 40 60 80

S
N

R
 qua

lity (Y
-b

lock)

Frame arrival time (sec.)

zzz.abone.supermedia.pl

abone-01.cs.princeton.edu

0

40000

80000

120000

160000

200000

1 101 201 301 401 501 601 701

20

16

12

8

4

0 1 101 201 301 401 501 601 701

B
its per fram

e X
 1

0000

Frame number

abone-01.cs.princeton.edu

 Event Target Bits Actual Bits

Figure 25. Symbiotic Rate Reduction

dad.isi.edu

0

40000

80000

120000

160000

200000

1 101 201 301 401 501 601 701

20

16

12

8

4

0 1 101 201 301 401 501 601 701

B
its per fram

e X
 1

0000

Frame number

dad.isi.edu

ave.willab.fi

0

40000

80000

120000

160000

200000

1 101 201 301 401 501 601 701

20

16

12

8

4

0 1 101 201 301 401 501 601 701

B
its per fram

e X
 1

0000

Frame number

ave.willab.fi

zzz.abone.supermedia.pl

0

40000

80000

120000

160000

200000

1 101 201 301 401 501 601 701

20

16

12

8

4

0 1 101 201 301 401 501 601 701

B
its per fram

e X
 1

0000

Frame number

zzz.abone.supermedia.pl

51

more (for example i EXPs’ 85% vs. i OPTs’ 91% in d=2). In comparison i OPT operated more
confidently (i.e., reduced less bits), yet achieved higher temporal quality (average delay is 2.6 sec vs. 0.5
sec for same cases).

5.4.5 Observation at Application Level:

In the above experiments we illustrated how the symbiosis mechanism worked from the video
transport protocol (MPEG-2) and the network transport protocol TCP layers beneath it. In this plot we will
illustrate how this mechanism appears from the very top—at the application layer itself. An application
receives and delivers uncompressed frames. The performance metric this end-system uses is the temporal
and spatial quality difference between the transmitted and the reproduced uncompressed video frames. The
underlying MPEG-2 system and the network layer TCP together provide the transport service. The specific
compression, windowing etc. and other detail mechanisms are external techniques to the end systems.

In Figure 26 each frame is plotted as a point in the video quality/frame delay plane. The figure shows
four plots for the four ABone nodes, and each plot represents three running modes (i OPT with d=4, i EXP,
and Cl assi c). As can be seen from the region of the three QoS distributions, in TCP-classic, although
frames have been generated with SNR quality ranging between 18-40 dB, but many of these frames
suffered long delay and were lost in transport. In contrast, the interactive i OPT mode managed to deliver
all frames with guaranteed delay with the bulk of the frames had 10-32 dB quality. It is interesting to note
that the i EXP mode achieved the same tradeoff, but since it took a non-optimized and thus more aggressive
approach in symbiotic rate reduction the quality suffered more loss and recorded values as low as 7 dB.
Fundamentally, what iTCP has offered is a qualitatively (as opposed to the quantitative improvements
offered by any unaware solution) new empowering mechanism, where the catastrophic frame delay can be
traded off for acceptable reduction in SNR quality.

5.4.6 Interactivity Overhead

The dramatic advantage in application level performance came at a cost since the event tracking
mechanism added some overhead. We were also curious to find out the overhead of the event mechanism.
To track the overhead, we recorded the total data transmission time under the three conditions (i OPT,
i OFF, and Cl assi c). The left most bar of Figure 27 plots the transport time for the optimal interactive
mode where we activate both event delivery and symbiosis. To observe the overhead of the event service,
in the i OFF mode we used the iTCP implementation, however, we stopped the symbiotic reduction so the
transport layer handled the same amount of data. As expected the overall transmission time increased in all
three cases. However, in the third column (Cl assi c mode) run we turned off the interactive service
altogether and thus we saved its overhead and lost its benefit. As can be seen, the slight increase in the

Figure 27. Interactivity service overhead

0

10

20

30

40

50

60

70

80

90

princeton.edu willab.fi isi.edu supermedia.pl

iOPT, d=4

iOFF

Classic

T
ransm

ission tim
e (sec.)

ABone node

Interactivity Overhead

52

event delivery overhead was vastly offset by the application level technique. The advantage the application
gained from the event delivery was much bigger than the overhead.

5.5 Conclusion

In this chapter, we have presented a case of rate symbiosis mechanism in line with current advances in
TCP-friendly systems. We collected the results of our experiment by running the video session on the
global Active Network (ABone) testbed. In the previous discussion we have demonstrated the case of
quality conformant congestion control for time-sensitive video traffic. The approach exposed the overall
advantage of network ‘ friendly’ applications. However, it also departs significantly from the mainstream
TCP friendly systems that have been suggested recently in two senses; First, it does not add any new major
component in network software structure. One of the principal strength of the proposed scheme is its
relative simplicity at network layers—yet its effectiveness. It only expects some form of interactivity
directly from the concerned network protocols as a general interface feature. Thus, there is no expectation
of (or conflict with) additional services (such as combined congestion control from multiple applications).
Secondly, the applications do not have to be designed dependent on other auxiliary indirect probing tools or
network utilities, nor it excludes their use when available. Some of the information measured by the
auxiliary tools suggested by other approaches might be already available (or are being estimated/tracked) at
lower layers anyway. At least this is the case with TCP congestion. The direct protocol interactivity we
propose thus seems to be the logical path that can avoid potential duplication of efforts.

53

CHAPTER 6

IPMN: Interactive Protocol for Mobile Networking

There are two well known challenges in the literature for Internet host mobility; (i) improving TCP

level performance and (ii) reducing handoff latency. Until now, most solutions that were proposed were
kept in lower network layers (i.e., link layer, IP, or TCP layer). In this chapter we present an end-to-end
host mobility solution based on the InTraN paradigm. The solution allows continuous operation of TCP
between the two endpoints even with the presence of handoffs and long disconnections, and it also enables
the mobile node to perform fast handoffs with minimum or no loss. We have implemented the scheme on
FreeBSD and tested the real system over the Internet. We show with experimentation on three types of
traffic (Voice, WWW, and FTP) that our scheme can substantially reduce handoff latency and improve
TCP performance.

6.1 Introduction

Classic IP protocol was designed long time ago for wireline Internet with no support for node
mobility. Its routing mechanism relies on IP address semantics to deliver packets to a destination node
whose location is assumed to be fixed. The same argument also applies to TCP, whose congestion control
mechanism assumes that the path between the two endpoints is 'wired'. Since the advent of wireless
technology and the tremendous growth of mobile networking applications, a persistence need has emerged
to remedy the TCP/IP stack and make it mobile networking compatible. On the IP level, we need to be able
to deliver packets to a mobile node regardless of its current point of attachment, and on the TCP level we
need to be able to identify the reasons behind packet loss and react to them differently; if loss was due to
congestion on the wired link, we let TCP run its native course–invoke the appropriate congestion control
procedure. However, if the loss was due to radio disturbance on the wireless link or due to handoff
disconnection, TCP should retransmit as soon as possible without any rate throttling.

Fortunately, classic IP allows a mobile node to roam from one access point to another as long as it
remains in the same IP subnet. In this case, the mobile node has to perform link-layer (L2) handoffs in
order to maintain its wireless connectivity and these L2 handoffs remain transparent to the IP layer (L3).
However, if the mobile node migrates to a different IP subnet, its current IP address becomes topologically
invalid and it must acquire a new IP address from the newly visited network, i.e., it must also perform L3
handoff. Otherwise, all its existing TCP/IP connections become useless.

Extensive research has been done recently to address these problems. One of the most well known
mobility solutions on the IP level is Mobile IP (MIP) [Per96] which has been endorsed by the IETF. MIP
provided a global logical solution by introducing indirection through a set of Mobility Agents. Each mobile
node is identified by an IP address assigned to it by its home network—called home address—regardless of
its current point of attachment. MIP introduced three new entities, namely the home agent, the foreign
agent and the mobile node. Whenever a mobile node performs L3 handoff, it must register its current point
of attachment with the home agent. For every registered mobile node, the home agent intercepts all
incoming traffic from a given sender—usually referred to as the correspondent node—and redirects it
through tunneling (packet encapsulation) to the mobile node’s most recently registered location. Traffic
from the mobile node to the correspondent node is routed normally (possibly bypassing the home agent).
This kind of traffic flow is referred to in the literature as triangular routing. In MIP, foreign agents
periodically broadcast agent advertisements to detect mobile node's movement. When the mobile node
decides to migrate to a new subnet, it configures a new care-of-address, and then it registers this address
with the home agent. The home agent updates its address binding cache and sends an ACK to the mobile
node. Communication between the two endpoints cannot resume until registration is completed at the home
agent.

Although MIP has provided a global solution for IP level mobility, but it has also introduced its own
performance problems. Some of them stem from the complicated handoff procedures which resulted in
longer handoff latencies—which have also affected TCP level performance—and others from the longer
routes due to triangular routing. Since its release, MIP has gone through several modifications like route

54

optimization extensions [Per00] [Per01]. Actually, a great deal of the research on mobile networking is
focusing on MIP and its performance. For example, Researchers aimed at reducing registration signaling
delay by introducing a hierarchical structure and therefore allowing regional registration and reduced round
trip delay [Cam01] [Gus01] [Hri02] [Ram99]. Other proposals took a different approach by suggesting a
deployment scheme of MIP based on existing infrastructure like The RAT (Reverse Address Translation)
scheme [SiT99] which is based on the network address translation (NAT) protocol [Sri99].

At the TCP level, many solutions have been proposed to fix its performance problem over mobile
networks. These solutions have been classified in the literature in three categories; link layer protocols
[Aya95] [Bal95], split-connection protocols [Yav95] [Bakr97], and end-to-end solutions [Mat96] [Baks97].
A good survey on TCP extensions for mobile networks can be found in [Anj03] [Ela02]. Most of these
proposals however, mainly targeted TCP level performance assuming the IP mobility solution already
existed. Therefore, to solve the mobility problem on both levels (TCP and IP), we can either (i) combine a
TCP level solution with an IP mobility solution (e.g., use SACK [Mat96] over MIP), or (ii) just propose
one complete solution for both problems. The first option can be extremely costly in terms of extra
overhead—and probably redundancy—due to lack of synchronization between the two solutions. The
second option may be effective only if both protocols can share relevant events and state transitions
(possibly through a third party) to be able to synchronize their actions.

