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CHAPTER 1  

Introduction 
 

1.1 Motivation 

The layered organization of the classic OSI reference model has been used as a framework for 
designing almost every network system known today. The OSI model divides the complex task of host-to-
host networking into layers, where each layer provides a specific communication service, and the collective 
effort of all layers ultimately provides the high level communication between the application end-points. 
The semantics of the OSI model emphasize the independency and separation of these layers, and thus, it 
draws a clear interface between these layers that allow them to exchange data and control messages in a 
relatively strict manner. 

Another key principle that has also influenced the classical design of the Internet suggests moving 
specialized application-oriented functionalities up into the upper network layers and out of the core of the 
network. The core—which includes lower layers and covers the backbone and routers—should be kept as 
simple and generic as possible, and should only provide general-purpose data transfer services that can be 
used by all kinds of network applications.  This principle is referred to in the literature as the end-to-end 
arguments [Sal84]. These classical principles are supported by the following arguments: (1) reducing the 
complexity of the core network which also increases its robustness, (2) increasing the generality of the 
network by allowing new applications to use the same core services without change, and (3) increasing the 
reliability of the network—if specialized application-oriented functions were built inside the core of the 
network, then applications will have to depend on their successful implementation and operation in the 
network.  

It is believed that these fundamental principles, which have served as the architectural model for the 
Internet, are mainly responsible for the successful operation and stability of the Internet during the past 30 
years. However, over the last decade, as applications became more sophisticated (streaming audio/video, e-
commerce) and their communication needs have increased (more bandwidth, more security, mobility 
support), new requirements have emerged which are challenging these principles; on one hand, these 
requirements are demanding that new mechanisms and services should be added to the core of the network, 
and on the other hand, the current organization of network software layers seems to be too rigid for such 
modifications to be practically realized. 

1.2 New Requirements 

The emerging requirements for the Internet are mainly due to its explosive growth in terms of size, 
speed, number of connected users, and the diversity of applications. Here we show few such examples to 
demonstrate the need for new services. 
1. Streaming Applications: the 'best effort' communication service that the Internet provides for any 
particular application does not give any guarantees regarding the quality of service (e.g., throughput and 
bandwidth). While some applications can tolerate variations in transmission rate or even disconnections, 
like FTP and e-mail, a newer type of streaming applications (e.g., audio and video) demand specific service 
guarantees, for example, providing a certain throughput. This has created a need to design creative 
solutions for the Internet to provide acceptable streaming services for such demanding applications, and at 
the same time to ensure that Internet resources are being used fairly by all types of applications—known in 
the literature as transport-friendly. 
2. Secur ity Needs: the growing numbers of Internet users have a wide range of motivations which may 
eventually lead to misuses and abuses. In addition, many newer applications that communicate highly 
sensitive information over the Internet (e.g., banking, e-commerce, and medical applications) need to 
protect their communication channels and backend servers. But, since end-points cannot be trusted 
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anymore, newer protection mechanisms must to be installed to deal with all kinds of security threats and 
attacks, and even to block undesirable forms of interaction like spam e-mails. 
3. Mobile and Wireless Networks: all protocols in the classic core network were originally designed with 
wire-line networks in mind. In the last decade, we have seen the advent of wireless technology and the 
tremendous growth of wireless devices and services. New protocols/services were added to the core 
network (e.g., 802.11, Mobile-IP) to cope with these changes. But still, many issues are still open and need 
to be resolved, such as security, performance, and handoffs.  

1.3 End-to-End vs. Direct Modification 

Most solutions that were proposed to deal with these emerging requirements can be classified into two 
main approaches: (1) the end-to-end approach: implements the solution in the upper layers while trying to 
adapt to whatever 'best-effort' service the core network can provide, and (2) the direct modification 
approach: applies custom modifications (or enhancements) to the core of the network by direct 
implementation or by injecting customization programs.  

Since the 'end-to-end' approach tries to stick to the principle of keeping the core simple and generic, it 
treats the core of the network as a 'black box' which cannot be altered or accessed except through the 
standard API. But, usually, a solution that implements a network adaptation strategy or a service extension 
should be aware of certain events and states within the network that cannot be 'seen' via the standard API. 
Networking solutions that are based on this approach usually try to compensate this limitation by 
employing application-level functions to estimate an approximation of these states. Unfortunately, the 
accuracy and timeliness of such estimations are often questionable, and sometimes they resort to redundant 
means that are naturally being used in the core network anyway. But the key advantage of this approach is 
the deployment of the solution at the upper layers. This is much easier and practical to implement and 
deploy—even on a large scale—since it does not require modifications in the software layers of the core 
network. On the other hand, the 'direct modification' approach seems to be more effective since the solution 
is manually implemented right inside the core of the network—so accessing the network state is not a 
problem. The difficulty here comes in practice; since these enhancements require customized changes 
within lower network layers, they are often difficult, time-consuming, and impractical. Many smart 
solutions that have been shown to achieve significant improvements could not make it beyond the 
experimental phase and were only tested in the lab or through simulation. Besides, the 'direct modification' 
approach clearly violates the end-to-end model, and therefore, is raising concerns among experts who want 
to preserve the benefits of the original Internet design.  

The paradigm of active and programmable networks attempted to simplify the deployment of new 
services in the core of the network. They provide means to inject customized programs (or methods) into 
the network which in essence enables the user to 'program' the communication channel between the two 
end-points to fit the application's needs. In a way, this approach can be seen as diametrically opposite to the 
'end-to-end' approach.  Action codes are installed right into the core network where all the events (triggers) 
and state information are readily available. Unfortunately, active networks are still facing another set of 
challenges. Typically, the network system space has not been designed for multi-user execution 
environment, and thus, issues like resource sharing, scalability, and security have remained unresolved. 

1.4 Methodology 

In this work we propose a third approach which may be able to keep the best of both approaches by 
creating a decoupling mechanism between the information trigger needed to initiate adaptation (or service 
extension), and the actual action code that implements the customization. The 'direct modification' 
approach—as well as active networks—kept both inside the core network, while the 'end-to-end' approach 
kept both at the upper layers. 

The fundamental idea of our approach is to perform a simple, light-weight re-organization (or meta-
engineering) on the protocols of the core network to make them interactive and transparent. These 
protocols become (interactive) since they can provide event notification to service subscribers, and they 
become (transparent) since they also allow controlled access to their internal state information. Actual 
protocol extensions (or customizations) can then be performed at the application space by programmable 
modules called transientware modules. We call this mechanism Interactive Transparent Networking 
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(InTraN) and we label the re-organized network protocol as InTraN-enabled. The proposed methodology 
has three types of components: 
1- InTraN-enabled Protocol: A meta-engineered protocol with added handles for event notification 

and state information exchange. The protocol designer who performs this meta-engineering 
designates a subset of the protocol's events (i.e., state transitions) to be subscribeable, and a subset of 
its state information (i.e., internal variables) to be accessible.  

2- Transientware Module: A user-level program specifically written to provide the protocol extension 
or to implement adaptation. It is triggered at the application layer by event signals from the 
underlying InTraN-enable protocol, and it is provided by means to access protocol's state 
information.  

3- Subscr iption Manager : An interface between application layer components (i.e., subscriber 
applications and transientware modules) and network components (i.e., InTraN-enabled protocols). 
It handles subscription requests and state information exchange operations. 

A complicated adaptive solution can now be formulated by designing one or more transientware modules 
and binding them with events from the InTraN-enabled kernel. These modules can then pull-up the 
protocol's state information needed for adaptation or service extension, perform the required action, and if 
needed push-down any results or state updates. The Subscription Manager manages all correspondence 
(subscription, signaling, read state, and write state) between the network kernel and the application-level 
components and imposes safety measures to ensure the stability and correctness of the system.  

1.5 Main Contr ibutions 

The InTraN paradigm offers a number of unique features that can be considered as the main 
contributions of this work: 
1- Implementation path via application layer : InTraN allows kernel-level enhancements (or 

modifications) to be performed at the application layer, which is especially important since it opens 
a more practical implementation path for such modifications to be realized—which otherwise would 
have been performed inside the core of the network. This relieves lower network layers from 
housing costly custom components, and thus, it preserves the benefits of the 'end-to-end' model by 
keeping the core simple and generic. Also, it becomes more effective to handle other complex issues 
like security and resource sharing. The attraction is that the application space has plenty of means to 
deal with these issues effectively—much of that can be reused.  

2- Light-weight core design: Although InTraN still requires some re-organization of lower network 
protocols to facilitate event notification and state information exchange, but as we will show, it is 
much lighter than the re-organization needed to run the customized actions inside the network. 

3- Small inter -component communication overhead: The InTraN paradigm still incurs some 
overhead in terms of signaling and state information exchange between the transientware and the 
kernel. Though, we will show by real measurements that this overhead is very small—even 
negligible in some cases. Therefore, the performance of the InTraN paradigm is expected to be no 
less than that of active networks, and even much faster than the 'end-to-end' approach since the state 
information can now be retrieved directly from the local end-point. 

4- Backward compatibility: we have designed the InTraN paradigm to comply with the following 
three principles for backward compatibility: (i) the InTraN-enabled version of a protocol remains 
functionally compatible with legacy silent versions, (ii) the API is an extended set, and thus classical 
applications remains fully usable with the interactive versions of the end-point components, and (iii) 
the meta-engineering of a protocol does not change its original dynamics, and thus, the dynamics of 
the network. 

1.6 Solution Classes 

The distinguished features of the InTraN paradigm can support the following solution classes for 
general networking problem solving: (1) application adaptation, (2) cross-layer optimization, and (3) 
protocol extension. We have realized a FreeBSD implementation of InTraN and used it to design a novel 
solution for the first two types: 
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1- Application adaptation: We have designed a TCP-friendly, congestion management scheme for 
time-sensitive elastic traffic. The scheme allows a video transcoder to adjust its sending bit rate in 
real-time based on the feedback (loss events and TCP state updates) it receives from the InTraN-
enabled TCP (or iTCP). The scheme exposes the overall benefits of application adaptation for time-
sensitive traffic, and takes a different approach to achieve true TCP-friendly traffic where both the 
application and the network cooperate to recover from congestion.  

2- Cross-layer optimization: We have designed a connection-oriented mobility scheme for IP 
networks. In this scheme, a smart employment of InTraN by three layers (namely: Link layer, IP, 
and TCP) was able to (i) freeze the TCP connection right after L2 handoff has started, (ii) perform 
handoff on the IP level directly by updating the actual IP addresses on both endpoints (i.e., mobile 
node and correspondent node), and (iii) resume the connection on the TCP level right after handoff 
has finished. This scheme offers a number of benefits over conventional Mobile-IP such as faster 
handoffs and direct triangulation-free routing. 

3- Protocol extension: In the literature, many networking protocols have been manually extended (or 
modified) to cope with emerging communication needs. We have chosen two such modifications 
that were proposed to improve TCP performance over mobile and wireless networks, namely, Snoop 
[Bal95] and WTCP [SiV99], and then we illustrated how to transform them into an InTraN-enabled 
version where the protocol extension is implemented as application layer transientware.   

1.7 Disser tation Outline 

In chapter 2, we preview related works. In chapter 3, we present a formal EFSM-based framework for the 
proposed meta-engineering and relevant issues like interfacing and security. In chapter 4 we illustrate the 
principles of InTraN meta-engineering by showing a real example based on the TCP protocol; first, we 
discuss the congestion control model of classic TCP, and then we present an SDL description of a 
simplified TCP and its InTraN extension—we call the new protocol iTCP. In chapter 5, first we show 
relevant implementation details of iTCP, and then we design a transientware solution for a TCP-friendly 
elastic video traffic. The solution also includes an adaptive video transcoder that can adjust its transmission 
rate based on feedback signals from iTCP. In chapter 6, we present our second InTraN-based solution—
IPMN. This is a mobility scheme for IP networks that can provide loss-free, rapid handoffs and eliminates 
triangular routing. It chapters 5 and 6 we also present extensive experimental results and performance 
analysis for both projects (iTCP and IPMN). In chapter 7 we show how the InTraN paradigm can be used 
to model other solutions or protocol extensions. Here we show a modeling examples of two well-known 
protocols proposed in the literature to improve TCP performance over wireless networks: Snoop [Bal95] 
and WTCP [SiV99]. In chapter 8 we give concluding remarks. 
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CHAPTER 2  

 

Related Works 
 
We have selected two main paradigms from the literature that were proposed to address the issue of 

protocol reconfiguration and network service extension. These are the Programmable and Active Networks 
paradigm, and the Protocol Composition paradigm.  

2.1 Programmable and Active Networks 

Introducing new services into the existing 'best effort' networks was usually a manual, time 
consuming, and costly process. Programmable Networks were proposed to simplify the deployment of new 
network services, leading to extensible networks that explicitly support service creation and deployment. 
Programmable networks architectures provide programmable interfaces that can support a variety of 
service composition methodologies. In Active Networks, service delivery and control is achieved through 
code mobility. A number of research groups have been developing programmable network prototypes, with 
each group focusing on different set of characteristics [Cam99], namely (1) networking technology, (2) 
level of programmability, and (3) communications abstractions. Below; we briefly discuss these three 
categories and in each one, we preview some of its most prominent prototype implementations.   