In this chapter we present IPMN (Interactive Protocol for Mobile Networking). IPMN provides a
solution for IP mobility problem as well as TCP performance problem over mobile networks. The
scheme—which diverts from the MIP approach—is based on the InTraN paradigm. With IPMN the
correspondent node can send packets directly to the mobile node and eliminates triangular routing. More
importantly, it can also perform rapid handoff with very little or no loss of TCP segments.

6.2 Related Work

We found several proposals in the literature with some kind of protocol interactivity. For example,
Wu, et al. [Wu01] proposed an intelligent handoff scheme for mobile wireless Internet over MIP. One
aspect of this scheme is to let L2 send a notification to L3 whenever L2 has successfully finished
performing handoff. Also, Fikouras, et al, [Fik01] aimed at reducing movement detection delay in MIP by
introducing a hinted based movement detection algorithm called Fast Hinted Cell Switching (FHCS). The
scheme allows L2 to send ‘ triggers’ to L3 whenever a handoff event is initiated. These proposals have
shown that such simple form of interactivity has an obvious advantage. However, they are fundamentally
different from our scheme in two aspects: (i) they are based on MIP while our scheme offers a complete
mobility solution that can replace MIP, and (ii) their event notification remains within lower network layers.
But, since our interactive paradigm allows interactivity between lower layers and the application layer, we
can deploy the solution at the application layer itself which has several advantages over low-layer solutions
only.

6.3 Interactive Protocol for Mobile Networks (IPMN)

6.3.1 The Scheme

We employed the InTraN paradigm to design a global IP level mobility solution which also
incorporates a TCP level performance solution during handoff. The basic idea of our scheme is to enable
the mobile node to obtain a new IP from the future access router before handoff is performed, replace the
‘source IP’ field in the TCP/IP stack of the mobile node with the new IP, and relay the new IP to the
correspondent node. Once it receives the new IP, the correspondent node immediately switches to the new
IP by replacing the ‘destination IP’ field in the TCP/IP stack with the new IP. A best case scenario for this
scheme would happen if the mobile node can locate the new access router and obtain a new IP address (e.g.,
through a DHCP server) before loosing connection with its current access router. Once it obtains its new IP
address, the mobile node proceeds with L3 handoff as follows:

1. Freeze the TCP connection by advertising a zero window to the correspondent node.
2. Perform actual L3 handoff by replacing the IP fields in the TCP/IP stack at both the mobile node and

the correspondent node with the new IP address.
3. Wakeup TCP by advertising a nonzero window to the correspondent node.

55

Handoff pre-processing, i.e., locating a future access router and obtaining a new IP address, can also be
done at the application level prior to L2 handoff. Fortunately, since we allow protocol interactivity, we can
configure L2 to send an early signal the application layer about an impeding handoff. This gives the
application layer a grace period to do all this 'bookkeeping' while it is still connected through the current
access router. Naturally, a simple application level IP-lookup module should perform the task. We can
benefit from interactivity again by allowing this IP-lookup module to probe L2 for the identity of the next
access router (e.g., its IP address). Then, this module can contact the router and obtain the next IP address
via a DHCP attached scheme. A number of previous works like [Fik01] [SiT99] and [Yok02] have shown
excellent schemes that can support this methodology. We can re-model these schemes—or some aspects of
them—via the InTraN paradigm to implement the handoff pre-processing illustrated above. Furthermore,
we believe that since the mobile node can obtain a new IP before handoff, this pre-processing should not
impact handoff latency. The purpose of this current implementation of IPMN is to experiment the basic
idea of physically changing the IP number at both end-points whenever the mobile node configures a new
IP address. Therefore, this version of IPMN, only implements the three-step L3 handoff procedure shown
above.

6.3.2 The Architecture

We propose two modes of our scheme: A light-weight implementation that we call IPMN-Half and a
more robust, heavy-weight implementation we call IPMN-Full. The primary difference between the two
modes is the amount of internal inter-protocol interactivity involved. While in IPMN-Half a mobile node
uses an explicit application-level message to relay the new IP number to the correspondent node, in IPMN-
Full the mobile node uses interactivity and TCP level communication to perform the same task.

A) IPMN-Full Mode:

Figure 28 describes the conceptual architecture of IPMN-Full, and Table 15 describes the
corresponding events and their handling sequences at each endpoint. At the mobile node, when the link
layer detects signal fading and initiates L2 handoff (event 1), it signals the subscribing application. When
the event is received at the application layer, a Transientware module (handler 1) is activated immediately;
this module simply makes a simple system call which lets TCP advertise a zero window to the

Mobile Node

Link Layer

Application layer

Handler 3

TCP
Event 3

Handler 1

Correspondent Node

Application layer

Handler 4

 Backbone
Network

Wireless
Link

Base Station

WIN=0 (freeze)

New IP (for destination)
Handler 2

WIN > 0 (resume)

S
w

itch source IP

S
w

itch destination IP

IP
Event 2

Event 1

Link Layer

TCP
Event 4

IP

Figure 28. IPMN-Full architecture

56

correspondent node. This would normally cause the correspondent node to stop transmission. When the
mobile node gets a new IP from the future network (event 2), it activates (handler 2) which transmits the
future IP to the correspondent node at TCP level through a system call. The new IP is sent in a special TCP
segment with ‘opt i on=SWI TCH_I P’ . At the correspondent node, When TCP recognizes this option
(event 4) it activates (handler 4) which then triggers a swi t ch_i p() system call to replace the
‘destination IP’ field in the TCP/IP stack with the newly received IP number. Meanwhile, at the mobile
node (handler 2) also makes a similar system call which changes the ‘source IP’ filed in its own TCP/IP
stack. When the previous ‘SWI TCH_I P’ segment is ACKed at the mobile node (event 3), the mobile node
advertises a non-zero window to the correspondent node which enables it to resume transmission.

Mobile Node

Link Layer

Application layer

Handler 2

TCP
Event 3

Handler 1

Correspondent Node

Application layer

Switch IP
module

 Backbone
Network

Wireless
Link

Base Station

WIN=0 (freeze)

Handler 3

 WIN > 0 (resume) S
w

itch source IP

S
w

itch destination IP

IP
Event 2

Event 1

Link Layer

TCP

IP

Figure 29. IPMN-Half architecture

Switch IP message

Table 15. IPMN-Full events

Node Event
No.

Layer Event tracked Action taken by event handler

1 LL Wireless signal fading.
Prepare to perform
handoff to next BS.

Advertises a zero window to the FH. The freeze
mechanism of TCP will force the FH to stop
transmission.

2 IP A new IP has been
assigned to the MN from
the new BS.

Call the switch_ip() system call. This will replace the
source IP filed in the IP header of the MN with the new IP
and will send a segment to the FH with TCP option =
SWITCH_IP to replace the destination IP field on the FH.

M
obile N

ode

3 TCP The ‘SWITCH_IP’
segment has been ACK-
ed.

Advertises a non-zero window to the FH. This will
unfreeze the connection and enable the FH to resume
transmission.

F
ixed

H
ost

4 TCP A special TCP segment
received with TCP
option=SWITCH_IP.

Strip the new IP number from the options part of the
segment, then call the Switch_IP() system call which
stores the new IP in the destination IP field of the IP
header overwriting the old IP number.

57

B) IPMN-Half Mode:

In this mode, we deploy the interactive protocol only at the mobile node. Figure 29 depicts the
conceptual design and Table 16 describes the corresponding events and their handling sequences. Events 1
and 3 have the same meaning and handling as in the previous ‘Full’ mode. Event 2, however, is handled
differently; when (handler 2) is activated, it makes a system call to probe the TCP layer for the new IP
number. It then sends this IP number to the correspondent node using a normal wr i t e() socket operation.
Naturally, since the correspondent node can ‘ r ead() ’ the new IP directly from the socket, it does not have
to catch any events or activate handlers. When the correspondent node receives the message it strips off the
IP number and makes a swi t ch_i p() system call—as in the previous mode—to change the ‘destination
IP’ number in the TCP/IP stack. The remaining procedure is identical to the 'Full' mode.

BS1

Mobile
Node (MN)

Correspondent
Node (CN) Gateway

Internet

Switch

BS2 BS3

Figure 30. Experiment setup

Table 16. IPMN-Half events

Node Event
No.

Layer Event tracked Action taken by event handler

1 LL Wireless signal fading.
Prepare to perform
handoff to next BS.

Advertises a zero window to the FH. The freeze
mechanism of TCP will force the FH to stop
transmission.

2 IP A new IP has been
assigned to the MN from
the new BS.

Send a special message to the peer application on the
FH. The message carries the new IP just assigned to the
MN. When the FH receives the message, it runs a
module that makes a special system call Switch_IP().
This system function will replace the destination IP field
in the IP header with the new IP.

M
obile N

ode

3 LL Handoff has just finished Advertises a non-zero window to the FH. This will
unfreeze the connection and enable the FH to resume
transmission.

58

C) Freeze TCP:
Advertising a zero window to the correspondent node to temporarily freeze the TCP connection was

proposed in [Gof00] by Goff, et al, to improve TCP level performance over wireless networks. We adapted
this part of the solution in our interactive scheme as a way to avoid packet loss during handoff. Although
this will slightly disrupt the service while handoff is being performed, but since we avoid packet loss, the

correspondent node will not resort to congestion control procedures avoiding unnecessary retransmissions
and sender rate throttling. As we show later, this will definitely improve TCP performance and save
network resources.

6.4 Experiment Setup and Traffic Generation

We have implemented the scheme on FreeBSD-4.5 by extending the kernel source code with InTraN
components. In addition to that, we have created a number of system calls that implement the system’s API
shown in Table 17. These functions were used by the TMs as we described earlier in the IPMN architecture.

6.4.1 Experiment Setup

Figure 30 explains the experiment setup. We used three machines with AMD 1.6 GHz processor (BS1,
BS2, and BS2) as our Base Stations and a laptop with Intel P-II processor as our mobile node. The (GW)
machine was our gateway to the Internet and was also used to configure each one of the Base Stations as a
separate subnet with four IP numbers per subnet. We installed FreeBSD-4.5 on all BS machines, the mobile
node, and the correspondent node. For IPMN experiments we installed the BSD-interactive on the mobile
node and the correspondent node only. For the MIP experiments we installed the MIP implementation of
the Portland State University [Bin99]–also known as PSUMIP—on the mobile node and the three BS
machines. One of the three Base Stations machine (BS1) was configured as the Home Agent (HA), and the
other two (BS2 and BS3) were configured as Foreign Agents.

For MIP signaling to work correctly, the time must be synchronized on all machines which run the
MIP daemons. To achieve this we used the (nt pd) utility in FreeBSD to synchronize with three STATUM-
2 external time servers. We used the simplest possible MIP configuration to reduce unnecessary overhead.
We placed the correspondent node in three locations, one locally (in our lab) and two remotely: at Al-Quds
University in

Table 18. Correspondent node locations

Name Location IP number Average RTT Hops from MN

Local Kent, Ohio 131.123.36.11 1 ms 3

Virginia Chantilly, Virginia 66.94.95.235 90 ms 19

Al-Quds Palestine 62.90.25.58 356 ms 25

Table 17. IPMN API

System Call Usage

Relay_IP(IP_addr) Let TCP transmit a special segment carrying the new IP to the other
end. Used in ‘full interactive’ mode only.

Switch_Source_IP(IP_addr) Changes the source IP address in local TCP/IP stack.
Switch_Dest_IP(IP_addr) Changes the destination IP address in local TCP/IP stack.

Freeze_TCP() Let TCP freeze its transmission by advertising a zero window to the
other end.

Resume_TCP() Let TCP resume its transmission by advertising a non-zero window.

59

Palestine, and in Virginia, U.S.A. Correspondent node locations and their characteristics are shown in
Table 18. In each run, we let the correspondent node generate traffic and transmit to the mobile node. We
also let the mobile node move along the cyclic path (BS1� BS2� BS3� BS2� BS1� …). We configured
the mobile node to perform handoff every 3 minutes. We used a switch to simulate L2 wireless handoff; for
example, in Figure 30 the mobile node is connected to BS1 through the switch. To perform L2 handoff
from BS1 to BS2, we manually unplugged BS1 from the switch and instantly plugged BS2 to an empty port
in the switch. We kept the mobile node connected to the switch all the time.

6.4.2 Traffic Characteristics

In order to model real-world traffic, we used a tool called NetSpec [Jon98] which was developed at
The University of Kansas—to generate traffic at the correspondent node. Netspec offers several source
models which can generate simulated traffic for Telnet, FTP, Video, Voice, and WWW [Lee95]. We ran
the experiment with three types of traffic: Voice, WWW, and FTP. Below, we explain the statistical
properties of these three traffic types.

Call Duration Distribution

Call number

D
ur

at
io

n
(m

in
)

Figure 32. Sampling of call duration over 5 hours

0

5

10

15

20

25

30

1 11 21 31 41 51 61

L1 = 0.004168

L2 = 0.003334

L3 = 0.002778

0

500

1000

1500

2000

2500

3000

1 11 21 31 41 51 61 71

Call Arrival Distribution

Call number

In
te

ra
rr

iv
al

 ti
m

e
(m

s)

Figure 31. Sampling of call interarrival

60

A) Voice Traffic:
In NetSpec, voice has been characterized by a constant bit rate (CBR) source. Sampling rate is 8 kHz

and each sample is 8 bits. This gives the standard bit rate of 64 Kb/sec for acceptable voice quality. Call
arrivals are modeled by a Poisson process with fix hourly rates within one-hour periods. This means that
the interarrival time between two calls is exponentially distributed. The probability density function of
exponential distribution is given by:

x
X exf λλ −=)(mean/1, =λ

Session duration (holding time) for voice calls was also modeled by a Poisson process and followed
the exponential distribution. Figure 31 shows an example of call arrivals with

�
=1 over 5 hours sampling,

and Figure 32 shows an example of call duration over 5 hour sampling with three values of
�
:

�
1=0.004167, �

2=0.003333,
�
3=0.002777. If we take the inverse of these

�
s, we get mean call durations 3, 4, and 5

minutes respectively. At the call level, the source is presented to the network as a constant-bit stream. To
generate a 64 Kb/sec voice stream, talk bursts were generated by a 144-byte blocks separated by 18 ms
silence periods.

B) WWW Traffic:
WWW traffic is modeled at two levels: call level and session level. The call level models the

interarrival times of multiple sessions. The session level on the other hand models the document size.
Request arrivals are modeled by a homogenous Poisson process within one-hour intervals. The interarrival
time between two requests is exponentially distributed. The distribution of document size is a Pareto
distribution. The probability mass function of a Pareto distribution is:

1)(−−= ααα xkxf X

And its cumulative distribution function is given by:

α��
����

−=
x

k
xFX 1)(

21

63.04.0

≤
≤≤

k

α

C) FTP Traffic:
Like www traffic, FTP traffic is modeled at two levels: call level and session level. The call level

models the interarrival times of multiple sessions. The interarrival time between two FTP sessions is
exponentially distributed. During a single FTP session multiple data items of varying sizes are transferred.
NetSpec used a fixed distribution to model the number of items per session called (ftpNOfItems), and a
fixed distribution to model items' sizes called (ftpItemSize). Both models were based on the log-normal
distribution. For a detailed discussion on these distributions and other traffic types in NetSpec please refer
to [Lee95].

For WWW traffic, we repeated the experiment with two choices of the interarrival parameter
�
 and

shape parameter � ; we combined
�

1=0.000001 and � 1=0.4 in one set of runs, and we combined �
2=0.000005 with � 2=0.55 in another set. For Voice and FTP traffic we ran all experiments with the same

two choices of the interarrival parameter
�
. Since

�
 is the inverse of mean interarrival,

�
2 will yield longer

interarrival intervals.

6.5 Performance Results and Analysis

6.5.1 Handoff Latency

One of the most important features of our interactive scheme is its short handoff latency. In Table 19
we show the handoff latency (in milliseconds) of the three traffic types (FTP, WWW, and Voice) on two
cases of the correspondent node location (Local, and Virginia). The columns show the three running modes
of the experiment (IPMN-Full, IPMN-Half, and Mobile IP). For each running mode we show two sub-
columns (Protocol Latency, and Total Latency). The Protocol Latency column shows the time needed by
the protocol (i.e. IMPN or MIP) to finish L3 handoff and become ready to resume its communication

61

service. The Total Latency column shows the time needed to resume communication at the application
level. We show the first four handoffs of each run. For example, for the (IPMN-Full/FTP/Local) run, in the
first handoff the Protocol Latency time is 91 ms, and the Total Latency time is 98 ms. Also, for each traffic
type, we add an extra row (the shaded one) to show the average of all eight runs of that traffic type.

We can make three observations on Table 19. Firstly, we observe a big difference in handoff latency
between IPMN and MIP that can reach up to three orders of magnitude. For example, in (FTP/IPMN-Full)
the average protocol latency is 101.88 milliseconds, while in (FTP/MIP) the average protocol latency is
72,981 milliseconds. This substantial reduction in handoff latency highlights the advantage of event-based
protocols like IPMN over timer-based protocols like MIP. The former allows protocols in different layers
to interact and pass events and new state information–like the new IP number in our case—to upper layers
instantly. This enables peer protocols to respond immediately cutting down overhead time. Timer-based
protocols on the other hand usually use a periodic probing mechanism to discover state changes. For
example, in this particular implementation of MIP that we have tested, the foreign agent sends beacon
signals (agent advertisements) to discover mobile node movement every 60 seconds! A best case scenario
will happen if L2 handoff was performed right before the periodic beacon signal arrives. Therefore, this
process will take half of that time on average–i.e. 30 seconds. Adding to this communication and
registration overhead we can easily reach one minute latency or more. Secondly, actual application-level
latency on MIP was even longer; by the time MIP has recovered and is ready to resume service, TCP has
already timed out and will probably need even more time to discover the change and then resume
communication on its own level. We show this quantity in the Total Latency column as we explained
earlier. In IPMN-based protocols (Full and Half), the difference between these two quantities was very
small (3 to 10 milliseconds) which can be regarded as negligible. Therefore, we only show this difference
for the MIP case in the column labeled (Difference). A closer look at the Difference column, we see a great
variation; it can be as low as 788 milliseconds, or as big as 114,974 milliseconds. This variation is due
mainly to the dynamics of TCP congestion control and how it responds to long disconnections. But in

Table 19. Handoff Latency

 IPMN-Full IPMN-Half Mobile IP

Protocol
Latency

Total
Latency

Protocol
Latency

Total
Latency

Protocol
Latency

Total
Latency Difference

91 98 517 520 40615 60017 19402
102 109 543 552 52655 58841 6186
94 103 541 545 34767 57067 22300

Local

89 94 540 550 37690 57966 20276
109 110 131 134 70934 185907 114973
110 120 126 132 78928 130120 51192
111 116 130 139 203575 204395 820

Virginia

109 113 129 135 64684 122791 58107

F
T

P

Average 101.88 107.88 332.13 338.38 72981 109638 36657
108 118 527 532 28687 29600 913
90 91 544 551 53636 58148 4512
88 93 521 524 74728 122712 47984

Local

92 96 539 547 54417 64867 10450
91 92 166 171 40533 54872 14339
87 96 170 178 49610 57733 8123
87 91 178 182 20564 59801 39237

Virginia

92 101 167 173 39057 61007 21950

W
W

W

Average 91.88 97.25 351.5 357.25 45154 63592 18438
106 107 146 153 12654 90615 77961
107 110 148 155 7124 87099 79975
111 117 140 146 1524 70140 68616

Local

115 124 148 152 48945 154591 105646
114 121 124 134 58669 121124 62455
106 114 139 144 24975 25763 788
106 106 129 139 22672 25570 2898

Virginia

102 126 133 136 77414 125582 48168

V
O

IC
E

Average 110.63 115.63 138.38 144.88 31747 87560 55813

62

general, this Difference has really added yet another long delay (between 18.4 and 55.8 seconds on average)
to the already high MIP handoff latency. Actually, the column Difference highlights another advantage of
IPMN which takes into consideration TCP performance in addition to its main purpose as a mobility
solution.