2.1.1 Networking Technology 

Different programmable network projects have been designed to target certain networking 
technologies which ultimately decide the type of programmability that can be carried to the higher levels. 
By making the targeted networking technology more programmable, it becomes easier to overcome 
particular deficiencies in the communication services supported by that technology. For example, xbid 
[Chan96] by Chan, et al, was designed for ATM technology to support better QOS features like admission 
control and resource reservation. By separating control algorithms from the hardware, xbid was able to 
provide interfaces that allow open access to node resources and functions. Another example is Smart 
Packets [Kul98] by Kulkarni, et al, which introduced a code-based packet concept to create programmable 
IP environment. 

2.1.2 Level of Programmability 

New services can be established into the network with a range of methodologies and granularities. 
Programmability level can vary from highly dynamic (e.g., capsules [Ten96]) to highly conservative 
models (e.g., RPC interfaces [Vin97]). Among the most prominent works is ANTS [Wet98] by Wetherall, 
et al, which provides a set of core services (transportation of mobile code, loading of code on demand and 
caching techniques) that facilitates the introduction or extension of existing network protocols, these in turn 
can be used to introduce programmable network services such as enhanced multicast, mobile IP routing and 
application level filtering. In ANTS, Capsules serve as atomic units for network programmability that can 
support processing and forwarding interfaces. Other proposals put more focus on security requirements 
such as Switchware [Alex98] by Alexander, et al. In this prototype, a component in the active router allows 
active extensions to be safely loaded via a set of secure methods such as encryption, authentication and 
program verification. A thirds example is the CANEs project [CANE] which provides composition 
methods (programming languages with enhanced language capabilities) to construct composite network 
services from components. 
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2.1.3 Communications Abstractions 

The programmability of network infrastructure can enable different levels of virtualization (i.e., 
virtual middleware and node support). Communications abstractions include programmable virtual routers, 
virtual links and mobile channels. Among these, is a node operating system called NodeOS [Pet99] by L. 
Peterson which represents the lowest level of DARPA's architectural framework for active networking 
[Calv98]. NodeOS provides node kernel interfaces at routers that enable them to host multiple execution 
environments (EEs). These EEs support communication abstractions such as threads, channels and flows. 
The architectural framework for active networking is being implemented in the ABone testbed [ABone]. 
Another example is the Netscript project [Yem96] which takes a functional language-based approach to 
capture network programmability using universal language abstractions. Netscript supports Virtual Active 
Networks as programmable abstractions that can be systematically composed, provisioned and managed. 

2.2 Protocol Composition 

This paradigm suggests designing a new networking infrastructure that supports creating complex 
protocols from smaller off-the-shelf components. The composition can be perceived as a whole middleware 
offering complex services for distributed applications. These services include: (1) providing 
communication abstractions (e.g., reliable multicast, mobility support), (2) allowing adaptation (e.g., 
switching protocols to overcome a security threat, changing data rates to accommodate a slower link), and 
(3) supporting the creation (and coordination) of multiple communication channels with different QOS 
requirements.   

The protocol composition paradigm offers a number of advantages over traditional monolithic 
approaches [Bir87] [Dol96] [Mal96], such as, higher configurability, reusability, and extensibility. [Men03] 
has classified protocol composition frameworks that have been proposed in the literature into two families; 
the first family contains the x-Kernel [Hut91], and its successors Coyote [Bhat96], [Bha98] and Cactus 
[Hil98], and the he second family contains Horus [Van93] [Van96] and its successors Ensemble [Hay98], 
Appia [Mir99] [Mir01] and JavaGroups [Ban02].  

The x-Kernel [Hut91] is an early and influential work on protocol composition and was the first to 
propose building a system in which protocol layers could be arbitrarily configured. A main feature of the x-
Kernel is its support for a uniform interface to all protocols which allows two protocols providing the same 
semantics to substitute each other. However, the x-Kernel had a few shortcomings; for example, 
configuration was done before system compilation and not at run-time. Also, the x-Kernel was intended 
mostly for point-to-point communication, and had limited support for dynamic membership. Cactus [Hil98] 
is an evolution of the x-Kernel that inherits and extends its composition and concurrency model to provide 
a finer-grain level of composition. In Cactus, the internal structure of an x-kernel protocol consists of the 
composition of several protocols (called micro-protocols). These protocols are event-driven and their 
composition is not hierarchical, allowing them to directly interact without artificial restrictions imposed by 
protocol stack hierarchy. Cactus allows several event handlers to be bound to the same event so that all 
these handlers are executed upon occurrence of this event. 

 In Horus [Van93] [Van96] and Ensemble [Hay98], protocol layers can be arbitrarily stacked in a 
variety of ways, and thus, they were able to offer more flexible and configurable group communication 
support for distributed applications. Both frameworks use a single generic architecture and separate the 
basic group communication interfaces from their implementations. This configuration enables the designer 
to plug-in certain implementations that match the specific needs of the application, and also to arrange a 
stack of micro-protocols that provides the needed properties (or service guarantees). Appia [Mir99] is a re-
engineering of Ensemble and it inherits all its features, but its composition model has been extended to 
offer more flexibility. In Appia, as in Ensemble, protocol modules are composed on top of each other to 
form a stack. The main difference is the possibility, in Appia, to have more than one protocol module at the 
same level in the stack. 

2.3 Discussion 

Despite the fact that many of these frameworks were able to achieve their goals in providing complex 
services and creating communications abstractions, they are still facing critical challenges in terms of 
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security, complexity, and scalability. For example, a weak protocol module design may incur a big 
overhead cost that surpasses the overall advantage of the protocol composition system, also, a really 
complex middleware may become difficult to maintain and scale-up as the number of group members 
grows substantially. Although the InTraN paradigm will still face the same challenges, but we believe that 
due to its light-weight, structural design, these challenges will be much easier to handle. Though, it will still 
require careful design especially with the transientware. 
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CHAPTER 3  

Interactive Transparent Networking (InTraN) 
 

3.1 Background 

The proposed interactivity and transparency is achieved via formal meta-engineering of the network 
protocols so that a selected subset of their states can be engineered to be accessible by upper-layer service 
subscribers in a controlled manner. We use SDL (Specification and Description Language) [Ell97, SDLfrm] 
to formally describe (a) the protocol meta-engineering process, and (b) the network software organization 
needed to support interactivity and transparency. In this chapter, we first give some background 
information on SDL, and then we discuss the InTraN framework and its security model.  