The third observation is IPMN-Full superiority over IPMN-Half; IPMN-Full handoff took 91 to 110
milliseconds on average, while IPMN-Half handoff took 138 to 351 milliseconds on average. Again, this
observation also emphasizes the benefit of interactivity. Recall that IPMN-Full employs interactivity on
both endpoints while IPMN-Half uses interactivity on the mobile node only. As we can see this feature was
to the advantage of IPMN-Full which managed to perform handoff in almost half the time needed by
IPMN-Half.

6.5.2 Traffic Arrival Trace

A) Voice Stream Trace:
Here we show application level performance by observing voice stream arrival trace. At the MN, we

kept a log file to register the arrival time of each 144-bytes block (talk burst) in the voice stream. Figure 33
plots the arrival times of the first 30,000 blocks at the MN from two of the correspondent nodes: Local and
Virginia. The figure shows the case of interarrival parameter

�
1=0.000001. The

�
2=0.000005 case showed a

similar trace but we did not include it for space limitation.

Figure 33. Voice stream arrival trace

(A) Trace from Local Node

Block number

A
rr

iv
al

 ti
m

e
(s

ec
)

0
100
200
300
400
500
600
700
800

1 5001 10001 15001 20001 25001 30001

MIP

FULL

HALF

0

100

200

300

400

500

1 5001 10001 15001 20001 25001 30001

MIP

FULL

HALF

(B) Trace from Virginia Node

Block number

A
rr

iv
al

 ti
m

e
(s

ec
)

63

We can make two observations on these plots; firstly, in the Local node plot, MIP actually outperformed
IPMN-Half and almost tied with IPMN-Full. Maybe the only advantage of both IPMN schemes was the
smoothness of the arrival trace—which is still important for voice traffic. This behavior can be explained
by the fact that all nodes were in the same room. In such situation, only handoff latency can be seen as a
performance metric, other issues will be dictated by TCP dynamics and LAN load. However, in real
Internet scenario the two endpoints are usually far a part—as in case (B)—and there we can see the
relevance of the interactive scheme. In Figure 33 (B), we see that both IPMN schemes outperformed MIP
mainly due to the huge step jumps on the MIP trace. These step jumps and the impact of TCP dynamics

Figure 35. WWW traffic trace

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1000

1 5
1 101 15

1 20
1 25

1 30
1 35

1 40
1 451 50

1

MIP-
L1
FULL-L1
MIP-L2
FULL-L2

(D) WWW document trace from Al-Quds

Document number

A
rr

iv
al

 ti
m

e
(s

ec
)

(A) WWW message trace from Local node

Fragment number

A
rr

iv
al

 ti
m

e
(s

ec
)

0

200

400

600

800

1000

1 5001 10001 15001 20001 25001 30001

MIP - L 1
HALF - L1
MIP - L 2
HALF - L 2

0

200

400

600

800

1 5001 10001 15001 20001 25001 30001

MIP - L 1
FULL - L1
MIP - L 2
FULL - L2

(B) WWW message trace from Virginia node

Fragment number

A
rr

iv
al

 ti
m

e
(s

ec
)

(C) WWW message trace from Al-Quds node

Fragment number

A
rr

iv
al

 ti
m

e
(s

ec
)

0

400

800

1200

1600

2000

1 2001 4001 6001 8001 10001

MIP - L 1
FULL - L1
MIP - L 2
FULL - L2

10

30

50

70

90

110

130

150

1 3001 6001 9001 12001 15001

10

30

50

70

90

110

130

150

1 3001 6001 9001 12001 15001

(A) IPMN-Full

Block number

In
te

ra
rr

iv
al

 ti
m

e
(m

s)

Figure 34. Block interarrival times at the MN (Jitter)

(B) MIP

Block number

In
te

ra
rr

iv
al

 ti
m

e
(m

s)

64

created jitter on the voice stream as we will show in the next section. Also, it is worth noting that IPMN-
Full was slightly more efficient than IPMN-Half.

B) Jitter on the Voice Stream:

Figure 34 plots the interarrival times of the first 16000 blocks arriving at the MN from Virginia node,
(A) on IPMN-Full, and (B) on MIP. On IPMN-Full almost all blocks were delivered at (75 to 90)
milliseconds apart, except (mainly) those that faced a handoff –only 22 blocks were delayed for more than
100 milliseconds. In Figure 34 we show a maximum of 150 ms on the y-axis to be able to see the
mainstream case. Average interarrival time for all blocks on IPMN was 85.57 milliseconds. On MIP the
situation is different; about 177 blocks in the stream faced more than 100 milliseconds interarrival –10 of
these blocks faced more than 8000 milliseconds delay—and average interarrival time for all blocks was
129 milliseconds.

C) WWW Traffic Trace:

To trace WWW and FTP traffic, we kept two log files at the mobile node: one that registered the
arrival time of each document and one that regarded the incoming stream as a whole sequence and
registered the arrival time whenever 1 KB-fragment was received. Figure 35 (A) plots the arrival times in
seconds of the first 30,000 fragments that arrived at the mobile node from the Local node, (B) traces the
first 30,000 fragments from Virginia node, (C) traces the first 10,000 fragments from Al-Quds node, and (C)
plots the arrival times of the first 500 documents that arrived from Al-Quds node—we show only this
sample of documents' trace for space limitations. In each plot there are four runs: two for MIP and two for
IPMN (all plots shows IPMN-Full except (A) which shows IPMN-Half). For each mode we generated
WWW traffic using the two values of interarrival parameter

�
 that were mentioned earlier—shown in the

figure as L1 and L2. Again, on the Local plot (A), MIP seems to outperform IPMN especially with L1
traffic. But on the Virginia plot (B), IPMN managed to deliver all fragments 2 – 3 times faster than MIP.

Figure 36. FTP traffic trace

0
100
200
300
400
500
600
700
800
900

1 5001 10001 15001 20001 25001 30001

MIP - L 1
FULL - L1
MIP - L 2
FULL - L2

0

200

400

600

800

1000

1200

1400

1 1001 2001 3001 4001 5001 6001

MIP - L 1
FULL - L1
MIP - L 2
FULL - L2

(A) FTP msg trace from Virginia

Message number

A
rr

iv
al

 ti
m

e
(s

ec
)

(B) FTP msg trace from Al-Quds

Message number

A
rr

iv
al

 ti
m

e
(s

ec
)

0

200

400

600

800

1000

1 51 101 151 201 251

MIP - L1
FULL - L1
MIP - L2
FULL - L2

0
100
200
300
400
500
600
700
800
900

1 51 101 151 201 251 301

MIP - L1
FULL - L1
MIP - L2
FULL - L2

(C) FTP file trace from Virginia

Document number

A
rr

iv
al

 ti
m

e
(s

ec
)

(D) FTP file trace from Al-Quds

Document number

A
rr

iv
al

 ti
m

e
(s

ec
)

65

On the Al-Quds plots (C) and (D), the difference was even bigger. A closer look at the (C) plot reveals the
impact of TCP's congestion control dynamics on the trace due to long disconnections on the MIP runs. This
coarse behavior disappeared on the smoother IPMN traces. From this pattern of behavior, we can say that
IPMN performs better when the two endpoints are furthest apart.

D) FTP Traffic Trace:

We show FTP traffic trace in Figure 36. Plot (A) of the figure shows the arrival times in seconds of
the first 30,000 1 KB fragments that arrived at the mobile node from the Virginia node, plot (B) traces the
first 6,500 fragments from Al-Quds node, plot (C) traces the first 300 files from Virginia node, and (D)
plots the arrival times of the first 250 files that arrived from Al-Quds node. As in the WWW case, there are
four runs in each plot: two for MIP and two for IPMN with the same interarrival parameters L1 and L2 that
were used before. These plots further confirm the obvious advantage of IPMN over MIP as we saw with
Voice and WWW traffic. It is worth noting the great impact of the long handoff disconnections on the trace
of MIP cases in Al-Quds plots (B) and (D).

6.6 Conclusion

IPMN uses true end-to-end signaling to update the current state of the mobile node’s location at both end-
points. Using interactivity, the mobile node was able to freeze the TCP connection and to perform loss-free,
rapid handoff by simply changing the 'source IP' field in TCP/IP stack of the mobile node and the
'destination IP' field in the TCP/IP stack of the correspondent node. As a mobility solution on the IP level,
IPMN offered two key advantages over conventional timer-based MIP; (a) it allowed direct end-to-end
communication between the correspondent node and the mobile node at a very little overhead cost, and (b)
it dramatically reduced handoff latency by canceling movement detection and address registration. On the
TCP level, IPMN managed to significantly improve TCP performance by the successful employment of the
Freeze TCP technique in the InTraN paradigm. We have demonstrated these features of IPMN by real
experimentation with Voice, WWW, and FTP traffic on remote nodes over the Internet. The results
demonstrate the benefit of the principle of interactivity in networking. It enables event based action and
response. It distinguishes from the traditional timer-based MIP which depends on periodic actions. The
periodic agent advertisements used in MIP is one of the prime reasons for its sluggishness. MIP has to
maintain a delicate balance between advertisements' frequency/size and their impact on network
throughput1. Event-based scheme such as the one demonstrated by IPMN does not require this compromise.
Indeed the benefit of instant interactivity was so dramatic that it could easily wipeout the seeming
advantage of MIP’s low layer implementation.