SDL (Specification and Description Language) is an ITU-standardized language for the formal 
description of communication protocols. It is also suited for any application based on the finite state 
machine concept, such as circuit design. The programming model used by SDL is based on extended finite 
state machines (EFSM) [Ell97, Byu01]. SDL augments the finite state machine model by providing 
variables and timers and by supporting object-oriented programming. We describe the protocol meta-
engineering mechanism of InTraN by assuming an abstract communication protocol whose behavior is 
described by an EFSM. We demonstrate how InTraN exposes protocol’s internal state to achieve controlled 
yet secure transparency. Informally, the EFSM is composed of states and transitions among them. For a 
transition to occur, the system must receive an event from the environment which triggers corresponding 
actions. After performing the actions, the EFSM produces output signals to the environment. An SDL 
system is composed of several protocol entities; each entity is designed as a single EFSM. Formally, An 
EFSM is a 6-tuple (S, 

0s , E, f, O, V), where S is a set of states, 
0s  is an initial state, E 

is a set of events, f  is a state transition function, O is a set of output signals, and V is a set of variables. The 
function f returns a next state, a set of output signals, and an action list for each combination of a current 
state and an input event. An EFSM also uses predicates to control the behavior of the protocol. These 
predicates usually allow similar states to be grouped therefore reducing the total number of states [Ell97]. 
Upon receiving an event, the machine checks a predicate that is composed of variables, logical operators 

Table 1. Main components of the InTraN framework 

Component Definition 

Protocol Entity (PE) A communication protocol instance that provides specific communication 
service in the protocol stack (e.g., TCP). It is described as an EFSM and 
has been meta-engineered according to the InTraN paradigm—we use 
PE and EFSM interchangeably in the text. 

Subscriber Program (SP) A user program that uses network services (e.g., video server). It is 
regarded as a potential subscriber of the InTraN service. 

Transientware Module (TM) A piece of code that is specifically designed to handle one or more events 
in a certain PE. One or more TMs can implement a protocol 
modification/extension at the application layer instead of embedding the 
code in the network layer itself. 

Subscription Manager (SM) An interface between application layer components (i.e., SPs, TMs) and 
network components (i.e., PEs). One SM manages the subscription 
preferences of a single SP. It handles subscription requests, maintains 
updated information about active TMs, and handles their read/write 
requests. 
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(e.g., AND, OR), and relational operators (e.g., <, =, >). If a predicate is true, the EFSM performs the 
actions and produces output signals (if applicable). 

Figure 2. T-type channel extension 
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3.2 A Framework for  the InTraN paradigm 

3.2.1 Components and Architecture 

The main components of the InTraN framework are shown in Table 1 and its basic architecture is 
shown in Figure 1. A Subscriber Program (SP) starts by binding an event in a specific PE with a TM via a 
special Subscription API. The SM maintains updated information about all active subscriptions. When a 
subscribed event occurs in a PE, it signals the SM which responds by activating the TM bound to the event. 
A special Access API allows active TMs to access PE's internal data through the SM.  

According to the SDL language, EFSMs can communicate only through specific channels. Protocol 
Entities (PEs) can perform input and output operations to exchange user data and control messages through 
these channels. In order to integrate InTraN in this setup, we need to create a communication channel 
between every PE and the Subscription Manager (SM). These channels will serve as interaction mediums 
between PEs and TMs through the SM. Figure 2 shows the basic architecture of an abstract system with a 

stack of three protocols. Normal information flow from/to user application goes through channels (CP3, CP2, 
and CP1), to augment with InTraN, we added channels (TP3, TP2, and TP1). These new channels—which we 
call T-type channels—are used by PEs to pass event signals and exchange data between PEs and the SM. 
The T-type channel is defined in Table 6. 

TMs are also classified into three types based on their access privileges to protocol's internal variables. 
These types are described in Table 4. A TM is granted read-only access to a subset of PE's local data. In 
certain circumstances the TM is  allowed even to modify a subset of these accessible variables as long as 

Table 4. Types of Transientware Modules 

TM Type Definition 

Signal-Only  
 

If TM Ti is bound to an event ei in protocol P. When event ei occurs, Ti is only 
activated. It is not allowed to access protocol's internal variables. No TM-instance 
record is created for Ti in the SM. 

Read-Only  
 

If TM Ti is bound to an event ei in protocol P. When event ei occurs, Ti is activated 
and a TM-instance record is created for Ti in the SM. Ti is granted read-only access 
to readable variables in P (i.e., all variables v 

PV ′∈ ). 

Read-Write  
 

Same as Signal-Only mode, but in addition to that, Ti is granted write access to 
modifiable variables in P (i.e., all variables v 

PV ′′∈ ).  

 

Table 3. Subscr iption API 

Primitive Meaning 

Bind(e, P, T) Associates a TM with an event e in protocol P. The TM T is invoked whenever the 
specified event occurs. 

Unbind(e, P, T) Remove the association between the TM T and the event e. 

Update(e, P, T) Remove the current association of event e and replace it with a new association 
with the TM T. 

 

Table 2. Types of var iables and their  access pr ivileges 

Variable Type Set TM access privilege 

A PP VV ′−  No access 

B PP VV ⊆′  Read only 

C PP VV ′⊆′′  Read and write 
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this modification serves the intentions of the protocol designer. Let 
PV  be the set of all variables in the PE, 

the designer can designate a subset of 
PV  called 

PV ′  as read-only, and a subset of 
PV ′  called 

PV ′′  as read-

write (i.e., 
PPP VVV ⊆′⊆′′ ). In Table 2 we define three types of variables: A, B, and C, based on their access 

level. In addition, the protocol designer should designate a subset of protocol's events as subscribable. Let 

PE  be the set of all events in protocol entity P, and PE′  be the set of subscribable events in P, 

then
PP EE ⊆′ .  

Figure 4. SM state after performing the four  operations 
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3.2.2 SP-SM Inter facing: Subscr iption  Mechanism 

The InTraN paradigm offers a Subscription API for SPs to manipulate their subscription preferences at the 
SM. The three primitives of the Subscription API are shown in Table 3. A Subscriber Program (SP) which 
opts to subscribe with protocol entity P must associate an event in 

PE′  with a TM via the Bind() operation. 
The binding between events and TMs is one-to-many relationship. i.e., a SP can bind one or more events to 
a specific TM, but a specific event can be bound to one TM only by a specific SP. This restriction is needed 
to avoid ambiguity when event signals are sent to the SM. The SP can use the Unbind() operation to cancel 
an existing subscription, or the Update() operation to replace the current association of an event with a 
new one. The three subscription primitives can be used dynamically during run-time for maximum 
flexibility. For example, a SP can start by binding e1 to TM1 by calling Bind(e1,P,TM1). Later (e.g., after a 
certain time has elapsed), it may call Update(e1,P,TM2) to change the association of e1 from TM1 to TM2. 
 

Example: We present a simple example in Figure 3 to illustrate these concepts. The figure shows a system 
with two subscriber programs (SP1 and SP2) and a pool of four TMs (T1, T2, T3, and T4). In this example we 
only highlight one protocol (P) from the protocol stack. Therefore, we assume that all four TMs can be 
bound to subscribable events in P. The Subscription Manager (SM) maintains the subscription preferences 

of P—among other protocols in the stack as well. P has four events and five local variables shown in PE  

and PV  respectively. Among these, two events are subscribable ( PE′ ), three variables are read-only 
accessible (type B), and only one variable is modifiable (type C). Assuming the following operations were 
performed in this order by their respective SPs: 

1. SP1:  Bind(e1, P, T1) 
2. SP2:  Bind(e3, P, T2)  
3. SP1:  Bind(e3, P, T1) 
4. SP2:  Update(e3, P, T3) 

Figure 4 shows the state of the SM after these four operations are performed. Here we show two 
subscription threads for the two SPs represented as linked lists for easy update. A record in the list 
represents a live subscription instance which creates the binding between a protocol event and a TM. Notice 
that the Update() operation has replaced the binding of e3 on the SP2 thread from TM2 to TM3. 

3.2.3 TM-SM-PE Inter facing: Access Mechanism 

All communication between the TM and the PE must go through the SM. The SM provides the 
interfacing between all TMs and the PEs through a special Access API and Signals—these are shown in 

Figure 5. Inter facing between the PE and theTM 
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Table 5. We impose this mode of communication to preserve the integrity of the system and to let the SM 
enforce access privileges as specified by the designer. 
Figure 5 explains the interfacing provided by the SM. The figure shows the sequence of operations that gets 
executed when (a) a PE issues an Event() signal, (b) a TM issues a ReadVar() request, and (c) a TM issues 
a WriteVar() request. We explain the three scenarios below: 
 
(a) TM Invocation and Termination 

When a subscribed event (signal) is consumed in the EFSM of a PE (P), the signal Event(ei, P) is sent 
to the SM indicating the event type and the protocol. The SM searches its subscription lists to find the TM 
that is currently bound to such (event, protocol) pair. Assuming a TM (Ti) was found, the SM activates Ti 
via the Invoke(Ti) operation. Whenever the SM activates a TM, it also creates a record in its data store that 
we call (TM-Instance) to be able to handle any future requests that might be made by the TM—the TM-
Instance is defined in Table 6. When the TM finishes, and before it is terminated, it sends a Finish(TM) 
message to the SM. The SM then removes the TM-Instance record of the terminating 

Table 6. Definitions 

Name Definition 

T-type 
channel 

 A private bidirectional channel that connects every PE in the system with the SM. 
Every T-type channel has a unique name (

PT ) where P is the protocol connected to the 

SM through this channel. 

TM-instance  A record created by the SM whenever a new TM process is activated. The TM-
instance enables the SM to handle future read/write requests that might be made by 
the TM to access the protocol's local variables. The SM stores the following information 
in a TM-instance: 

a) The process ID of the TM. 
b) The name of the T-type channel connecting the SM to the target PE. 
c) Temporary copies of protocol's variables targeted by read/write requests. 

 

Table 5. InTraN Access API and Signals 

Access API (TM-SM interface) 

ReadVar(T, V) The TM (T) issues a read request to the SM to retrieve the value of variable (V) 
from its correspondent PE.  

WriteVar(T, V, val) The TM issues a write request to the SM to write the value (val) to the variable (V) 
in its correspondent PE. 

Return(val, F) 
The SM returns the value (val) of a variable (V) to a TM which is blocking on a 
ReadVar() request. If the Boolean flag (F) is (true), then (val) is valid, otherwise, 
the TM just ignores (val). 

Return(F) 
The SM returns a feedback to the TM that has issued a WriteVar() request. If the 
Boolean flag (F) is (true), this indicates a successful write operation, otherwise, it 
indicates a failed write operation. 

Invoke(T) The SM invokes a registered TM (T) after receiving an Event() signal from a PE. 

Finish(T) The TM (T) informs the SM that it is going to terminate. The SM responds by 
removing the TM-instance of the terminating TM. 

T-type Channel Signals (SM-PE interface) 

GetVal(V) The SM signals the PE to read the value of the local variable (V) 

SetVal(V, val) The SM signals the PE to write the value (val) to the local variable (V) 

SetFlag(SF, val) 
The SM signals the PE to set the subscription flag (SF) by sending (val=true) or to 
reset the flag (SF) by sending (val=false). This signal will enable/disable the event 
that is associated with (SF).  

Event(evt, PE) The PE Notifies the SM that event (evt) has just occurred in protocol (PE)  

ExpVal(V, val) The PE exports the value (val) of local variable (V) to the SM 
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TM.

 
 

(b) Read Access 
When a TM (Ti) wants to read the value of a certain variable vi from the underlying PE, it sends a 

ReadVar(Ti, vi) request to the SM, then it blocks waiting for the value of vi. The SM checks if the requested 
value is accessible (i.e., 

Pi Vv ′∈ ) and if Ti is eligible to issue a read request (i.e., it is Read-Only or Read-

Write type). If this is true, the SM issues a GetVal(vi) signal to the PE specifying the name of the requested 
variable, otherwise it replies with a Return(-1, false) to Ti. When the PE receives a GetVal(vi) signal it 
returns the value of vi to the SM via a signal ExpVal(val). The SM then forwards the value val to Ti via a 
Return(val, true) operation. 

 
(c) Write Access 

As we mentioned earlier, some TMs can modify certain variables in the EFSM of the PE. If a variable 
v is modifiable (i.e.,

PVv ′′∈ ), then, its value can be overwritten by a Read-Write-type TM. However, the 

protocol designer should be careful when choosing the members of 
PV ′′  in each PE. Technically, since a TM 

in the InTraN paradigm represents a soft alternative for hardcode protocol modifications, this relaxation 
should make TMs even more dynamic and powerful. On the EFSM level of the PE, modifying a variable 
can trigger a state transition; this, of course, should reflect the designer's intention. Therefore, protocol 
modifications can be realized through a group of carefully designed TMs which can manipulate certain 
properties of the EFSM through interaction, i.e., (reading from) and (writing to) protocol's local variables. 
As with the reading case, writing to PE's local variables must go through the SM. A TM (Ti) makes a write 
request by passing the variable name and its new value to the SM via a WriteVar(Ti,vi,val) operation. If vi 
is modifiable and Ti is Read-Write type, the SM generates a signal SetVal(vi,val) to the PE and issues a 
Return(true) message to Ti. Otherwise, it issues a Return(false) message to Ti indicating a failed write 
operation. When the EFSM of the PE consumes the SetVal() signal, it simply runs the assignment vi := val. 
 