1 The original MIP proposal [Per96] recommended shortest agent advertisement rate of 1 per second. The implementation that we
have tested in this paper (PSUMIP) uses a much slower rate of 1 per minute. We tried to lower this rate, but it did not work. Since
PSUMIP was the only available implementation compatible with FreeBSD-4.5 kernel at the time, we could not test with faster agent
advertisement rate. Many other MIP implementations allow the user to set a preferred rate of one or more seconds. The best rate that
would yield optimal network throughput is still controversial and is highly dependent on mobile node's movement frequency and
traffic load.

66

CHAPTER 7

Protocol Modeling

In this chapter we briefly describe two well-knows protocols; Snoop [Bal95] by Balakrishnan et al.,

and WTCP [SiV99] by Sinha et al. They are among many other schemes proposed in the literature to
improve TCP performance over wireless links. Then, we show how they can be modeled with the meta-
engineering of the InTraN paradigm.

Wireless networks have certain characteristics that are not handled properly by regular TCP such as
high bit error rate (BER) and long disconnections due to handoffs or bad reception. When a packet is lost,
regular TCP assumes that it is due to congestion and will always trigger congestion control procedures at
the fixed host. However, in a wireless environment, radio transmission errors or handoffs can also cause
packet loss. This will result in significant reductions in throughput that can severely degrade overall
performance. A good survey on proposed protocols for improving TCP performance over wireless
networks can be found in [Anj03] [Bal96] [Ela02].

7.1 Snoop

The Snoop protocol introduced a module, called Snoop, at the base station that monitors every packet
that passes through in both directions. The Snoop module maintains a cache of TCP packets sent from the
fixed host that have not yet been acknowledged by the mobile host. A packet loss is detected either by the
arrival of duplicate acknowledgment or by a local timeout. To implement the local timeout, the module
employs its own retransmission timer. The Snoop module retransmits the lost packet if it has it in the cache.
Thus, the base station hides the packet loss from the fixed host, therefore avoiding its invocation of an
unnecessary congestion control mechanism. Figure 37 describers the basic architecture of the classic Snoop
protocol and Figure 38 shows the InTraN-enabled model of Snoop. The scheme represents part of the
snoop protocol that handles one direction of the traffic only (Data segments from FH to MH and ACK
segments from MH to FH). The Snoop protocol uses a different technique to handle traffic on the other

Link Layer

Snoop Agent

Snoop
State

Data
Processing

Base Station

N
etw

ork

Data segments
from FH

ACK segments to
FH

Data segments to
MH

ACK segments
from MH

ACK
Processing

IP

Figure 37. Conventional Snoop mechanism

67

direction, but it can be easily modeled with the InTraN framework in a similar fashion. The model shown
in Figure 38, assumes that data segments are cached in the network as in conventional Snoop for
performance reasons.

Assuming that the ‘Snoop Agent’ shown in Figure 38 has subscribed with the InTraN-enabled IP

protocol (or iIP) for two events: an ACK received from MH event (evt_ACK_MH), and data segment
received from FH event (evt_DAT_FH). Whenever any one of these two events occurs, iIP sends a signal
to the SM which invokes the appropriate TM: TM-Data or TM-ACK. The Snoop Agent is a process that runs
in the application layer. Its main role is to initialize and maintain the Snoop State, subscribe with the
InTraN service. Afterwards, most of the work is done by the TMs. The Snoop State is similar to the one
used in the conventional snoop protocol. The TM-Data handles the (Data segment received) event. It
implements the Data processing algorithm of the snoop protocol. The TM-ACK handles the (ACK segment
received) event. It implements the ACK processing algorithm of the snoop protocol. Both algorithm are
describes in detail in [Bal95]. Both TM-Data and TM-ACK need to interact with iIP; they use the Access
API of the InTraN service to (i) probe the IP layer and Read relevant header parameters from the TCP
segment that has just arrived and (ii) to update the cache of TCP segments. The TM-Data adds segments to
the cache and the TM-ACK clears the cache or part of it as decided by their respective algorithms. We
assume that both TMs have full access to the Snoop State; they can read and update state variables as
necessary.

7.2 WTCP

Wireless Transmission Control Protocol (WTCP) is specifically designed for wireless wide area
networks. WTCP is based on the following two key principles: (i) it uses rate-based rather than window-
based transmission control, i.e., it does not use ACKs for self clocking, and (ii) it uses the ratio of the inter-
packet separation at the receiver and the inter-packet separation at the sender as the primary metric for rate
control rather than using packet loss and retransmit timeouts. WTCP uses a heuristic based on the average
per-packet separation to distinguish congestion losses from random losses. In this heuristic, the receiver
initially predicts that all losses are non-congestion losses. The following example from the WTCP original
paper [SiV99] explains the main concept of this heuristic: consider that packets i and j were received (i < j),

Sub. API

InTraN enabled IP

Snoop Agent

Snoop
State

Data
TM

ACK
TM

A
pplication L

ayer

Data segments
from FH

ACK segments to
FH

ACK segments
from MH

Subscribe

T-type channel

Read Data
header/
Update
cache.

Read/
Update
Snoop
State.

Data segments to
MH

Base Station

Figure 38. The interactive version of Snoop (iSnoop)

Access API

SM

Read ACK
header/
Update
cache.

68

but packets i+1 … j−1 were all lost. In this case the receiver computes the average inter-packet separation
for each of the lost packets as:

ij

recvTimerecvTime
perPktSep

ij

−
−←

Where recvTimei is the time at which the last bit of packet i arrive. If the value of perPktSep is close
to the measured inter-packet separation at the receiver (i.e., within the band [average − K × mean deviation,
average + K × mean deviation], where K is a constant), then the receiver predicts that the losses were all
random losses. Otherwise, the receiver predicts that there was at least one congestion loss, and the sending
rate is reduced. The basic mechanism of the WTCP’s rate-based scheme is shown in Figure 39. The
receiver computes the desired sending rate via its rate control mechanisms, and notifies this rate to the
sender in the ACK packets. ACKs, thus, carry both reliability information (SACK) and rate control
information. The sender monitors the reception of ACKs, and adjusts its rate accordingly. It also monitors
the ACKs to tune the ACKing frequency, which it then notifies to the receiver in future data packets. We
show the InTraN-enabled model of WTCP in Figure 40. Basically, we have moved most of the processing
to the application layer as TMs; i.e., the rate control algorithm at the receiver (MN) and reliability algorithm
at the sender (FH). The InTraN extension provided the necessary API that allows TCP to trap events on
both ends. On the MN, when a new packet is received, this event triggers the (inter-packet time
computation) TM, which calculates new timers and updates the internal state of WTCP. When it is time to
perform the periodic update, this event triggers the (sender rate heuristic) TM to calculate a new rate for the
sender. The updated rate is transmitted to the sender through the API. On the sender side, when an ACK
packet is received, one TM handles (ACK monitoring) and (SACK processing) since the ACK packet
carries both ACK and SACK information. The (SACK processing) part of the TM discovers holes in the
transmitted packet sequence, i.e., discovers lost packets, and issues retransmission request through the
InTraN API. The (ACK monitoring) part of the TM calculates a new ACKing frequency rate based on the
current transmission rate and the internal state and sends the updated rate to the receiver periodically.

Mobile Node

Application layer

InTraN TCP

 Inter-packet Time
Computation

Sender Rate
Heuristic

Rate Control

SM

Fixed Host

Application layer

 InTraN TCP

 SACK
Processing

And

ACK Monitoring

Reliability

ACK Packets

Data Packets

Send
updated
rate to FH Periodic

time
update

New
packet
arrival

Events

New
ACK
arrival

Events

Request
a retrans-

mission.

Update
internal
state

SM

Update
internal state

Send
ACKing
frequency
to MN

Figure 40. The interactive version of WTCP (iWTCP)

Fixed Host

Application layer

Mobile Node

Application layer

WTCP

 Inter-packet time
computation

Sender rate
heuristic

Rate Control

WTCP

 SACK
Processing

ACK
Monitoring

Reliability

ACKing Frequency

Data Packets

Updated Sender Rate

ACKs and SACKs

Figure 39. Conventional WTCP mechanism

69

7.3 Performance Issues

7.3.1 Overhead Cost

The transparency model implementation of both protocols adds some extra cost to the original scheme
as a result of the added signaling and system calls overhead. Here, we show an abstract comparison of both
interactive and conventional schemes of the Snoop protocol. In Table 20 we show several quantities that

define cost variables and wireless link characteristics. The first column in Table 21 shows the estimated
cost incurred by deploying the Snoop protocol for three wireless link scenarios: (1) error-free, handoff-free
wireless link, (2) error-prone link with BER = 1 error for each x Mbytes, and (3) a moving mobile node that
triggers a handoff every n seconds. The second column represents the InTraN version of Snoop. In the first
scenario (a reference case) iSnoop added overhead came from Sub, S, H, and Ui - Un. Actually, in real
practice these added costs should be very small (almost negligible). For example Sub, H, and Ui all involve

Table 22. Running modes for the getrusage() experiment

Mode name Description

Classic TCP No interactivity overhead. This is the reference case.

Invoke only Subscribe with a Signal-only type TM. The TM does not perform any
Read/Write operations.

File access Subscribe with a Signal-only type TM. We let the TM open a disk file and
perform one read operation and one write operation.

Protocol access Subscribe with a Read-only type TM. We let the TM perform one ReadVar()
operation from TCP.

iTCP
modes

Protocol & File Subscribe with a Read-only type TM. We let the TM perform both a disk
read/write and a ReadVar() operation from TCP.