Figure 6. Protocol meta-engineer ing extension 
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3.2.4 Protocol Meta-Engineer ing 

The meta-engineering of a PE involves adding new events and transitions to its EFSM. Basically, the 
SM should be able to tell the PE which events in its 

PE′  set are currently subscribed by SPs. These events 
will be marked in the EFSM, so that, whenever any one of them occurs, the EFSM sends a signal to the SM 
over its T-type channel. 

Figure 6 depicts the necessary meta-engineering of the EFSM of any classical protocol entity P in 
order to make it InTran enabled—new components are shown in shaded SDL symbols. Let Si be any state 
in P, Ei be any subscribable event, and Ui be any un-subscribable event, then the following components are 
added to the EFSM: 

�  A new transition triggered by the signal SetVal(di, val).   
�  A new transition triggered by the signal GetVal(di). 
�  A new transition triggered by the signal SetFlag(Ei, val) 
�  For every Ei a Boolean flag (SEi) is created in P to remember the current subscription status of Ei. 

SEi is set to true if Ei is currently subscribed. We augment the transition of Ei right after the SDL 
input symbol as shown in Figure 6. After consuming Ei, the EFSM checks the associated 
subscription flag (SEi) of the consumed event. If SEi = true (i.e., an SE is currently subscribed to 
Ei), the EFSM outputs the signal Event(Ei, P) to the SM. Otherwise, no action is taken.  

The SM uses the SetFlag() signal to manage subscription flags (i.e., SEi flags) as follows: Assume an 
SP made the subscription: Bind(Ei, Pj, TMk), the SM registers this subscription instance in its internal data 
store, and then it checks if there are other SPs currently subscribed to Ei. If no active subscription instance 
is found, the SM sends the signal SetFlag(Ei, true) to the EFSM of protocol Pj. When the EFSM consumes 
this signal, it enables Ei signaling by setting the subscription flag SEi associated with Ei to true. However, if 
the SM does find at least one active subscription instance to Ei in its data store, this indicates that Ei 
signaling is already enabled in the EFSM, and therefore the SM takes no further action. Conversely, if an 
SP made Unbind(Ei, Pj, TMk), the SM updates its internal data store, and also checks if any SP is still 
subscribed to Ei after executing the Unbind(). If at least one such instance is found, the SM takes no further 
action, but if the Unbind() has caused the last subscription instance of Ei to be deleted from the data store, 
the SM sends the signal SetFlag(Ei, false) to the EFSM of protocol Pj to disable the signaling service of Ei. 
The SetVal() and GetVal() signals correspond to the write-access and read-access operations which were 
described in the previous sub-section. 

3.2.5 Secur ity Model 

Since the InTraN framework exposes the internal state of the protocol to entities running in the user 
space (i.e., TMs), it must address the correctness and safety issues of the underlying protocol appropriately. 
We can claim that access modes that only involve signaling or reading are safe (i.e., Signal-Only and Read-
Only TMs) since they do not alter protocol's internal state. We have to be concerned only when a TM is 
allowed to write to protocol's variables (i.e., Read-Write mode). Here, we propose a security model which 
allows controlled access to protocol's internal variables and at the same time maintains system stability. We 
define two types of designers who can be involved in any InTraN-based solution: (1) protocol designer, and 
(2) TM designer. The protocol designer must be a super-user. He basically performs the meta-engineering 
on protocol entities. This includes, deciding the three classes of protocol's variables (A, B, and C), 
identifying subscribable events (i.e.,

PE′ ), and extending the EFSM by adding InTraN components as in 
Figure 6. The TM designer can be any user; he simply implements a particular protocol solution/extension 
by coding one or more TMs. He uses the services offered by the underlying InTraN-enabled system through 
the Access API to implement the intended solution.  

Only when a Read-Write type TM tries to update a C type variable, then system stability can be 
compromised—we define this combination as the dangerous combination. The danger may come from two 
sources: (1) a flaw in the protocol design, and (2) a malicious TM of type Read-Write. When a system is 
running with a dangerous combination, the operating system activates a guarding program that verifies any 
attempts made by TMs to update C type variables. If the update is safe, it is allowed to proceed. But, if the 
update may cause instability in the system (i.e., it is attempting to change a timer or index variable in the 
protocol) then the write operation is blocked immediately and the offending TM is shut down. The guarding 
program itself is simple and can be implemented as utility program that belongs to the operating system. 
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Basically, it needs to know which updates on any PE's internal variables are safe and which are not 
regardless of protocol designer classifications in Table 2. This way, the integrity of the InTraN-enabled 
system can be preserved even in the presence of design flaws. 

What are the performance implications of this added security? We can show that by careful 
implementation the overhead should be very small. Here, we propose an implementation path using event-
driven run-time screening, but other choices can be taken as well, such as static analysis of the TM source 
code (similar to that of [Hau04]). The SM can be programmed to initiate a special thread program to handle 
the WriteVar() operation and the dangerous combination. Figure 7 describes the basic algorithm; 
Assuming a TM called (Tw) has issued the following write operation: WriteVal(Tw, v, val). First, the SM 
consults the TM-instance of Tw to retrieve the protocol entity P associated with it. Next, this operation must 
pass the initial screening at the SM (i.e., the SM checks if Tw is a Read-Write type TM and v is a C type 
variable). If the write operation passes this test successfully, then the SM invokes the guarding program to 
perform a second-level independent screening and waits for its decision. The SM passes two parameters to 
the guarding program: target variable v and target protocol entity P. If the guarding program finds that this 
write operation is safe, it sends a GREEN signal to the SM to allow it, the SM then continues normally by 
issuing a SetVal(v, value) signal to P. Otherwise (i.e., the write operation is not safe), it sends a RED 
signal to the SM which responds by canceling the write operation and shutting down Tw. Let N be the 
number of PEs and let K be the maximum number of unsafe variable updates in any PE. Then, the guarding 
program will make O(N+K) comparisons in the worst case. 

3.3 Conclusion 

The proposed InTraN meta-engineering presented in this chapter has a number of distinguishing 
features; first, it is light-weight and requires only limited changes (and additions) on the original protocol. 
Secondly, it is generic and can be applied to any protocol as far as it has some state information and 
programmable interface, and finally, it leaves the InTraN-enabled protocol fully compatible with legacy 
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network components and non-subscribing applications. Furthermore, it allows maximum flexibility since it 
puts most of the work in programmable components that can be updated or changed at anytime. 
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CHAPTER 4  

iTCP part I : InTraN Meta-Engineering 
 

4.1 Introduction  

With the advent of advanced applications and their advanced transport needs current transport 
services are increasingly becoming inadequate. This inadequacy has also prompted recent attempts towards 
recreating new and more complex functionalities inside the network or system middle layers. For example, 
Congestion Manager [And00], [Bal99] is a system layer component that provisions aggregate congestion 
control when multiple streams from the same endpoint attempt to send. Unfortunately, majority of these—
though they offer specific functional advantages—enormously increase the network or system layer 
complexity. Such complex permanent addition to the network software appears questionable. When the 
complexities of such solutions are weighted against their general advantage over a broad range of 
applications, they do not seem to be gaining any acceptance. Due to the same inadequacy, in the past few 
years it has also been felt that for advanced applications (e.g., real-time streaming), it is better to engage the 
applications themselves in the solution. Particularly promising are the research in the new TCP friendly 
paradigm [Pra00], [Rej00], [Sis98]. Due to the lack of convenient means to obtain real-time information 
about network state, these systems had to rely exclusively on application layer techniques to compensate 
for the network impairment. Several works such as [Bri99], [Wol97] suggested sending multilevel 
redundant information which will eventually increase the burden on the network. Also, due to the inherent 
round trip delay involved, adaptation time can be unbearable for more time-critical applications. Overall, it 
is very difficult to build a network friendly application if the network itself is non-friendly and unwilling to 
interact.  

A particular problem we address with iTCP is the congestion management and particularly the one for 
time-sensitive streaming traffic. Most of the network level schemes for congestion control are based on 
delaying traffic at various network points.  The more classical schemes depend on numerous variants of 
packet dropping in network, prioritization (graceful delay in router buffer), admission control (delaying at 
network egress points), etc. However, a key aspect to note in all is that they introduce time distortion in the 
transport pathway of the application. Though this is harmless to time-insensitive traffic such as email or 
FTP, but they distort the temporal characteristics of time-sensitive traffic such as multimedia streaming or 
control data. Recent solutions are also based on complex network or system layer addition (such as 
[And00]). We demonstrate a simple InTraN-based congestion management scheme for time-sensitive 
elastic traffic. In contrast to network or system layer solutions, the general principle we follow is simple 
and intuitive; it seems an effective delay conformant solution for time-sensitive traffic may be designed if 
the original data volume can be reduced by its originator—the application. 

To demonstrate the efficacy of the principle, we have also designed a corresponding advanced video 
rate transcoder system [Kha01] that works in symbiosis with the network. This transcoder actively 
participates in a custom symbiotic back-off scheme in the application layer with deep application level 
knowledge resulting in much more effective joint quality/delay sensitive communication. The adaptation is 
applicable for traffic where it is possible to dynamically adjust the data generation rate—we call it elastic 
traffic. Most perceptual data, such as audio and video streams generally belongs to this traffic class. The 
resulting scheme is similar in spirit to the TCP-friendly approaches. However, there is a fundamental 
difference in how it is done. The network or system layers remain as simple as possible. The responsibility 
of the network layer is simply to pass on only selected end-point events to the application. Since, the 
solutions are now implemented at application level; therefore these can be made much more sophisticated 
without and significant increase in network layer complexity. 

In this chapter we first give some background information on congestion control mechanisms in TCP 
and then we discuss the InTraN meta-engineering of TCP that will yield iTCP. In the next chapter we 
discuss implementation details and present experimental performance results of the controlled iTCP/video 
symbiosis.  
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4.2 Congestion Control in TCP 

TCP is a connection-oriented unicast protocol that offers reliable data transfer as well as flow and 
congestion control. TCP maintains a congestion window that controls the number of outstanding 
unacknowledged data packets in the network. Sending data consumes slots in the window of the sender and 
the sender can send packets only as long as free slots are available. When an acknowledgment (ACK) for 
outstanding packets is received, the window is shifted so that the acknowledged packets leave the window 
and the same number of free slots becomes available. 

4.2.1 Congestion Control Algor ithms 

On startup, TCP performs slow-start, during which the rate roughly doubles each roundtrip time to quickly 
gain its fair share of bandwidth. In steady state, TCP uses an additive increase, multiplicative decrease 
mechanism AIMD) to detect additional bandwidth and to react to congestion. When there is no indication 
of loss, TCP increases the congestion window by one slot per roundtrip time. In case of packet loss 
indicated by a timeout, the congestion window is reduced to one slot and TCP reenters the slow-start phase. 
Packet loss indicated by receiving three duplicate ACKs results in a window reduction to half its previous 
size. Therefore, the two principal mechanisms that TCP uses to detect network congestion are (a) when the 
retransmission timer times out and (b) when three ACKs arrive. Two algorithms then contribute to TCP's 
congestion control behavior; these are the classic algorithm of slow start/congestion avoidance [Jac88], and 
the augmentation of fast retransmit/fast recovery [Jac90]. The two algorithms are outlined in Figure 8 and 
Figure 9 respectively. 

initially, cwnd = 1 (one segment);  
ssthresh = 65535 bytes; 
win_size = min (cwnd, snd_wnd); 
When congestion occurs, do:  

ssthresh = max(win_size/2, 2); 
if congestion was due to timeout 

cwnd = 1;  
for every ACK received: 

if (cwnd <= ssthresh) 
   cwnd =  2 * cwnd;   
else 

                  cwnd = cwnd + segment_size; 

Figure 8. Slow Start/Congestion Avoidance mechanism (SSCA) 

When a 3rd duplicate ACK is received: 
   ssthresh = max(2, min(cwnd, snd_wnd)/2); 
   Retransmit missing segment; 
   cwnd = ssthresh + 3; 
 
Each time another duplicate ACK arrives, do: 
   cwnd = cwnd + 1; 
   transmit a new segment; 
 
When a new ACK arrives, do: 
   cwnd = ssthresh; 

Figure 9. Fast Retransmit/Fast Recovery mechanism (FRFR) 
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4.2.2 Congestion Control Events 

Table 7 lists six events that internally occur when the TCP invokes congestion control algorithms. 
Although many other TCP events might occur during a TCP session (e.g., flow control events or 
connection establishment and termination events), we are only interested in congestion control events.  
In Table 7, the column labeled (SSCA) refers to events that take place in the Slow Start/Congestion 
Avoidance algorithm, and the label (FRFR) refers to events that take place in the Fast Retransmit/Fast 
Recovery algorithm. These events are also presented in Figure 10. Plot (a) of the figure shows the sequence 
of events of the SSCA algorithm and their affect on effective window size, and plot (b) shows the same 
sequence for the FRFR algorithm. However, in general design we expect only a subset of the internal 
events of the protocol to be of interest to the subscriber application. Only a subset of these is made 
accessible via the interface. An application instance typically subscribes even to a subset of the accessible 
events.  The column (Sub) shows subscribable events in our design. 