Table 21. Algebraic overhead cost of Snoop and iSnoop

Scenario Classic Snoop Interactive Snoop (iSnoop)
Error-free, handoff-free
wireless link

SNOOPfree =
NDAT (CDAT + Un)
+ NACK (CACK + Un)

iSNOOPfree =
Sub + NDAT (S + H + CDAT + Ui) +
NACK (S + H + CACK + Ui)

Error-prone link with BERx
= 1 error / x MB

SNOOPfree + (T / BERx) iSNOOPfree + (T / BERx)

Handoff every n seconds SNOOPfree + Choff (8 · T / n · R) iSNOOPfree + Choff (8 · T / n · R)

Table 20. Cost parameters for Snoop and iSnoop

Name Meaning
CACK Overhead cost per ACK segment
CDAT Overhead cost per Data segment
NACK Number of ACK segments
NDAT Number of Data segments
Un Update State/Cache cost in normal mode
Ui Update State/Cache cost in interactive mode. We assume that Ui > Un

since Un might involve making a system call.
Sub Subscription cost
S Software Interrupt ‘Signal’ cost
H Signal Handler cost
R Retransmit cost
T Total transfer size (Mbytes)
Choff Handoff cost
R Wireless link bit rate (Mbps)

70

running a small system call and OS context switch cost. Besides the reference case, the other two scenarios
were identical in both protocols. The same kind of analysis holds for the WTCP case. To get a real
measurement of interactivity service overhead we performed a simple experiment on iTCP. We ran the
video session (server, transcoder, and player) on classical TCP (the reference case) and on iTCP with four
different modes by varying the access complexity of the TM. These five modes are explained in Table 22.
We used the FreeBSD utility getrusage() to collect statistics about system resources used by the video
transcoder (our subscriber program) in the five running modes. In the four iTCP modes, we measured the
overhead cost of invoking the InTraN service which can be summarized by (1) subscription cost, (2) SM
cost, and (3) TM cost. The most significant part of these is the TM cost since it implements the real protocol
extension and its complexity can vary significantly. Therefore, we used TM complexity as a criterion to
classify iTCP runs into four modes. Also, in each mode, we ran the video session ten times by varying the
number of TMs that were invoked during the session from 1 to 10—we will call this number N. We
collected the following resource usage information from the getrusage() function:
1) utime: The total amount of time spent executing in user mode.
2) stime: The total amount of time spent in the system executing on behalf of the process.
3) vcsw: The number of times a context switch resulted due to a process voluntarily giving up the CPU

before its time slice was completed (usually to await availability of a resource).
4) fcsw: The number of times a context switch was forced by the OS due to a higher priority process

gaining the CPU or because the current process exceeded its time slice.
The performance results of the first two parameters are plotted in Figure 41 and the latter two are

plotted in Figure 42.

A) CPU time Analysis
In Figure 41 iTCP overhead time is shown on the left Y-axis at the lower part of the figure, and the

total application running time is plotted on the right Y-axis. Here we see that (utime) overhead varied
between 0 and 220 msec, while (stime) overhead varied between 0 and 360 msec. This is a small
percentage of the total running time in both cases as we show in Table 23. In the table we also show the
standard deviation of the iTCP overhead over the 10 runs. Also, we could not determine a consistent pattern
of CPU time overhead as N increases. This means that once the InTraN service is deployed in the system, N
will not have a significant impact on CPU time. But it can be seen that iTCP modes which involve a file
access took more CPU time—which is reasonable.

B) Context Switching Analysis

In Figure 42 we show context switching overhead and in Table 24 we show the related statistics. It
can be seen that approximately 20% of the total number context switching was voluntarily (vcsw) and the
rest was forced (fcsw). But, iTCP added more to (vcsw)—between 1000 to 4400 context switches—than

Table 24. iTCP context switching overhead

 Voluntarily CSW Forced CSW Total CSW

Invoke only 24.10% 0.19% 4.16%
File access 25.10% 0.22% 4.39%
Protocol access 24.30% 0.20% 4.22%
Protocol & File 24.20% 0.20% 4.19%

Table 23. CPU time

 User CPU Time System CPU Time Total CPU Time

 iTCP% SD iTCP% SD iTCP% SD

Invoke only 1.10% 55.68 3.80% 67.62 2.53% 200.08
File access 2.70% 116.47 3.70% 106.94 3.23% 272.28
Protocol access 0.90% 44.65 3.10% 59.37 2.07% 167.89
Protocol & File 1.30% 81.09 4.10% 77.95 2.82% 224.89

71

that it added to (fcsw)—between 70 to 170 context switches. Percentage wise, as shown in table Table 24,
iTCP overhead is 25% of (vcsw) versus 0.22% of (fcsw). Overall, iTCP added less than 4.5% to the total
context switching. Another observation is the increase pattern of (vcsw) as a linear function of N which can
be described by f = 252 N + 1500. This means that iTCP service deployment will add at least 1500 to
(vcsw), and then (vcsw) grows linearly with a slope = 252 as N increases.

7.3.2 Security and Practice

The added small overhead cost can be justified for many practical gains allowed by the InTraN
paradigm. As we mentioned earlier, since TMs run in the application space, they will enjoy a well
developed provision tuned to run custom codes, share resources, and manage security issues. Actually, the
security issue is of great importance in such engagement. Running the Active modules inside the network
raises many security concerns that usually require complex techniques to maintain acceptable security level
and stability within the network domain. Moving these modules up to the application layer makes security
management a much easier task. Actually, Subscriber Programs and TMs can only access internal network

Figure 41. iTCP CPU time overhead

(A) User CPU Time (utime)

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10

No. of Transientware Modules (N)

iT
C

P
 o

ve
rh

ea
d

 ti
m

e
(m

se
c)

2800

2900

3000

3100

3200

3300

3400

3500

3600

3700

3800

A
p

p
lic

at
io

n
 ti

m
e

(m
se

c)

iTCP.Invoke only iTCP.File access iTCP.Protocol access

iTCP.Protocol & File App.Classic App.Invoke only

App.File access App.Protocol access App.Protocol & File

(B) System CPU time (stime)

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10

No. of Transientware Modules (N)

iT
C

P
 o

ve
rh

ea
d
 ti

m
e

(m
se

c)

3000

3200

3400

3600

3800

4000

4200

4400

A
p

p
lic

at
io

n
 ti

m
e

(m
se

c)

iTCP.Invoke only iTCP.File access iTCP.Protocol access

iTCP.Protocol & File App.Classic App.Invoke only

App.File access App.Protocol access App.Protocol & File

72

services through the API extension. Therefore, by imposing the appropriate access restrictions on each
party, we can guarantee certain security level. Furthermore, since the API extensions can be implemented
as system calls, we can simply extend the OS security model and reuse available OS facilities like memory
management and resource sharing to achieve even better performance. These characteristics make the
InTraN model an attractive and a practical choice to implement and deploy many useful protocols which
thus far had been only simulated or tested on a small-scale controlled testbed.

7.4 Conclusion

In this chapter we have shown that the Interactive Transparent Networking (InTraN) paradigm can be used
to re-model existing protocol modifications by protocol meta-engineering and application level
Transientware Modules (TMs). Actually, the InTraN version of the re-modeled solution can be further
enhanced without changing the lower level implementation. For example, a protocol like WTCP which was
intended to improve TCP performance over wireless links can also be augmented with extra TMs to add
TCP-friendly features. We have particularly chosen two ‘original source’ examples for demonstrating an

Figure 42. iTCP context switching overhead

(B) Forced Context Switching (fcsw)

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10

No. of Transientware Modules (N)

iT
C

P
 C

S
W

 o
ve

rh
ea

d

53500

53700

53900

54100

54300

54500

54700

54900

55100

55300

55500

55700

55900

T
o

ta
l C

S
W

iTCP.Invoke only iTCP.File access iTCP.Protocol access

iTCP.Protocol & File App.Classic App.Invoke only

App.File access App.Protocol access App.Protocol & File

(A) Voluntarily Context Switching (vcsw)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4 5 6 7 8 9 10

No. of Transientware Modules (N)

N
o

. o
f c

o
n

te
xt

 s
w

itc
h

in
g

 ti
m

es

App.Classic App.Invoke only App.File access

App.Protocol access App.Protocol & File iTCP.Invoke only

iTCP.File access iTCP.Protocol access iTCP.Protocol & File

73

implementation path via transparent networking—but this is not to endorse them. Please note because of
their basic usefulness researchers have subsequently proposed several improved variants [Anj03] [Ela02].
The proposed transparency via interaction and triggered TM deployment will provide them implementation
paths as well. In fact, since TMs operate at the application layer it will be much easier even to upgrade a
certain TM from its current version to another improved one.

74

CHAPTER 8

Conclusion

In this dissertation we have presented and investigated InTraN, a new paradigm for extensible and

adaptive networking that can dynamically meet the emerging requirements of modern networking, and the
increasing demands of distributed applications (e.g., QOS guarantees, security, mobility, fault-tolerance,
etc). The InTraN paradigm retains a good balance between the classical Internet design principles and the
more contemporary aggressive approaches like programmable networks and protocol composition tools.
On one hand, InTraN maintains the benefits of the classical design principles by (i) keeping the core of the
network as simple and generic as possible, and (ii) maintaining the original semantics of the network layers.
On the other hand, it can still achieve the goals of contemporary approaches for extensible and adaptive
networking.

The InTraN paradigm has a number of unique features that distinguish it from other approaches; first,
it offers an event/response mechanism (vs. timer-based or probing-based mechanisms) which makes it
faster and more responsive especially for time-critical applications. Secondly, it requires only a light-
weight re-organization of the existing kernel infrastructure (vs. heavily customized modifications or
complex middleware) which adds minimal overhead to the network and tolerates high scalability. Thirdly,
it allows kernel level enhancements to be performed at the application level, and thus, they become much
practical/easier to deploy and implement (as opposed to direct kernel modifications). Furthermore, this
feature can greatly simplify other critical issues like security management, maintenance, and resource
sharing since the application layer has been optimized to handle these issues effectively. We have
illustrated these principles by presenting three types of solutions based on the proposed InTraN paradigm;
(1) adaptive applications via a video transcoder, (2) cross-layer optimization via a mobility solution for IP
networks, and (3) protocol extensions. The experimental results reported in this work—from real prototype
implementation and world-wide Internet experiments—have shown substantial improvements in network
level performance as well as application level performance.

A number of issues are yet to be investigated though; for example, we have proposed a security model
for InTraN, but we have not implemented that in the prototype, and even though we know—theoretically at
least—that the proposed security model should be effective in maintaining the safety and correctness of the
overall system, a real prototype may be needed to expose its real capabilities and complexity. Another
unresolved issue is scalability; the SM (Subscription Manager) has been designed as a central handler, and
thus, it might become a bottleneck during heavy traffic or with an increasing number of transientware
modules. In this current prototype we have used one SM to handle all modules/applications. Another
alternative approach is to use one SM per application instance. Therefore, a future research can reveal
which approach is more effective, and to which extent it can scale-up to support bigger, more complicated
scenarios. Finally, this current design of InTraN does not offer any guarantees that event signals will be
handled in the same order by which they have occurred. However, in a more sophisticated scenario (e.g.,
multicasting) where potentially many signals might arrive at the SM simultaneously, the issue of event
synchronization and timing should be addressed. This can also be picked up as a future research topic.

75

References

[ABone] ABone, Active Network Backbone, http://www.isi.edu/abone/

[Alex98] Alexander, D.S., Arbaugh, W.A., Hicks, M.A., Kakkar P., Keromytis A., Moore J.T., Nettles
S.M., and Smith J.M., “The SwitchWare Active Network Architecture”, IEEE Network
Special Issue on Active and Controllable Networks, vol. 12 no. 3, 1998.

[Alm99] Almes G., Kalidindi S., and Zekauskas M., "A one-way packet loss metric for IPPM,"
RFC2680, 1999.

[And00] Andersen D., Bansal D., Curtis D., Seshan S., and Balakrishnan H., “System Support for
Bandwidth Management and Content Adaptation in Internet Applications,” Proc. of
OSDI’00, Oct. 2000, San Diego, CA.

[Anj03] Anjum F., and Tassiulas L., “Comparative Study of Various TCP Versions Over a Wireless
Link With Correlated Losses,” IEEE/ACM Transactions On Networking, Vol. 11, No. 3, June
2003.

[Aya95] Ayanoglu E., Paul S., LaPorta T. F., Sabnani K., and Gitlin R., "AIRMAIL: A Link-Layer
Protocol For Wireless Networks," Wireless Networks Vol. 1, pp. 47-60, 1995.

[Bakr97] Bakre A., and Bardinath B. R., "Implementation and Performance Evaluation of Indirect
TCP," IEEE Transactions on Computers, Vol. 46, No. 3, pp. 260-278, 1997.

[Baks97] Bakshi B., Krishna P., Vaidya N. H., and Pradhan D. K., Improving Performance of TCP
Over Wireless Networks," 17th International Conference on Distributed Computing Systems,
pp. 365-373, 1997.

[Bal95] Balakrishnan H., Seshan S., and Katz R., “ Improving Reliable Transport and Handoff
Performance in Cellular Wireless Networks,” ACM Wireless Networks, Vol. 1, No. 4, pp.
469-481, 1995.

[Bal96] Balakrishnan H., Padmanabhan V., Seshan S., and Katz R., “A comparison of mechanisms for
improving TCP performance in wireless networks,” ACM SIGCOMM Symposium on
Communication, Architectures and Protocols, Aug. 1996.

[Bal99] Balakrishnan H., Rahul H., and Seshan S., “An Integrated Congestion Management
Architecture for Internet Hosts,” Proc. of ACM SIGCOMM, Cambridge, MA, Sep 1999.
pp.175-187.

[Ban02] Ban B., JavaGroups 2.0 User’s Guide, Nov 2002.

[Ber02a] Berson S., Branden B., and Dawson S., “Evolution of an Active Networks Testbed,”
Proceedings of the DARPA ActiveNetworks Conference and Exposition 2002, pp. 446-465,
San Francisco, CA, 29-30 May 2002.

[Ber02b] Berson S., Branden B., and Ricciulli L., “ Introduction to the ABone,” Feb. 2002, available at
http://www.isi.edu/abone/DOCUMENTS/ABarch/

[Bha98] Bhatti N., Hiltunen M., Schlichting R., and Chiu W., "Coyote: A system for constructing fine-
grain configurable communication services," ACM Trans. On Computer Systems, 16 (4), pp
321–366, November 1998.

[Bhat96] Bhatti N. T., "A system for constructing configurable high level protocols," PhD thesis,
University of Arizona, 1996.

[Bin99] Binkley J., and Singh S., The Portland State University Secure Mobile Networking Project
(PSUMIP), http://www.cs.pdx.edu/research/SMN/, 1999.

76

[Bir87] Birman K., and Joseph T., "Reliable Communication in the Presence of Failures," ACM
Transactions on Computer Systems, Vol 5, No 1, pp. 47–76, Feb. 1987.

[Blu01] Blumenthal M., and Clark D.D., "Rethinking the design of the Internet: the end-to-end
arguments vs. the brave new world," ACM Transactions on Internet Technology (TOIT), Vol.
1 ,no. 1, pp. 70 – 109, August 2001.

[Boc79] Bochmann G. V., and Vogt F.H., "Message link protocol (MLP): functional specification,"
ACM SIGCOMM Computer Communication Review, Vol. 9, Issue 2, pp. 7-39, 1979.

[Bri99] Briceño H., S. Gortler and L. McMillan, “NAIVE--network aware Internet video encoding,”
Proc. of the 7th ACM International Conference on Multimedia, Oct. 1999, Orlando, FL, pp.
251-260.

[Byu01] Byun Y., Sanders B., and Keum C-S., "Design Patterns of Communicating Extended Finite
State Machines in SDL," 8th Conference on Pattern Languages of Programs (PLoP'01), 2001.

[Cac99] Caceres R., Duffield N.G., Horowitz J., Towsley D.F., and Bu. T., "Multicast-based inference
of network-internal characteristics: Accuracy of packet loss estimation," Proc. of IEEE
INFOCOM’99, pp. 371–379, 1999.

[Calv98] Calvert, K. et al, “Architectural Framework for Active Networks” , Active Networks Working
Group Draft, July 1998.

[Cam01] Campbell A., et al., “ IP Micro-Mobility Protocols,” ACM SIGMOBILE Mobile Computer
and Communication Review (MC2R), Vol. 4, No . 4, pp. 45–54, October 2001.

[Cam99] Campbell A., Meer H., Kounavis M., Miki K., Vicente J., and Villela D., “A Survey of
Programmable Networks,” ACM Computer Communications Review, Vol. 29, No. 2, pp. 7-
23, April 1999.

[CANE] "CANEs: Composable Active Network Elements", http://www.cc.gatech.edu/projects/canes/

[Chan96] Chan, M.-C., Huard, J.-F., Lazar, A.A., and Lim, K.-S., “On Realizing a Broadband Kernel
for Multimedia Networks” , 3rd COST 237 Workshop on Multimedia Telecommunications and
Applications, Barcelona, Spain, November 25-27, 1996.

[Che96] Cheng K-T., Krishnakumar A., "Automatic generation of functional vectors using the
extended finite state machine model," ACM Transactions on Design Automation of Electronic
Systems (TODAES) Volume 1, Issue 1, pp. 57-79, Jan 1996.

[Dol96] Dolev D., and Malki D., "The Transis approach to high availability cluster communication,"
Communications of the ACM, Vol 39, No 4, pp 64–70, 1996.

[Ela02] Elaarag H., “ Improving TCP Performance over Mobile Networks,” ACM Computing Surveys,
Vol. 34, No. 3, Sep. 2002, pp. 357–374.

[Ell97] Ellsberger J., Hogrefe D., and Sarma A., "SDL: Formal Object-Oriented Language For
Communicating Systems," Prentrice Hall, Harlow, England, 1997.

[Fik01] Fikouras N., Könsgen A., and Görg C., “Accelerating Mobile IP Hand-offs through Link-layer
Information,” in Proc. of the International Multi-conference on Measurement, Modeling, and
Evaluation of Computer-Communication Systems (MMB), Aachen, Germany, September
2001.

[Fik99] Fikouras N., El Malki K., and Cvetkovic S., “Performance Evaluation of TCP over Mobile
IP,” In Proc. of the International Symposium on Personal Indoor and Mobile Radio
Communications 1999 (PIMRC), Osaka, Japan, September 1999.

[Gof00] Goff T., Moronski J., Phatak D., Gupta V., "Freeze-TCP: A True End-to-End TCP
Enhancement Mechanism for Mobile Environments," INFOCOM'00, Tel-Aviv, Israel, pp.
1537-1545, 2000.

[Gua04] Guan Sheng-Uei and Lim Sok-Seng, "Modeling adaptable multimedia and self-modifying
protocol execution," Future Generation Computer Systems, Vol. 20, No. 1, pp. 123-143, Jan

77

2004.

[Gus01] Gustafsson E., et al. “Mobile IPv4 Regional Registration” draft-ietf-mobileip-reg-tunnel-05,
IETF, September 2001.

[Hau04] Huang Y-W., Yu F., Hang C., Tsai C-H., Lee D-T., Kuo S-Y., "Securing Web Application
Code by Static Analysis and Runtime Protection," Proc. of the 13th int. conference on WWW
(WWW2004), pp. 40-52, 2004.

[Hay98] Hayden M., "The Ensemble system," Technical Report TR98-1662, Department of Computer
Science, Cornell University, Jan. 8, 1998.

[Hil98] Hiltunen M. A., and Schlichting R. D., "A configurable membership service," IEEE
Transactions on Computers, Vol 47, No 5, pp. 573–586, 1998.

[Hri02] Hristea C., and Tobagi F., “A network infrastructure for IP mobility support in metropolitan
areas,” Computer Networks, 38, pp.181-206, 2002.

[Hut91] Hutchinson N. C., and Peterson L. L., "The x-Kernel: An Architecture for Implementing
Network Protocols," IEEE Transactions on Software Engineering, Vol. 17, No. 1, pp. 64–76,
Jan. 1991.

[Jac88] Jacobson V., “Congestion Avoidance and Control,” Computer Communication Review, vol.
18, no. 4, pp. 314-329, Aug. 1988.

[Jac90] Jacobson V., “Modified TCP Congestion Avoidance Algorithm,” end2end-interest mailing
list, April 1990.

[Jon98] Jonkman R., Evans J., and Frost V., "Netspec: A Tool for Network Experimentation and
Measurement", University of Kansas, 1998. http://www.ittc.ku.edu/netspec/

[Ke00] Ke J. and Williamson C., “Towards a Rate-Based TCP Protocol for the Web,” Proc. of the 8th
Int. Symposium on Modeling, Analysis and Simulation of Computer and Telecomm. Systems,
2000.

[Kha01] Khan J. and Q. Gu, “Network Aware Symbiotic Video Transcoding for Instream Rate
Adaptation on Interactive Transport Control,” IEEE NCA’01, Oct. 2001, Cambridge, MA, pp.
201-213.

[Kha02] Khan J., R. Zaghal, and Q. Gu, “Rate Control in an MPEG-2 Video Rate Transcoder For
Transport Feedback based Quality-Rate Tradeoff,” PV2002, Pittsburgh, PA, April 2002.

[Kha03a] Khan J., Zaghal R., and Gu Q., “Symbiotic Streaming of Elastic Traffic on Interactive
Transport,” IEEE ISCC'03, Antalya, Turkey, July 2003.

[Kha03b] Khan J., and Zaghal R., “Jitter and Delay Reduction for Time Sensitive Elastic Traffic for
TCP-interactive based World Wide Video Streaming over ABone,” Proc. of the 12th IEEE-
ICCCN 2003, Dallas, Texas, Oct. 2003, pp.311-318.

[Kha03c] Khan J., R. Zaghal, and Q. Gu, “Dynamic QoS Adaptation for Time Sensitive Traffic with
Transientware,” IASTED WOC'03, Banff, Canada, July 2003.

[Kul98] Kulkarni, A.B. Minden G.J., Hill, R., Wijata, Y., Gopinath, A., Sheth, S., Wahhab, F., Pindi,
H., and Nagarajan, A., “ Implementation of a Prototype Active Network” , First International
Conference on Open Architectures and Network Programming (OPENARCH), San Francisco,
1998.

[Lee95] Lee Beng-Ong, "Wide Area ATM Network Experiments using Emulated Traffic Sources,"
Master's Thesis, University of Kansas, Lawrence, Kansas, 1995.

[Mal96] Malloth C., "Conception and Implementation of a Toolkit for Building Fault-Tolerant
Distributed Applications in Large Scale Networks," PhD thesis, Federal Institute of
Technology, Lausanne (EPFL), 1996.

[Mat96] Mathis M., Mahdavi J., Floyd S., and Romanow A., "TCP Selective Acknowledgment
Options," IETF, RFC 2018, 1996.

78

[Men03] Mena S., Cuvellier X., Grégoire C., and Schiper A., "Appia vs. Cactus: Comparing Protocol
Composition Frameworks," 22nd International Symposium on Reliable Distributed Systems
(SRDS'03), Florence, Italy, pp. 189-200, October, 2003.

[Mir01] Miranda H., Pinto A., and Rodrigues L., "Appia, a flexible protocol kernel supporting
multiple coordinated channels," In Proceedings of The 21st Int’ l Conf. on Distributed
Computing Systems (ICDCS-21), Phoenix, Arizona, USA, pp. 707 – 710, April 2001.

[Mir99] Miranda H., and Rodrigues L., "Communication support for multiple QoS requirements," In
3rd European Research Seminar on Advances in Distributed Systems (ERSADS’99), Madeira
Island, Portugal, April 1999.

[Pax98] Paxson V., Almes G., Mahdavi J., and Mathis M., "Framework for IP Performance Metric,"
RFC 2330, 1998.

[Per00] Perkins C.E., and Johnson D.E., "Route Optimization in Mobile IP," IETF, draft-ietf-
mobileip-optim-10.txt, 2000.

[Per01] Perkins C.E., "IP Mobility Support for IPv4," revised draft-ietf-mobileip-rfc2002-bis-03-txt,
2001.

[Per96] Perkins C., “ IP Mobility Support,” RFC2002, IETF, October 1996.

[Pet99] Peterson L., “NodeOS Interface Specification”, Technical Report, Active Networks NodeOS
Working Group, February 2, 1999

[Pos81] Postel J., “Transmission Control Protocol,” RFC 793, September 1981.

[Pra00] Pradhan P., Chiueh T., and Neogi A., “Aggregate TCP Congestion Control Using Multiple
Network Probing,” Proc. of the 20th International Conference on Distributed Computing
Systems, ICDCS 2000.

[Ram00] Raman S., “A Framework for Interactive Multicast Data Transport in the Internet,” Ph.D.
thesis, UC-Berkeley, May 2000.

[Ram99] Ramjee R., et al. “HAWAII: A Domain-Based Approach for Supporting Mobility in Wide-
area Wireless Networks,” Proc. IEEE Int’ l Conf. Network Protocols, 1999.

[Rej00] Rejaie R., M. Handley, and D. Estrin, “Architectural Considerations for Playback of Quality
Adaptive Video over the Internet,” Proc. of the IEEE ICON 2000.

[Sal84] Saltzer J., Reed D., and Clark D.D., “End-to-end arguments in system design,” ACM Trans.
Computer Systems, Vol. 2, No. 4, pp. 277-288, Nov 1984.

[Sch03] Schulzrinne H., Casner S., Frederick R., and Jacobson V., "RTP: A Transport Protocol for
Real-Time Applications," RFC 3550, July 2003.

[SDLfrm] SDL Forum Society. SDL specification (z.100 11/99). http://www.sdl-forum.org.

[Sis98] Sisalem D. and Wolisz A., “Towards TCP-Friendly Adaptive Multimedia Applications Based
on RTP,” Proc. of the 4th IEEE Symposium on Computers and Communications, 1998.

[SiT99] Singh R., Tay Y., Teo W., and Yeow S., “RAT: A Quick (And Dirty?) Push for Mobility
Support,” 2nd IEEE Workshop on Mobile Computer Systems and Applications, pp. 32, Feb.
1999.

[SiV99] Sinha P., Venkitaraman N., Sivakumar R., and Bharghavan V., “WTCP: A reliable transport
protocol for wireless wide-area networks,” Proceedings of ACM Mobicom’99, Seattle, WA,
pp. 231–241.

[Sri99] Srisuresh P., and Holdrege M., "IP Network Address Translator (NAT) Terminology and
Considerations," RFC2663, 1999.

[Ste94] Stevens W. R., “TCP/IP Illustrated, Volume 1: The Protocols,” Addison-Wesley, 1994.

79

[Ten96] Tennenhouse, D., and Wetherall, D. “Towards an Active Network Architecture”, Proceedings,
Multimedia Computing and Networking, San Jose, CA, 1996.

[Tur93] Turner Kenneth J., "Using Formal Description Techniques-An Introduction to Estelle,
LOTOS and SDL," John Wiley and Sons Ltd., 1993, ISBN 0-471-93455-0.

[Van93] Van Renesse R., Birman K., Cooper R., Glade B., and Stephenson P., "The Horus System. In
Reliable Distributed Computing with the Isis Toolkit," IEEE Computer Society Press, pp.
133–147. 1993.

[Van96] Van Renesse R., Birman K. P., Glade B. B., Guo K., Hayden M., Hickey T., Malki D.,
Vaysburd A., and Vogels W., "Horus: A flexible group communications system," Technical
Report TR95-1500, Department of Computer Science, Cornell University, Apr 1996.

[Vin97] Vinoski, S.,“CORBA: Integrating Diverse Applications Within Distributed Heterogeneous
Environments,” IEEE Communications
Magazine, Vol. 14, No. 2, February, 1997.

[Wet98] Wetherall, D., Guttag, J. and Tennenhouse, D., “ANTS: A Toolkit for Building and
Dynamically Deploying Network Protocols” , Proc. IEEE OPENARCH'98, San Francisco,
CA, April 1998.

[Wid01] Widmer J., Denda R., and Mauve M., “A survey on TCP-friendly congestion control,” IEEE
Network, vol. 15, pp. 28-37, May-June 2001.

[Wol97] Wolfinger B., “On the potential of FEC algorithms in building fault-tolerant distributed
applications to support high QoS video communications,” Proc. of the sixteenth annual ACM
symposium on principles of distributed computing, 1997, pp. 129-138.

[Wu01] Wu Jon Chung-Shien, Cheng Chieh-Wen, Ma Gin-Kou, Huang Nen-Fu, "Intelligent Handoff
For Mobile Wireless Internet," Mobile Networks and Applications, Vol. 6, No. 1, pp. 67-79,
Jan 2001.

[Yac00] Yacoub S., and Ammar H., "Finite State Machine Patterns," Pattern Languages of Program
Design 4, pp. 413 – 440, Addison-Wesley Longman, 2000.

[Yav95] Yavatkar R., Bhagawat N., "Improving end-to-end performance of TCP over mobile
internetworks," Proc. of The Workshop on Mobile Computing Systems and Applications,
Santa Cruz, CA, pp. 146-152, 1995.

[Yem96] Yemini, Y., and Da Silva, S, "Towards Programmable Networks", IFIP/IEEE International
Workshop on Distributed Systems: Operations and Management, L'Aquila, Italy, October,
1996.

[Yok02] Yokota H, et al., “Link Layer Assisted Handoff Method over Wireless LAN Networks,” Proc.
of MOBICOM ’02, Sept. 2002.

[Zag03] Zaghal R., and Khan J., “Event Model and Application Programming Interface of TCP
Interactive,” Technical Report ‘TR2003-02-02’ , Feb. 2003.

[Zag05] Zaghal R., Khan J., “EFSM/SDL modeling of the original TCP standard (RFC793) and the
Congestion Control Mechanism of TCP Reno,” Technical Report TR2005-07-22, July 2005.
http://www.medianet.kent.edu/technicalreports.html