Table 7. TCP Congestion Control Internal Events  

Event Meaning Description SSCA FRFR Sub 

1 
Retransmission timer 
timed out 

Possibly congested network or the 
segment was lost X  X 

2 
A new ACK was 
received 

Increment snd_cwnd either exponentially 
(if less than sstheresh) or linearly 
otherwise 

X   

3 
snd_cwnd has reached 
the slow start threshold 
ssthresh 

Switch incrementing snd_cwnd from 
exponential to linear X   

4 A third duplicate ACK 
was received 

A segment was probably lost, perform fast 
retransmit 

 X X 

5 
A fourth (or more) 
duplicate ACK was 
received 

One segment has left the network; we can 
transmit a new segment  X  

6 
A new ACK was 
received 

Retransmitted segment has arrived at the 
destination and all out of order segments 
buffered at the receiver are ACKed 

 X X 

 

Figure 10. Changes on TCP's sending window due to congestion control events 
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4.3 TCP Meta-engineering 

Now we show how to perform the meta-engineering extension on TCP and make it InTraN-enabled—
we call the extended protocol iTCP.  
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4.3.1 The SDL Model  

First, we formally describe the abstract protocol using SDL, and then we augment the protocol by 
adding InTraN components. [Tur93] described a simple sliding window protocol in SDL that featured 
positive acknowledgments and retransmission mechanisms. We transformed this protocol into simplified 
TCP by adding congestion control support. The simplified TCP can be modeled as a composition of three 
blocks, Transmitter Entity (TE), Receiver Entity (RE), and Medium. The Medium represents the underlying 
unreliable service (e.g., IP and lower layers) while TE and RE represent the two endpoints of a TCP 
connection. Figure 11 describes the composition. The sending and receiving applications are located in the 
environment. They interact with the system via two service access points modeled by two unidirectional 
channels, ST (from the environment to the TE) and SR (from RE to the environment). The channel ST 
carries the AppWrite signal from the sending application to the TE, and the channel SR carries the AppRead 
signal from the RE to the receiving application. The TE uses a bidirectional channel MT to send data (via a 
SendData signal) and to receive acknowledgments (via a RecvACK signal) over the Medium. One the 
opposite side, the RE also uses a bidirectional channel MR to receive data (via a RecvData signal) and to 
send acknowledgments (via a SendACK signal) through the Medium. 

In Figure 14 (a 4-pages figure at the end of the chapter) we formally present in SDL notation the 
fundamental part of TCP's congestion control and flow control mechanisms at the sender (Transmitter 
Entity). The system describes a unidirectional data service. In this abstract description, we only focus on the 
sliding window and congestion control aspects of TCP, many of the details in conventional TCP are hidden, 
such as: buffer size issues, sequence number calculations (e.g., sequence number wrap around), and 
checksum tests. Furthermore, many of the irrelevant details are hidden inside procedure calls, e.g., 
CalcRTO(). 
The EFSM of this system is depicted in Figure 12 and can be described as:  

• S = {Slow Start, Data Transfer, Fast Recovery, Closed Window}, 
• 

0s  = Slow Start, 

• E = {AppWrite, RecvACK, rexmt timeout}, 
• O = {SendData}, 
• V = {seqno, ackno, RAW, dACK, pACK, FRFlag, RTO, rexmt, Cwnd, Swnd, LU, LS, ExpBoff}. 
• f = {T0, T1, …, T20}, The transitions of f are labeled in Figure 14. 

4.3.2 EFSM of iTCP 

We want iTCP to track two events: ‘ retransmission timer timeout’  and 'receiving third duplicate 
ACK’ . Both events signify packet loss and usually cause TCP to trigger congestion control procedures. 
Therefore, the augmented EFSM of our Transmitter protocol becomes: (InTraN additions are shown in 
bold) 

�  S = {Slow Start, Data Transfer, Fast Recovery, Closed Window}, 
�  

0s  = Slow Start, 
�  E = {AppWrite, RecvACK, RexmtTimeout, GetVal, SetVal, SetFlag}, 
�  O = {SendData, ExpVal, Event}, 
�  V = {seqno, ackno, RAW, dACK, pACK, FRFlag, RTO, rexmt, Cwnd, Swnd, LU, LS, ExpBoff, RA, 

RT}. 
�  f is augmented as we described in Figure 6 (i.e., by adding three transitions for the GetVal, SetVal, 

and  SetFlag events, and modifying existing transitions of subscribable events in every state).  
RA and RT are the Boolean subscription flags associated with events RecvACK and RexmtTimeout 

respectively. We chose the sets
PE′ , B, and C as follows: 

• 
PE′ = {RecvACK, RexmtTimeout} ,  

• B = { dACK, Swnd, RAW} , 
• C = { } . 

The InTraN-added members of E (i.e., GetVal, SetVal, and SetFlag) are for internal SM use only. 
Therefore, they are not included in

PE′  (i.e., they cannot be subscribed by a SP). The same applies to the 
subscription flags (RA, RT) which cannot be included in the set B or C. In Figure 15 (at the end of this 
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chapter) we show the InTraN-enabled SDL version of the (slow start) state only. The remaining states can 
be extended by adding exactly the same components. 

4.4 A Complete TCP EFSM/SDL Model 

In this section we provide an EFSM model for the original TCP standard that was proposed in RFC 
793 [Pos81]. We have augmented the original standard to include the congestion control mechanism of 
TCP Reno described above. We have posted the complete SDL description of this EFSM in a technical 
report [Zag05] which is posted on our web server. We have developed this model as a supplement material 
for the InTraN paradigm. Using this model, any InTraN-enabled protocol extension solution can be 

formulated as we described earlier by selecting the sets PE′ , B, and C and by writing a set of TMs that 
implement the proposed extension. We felt that this model can be beneficial for other researchers who 
might be interested in the formal description of the TCP standard using the EFSM/SDL notation.  

4.4.1 Remarks and Simplifying Assumptions: 

1- The EFSM always remembers the current state in the variable (CurrState) and the previous state in 
the variable (PrevState), 

2- The TCP endpoint has unlimited buffer space (e.g., buffer space to queue SENDs and RECEIVEs 
is always available) 

3- In any state, whenever a segment is sent, the segment is added to the Retransmission Queue 
(RexmtQueue) and the retransmission timer (REXMT) is started. 

4- The (REXMT TIMEOUT) event has been modeled in all states except (FIN-WAIT-2, TIME-
WAIT, CLOSED), since in these states the endpoint have already received an ACK of its FIN 
segment (i.e., will not transmit any segments afterwards). 

5- The (TIMEWAIT TIMEOUT) event has been modeled in (TIME-WAIT) state only. In all other 
states, this timer is irrelevant. 

6- The following were not modeled from RFC 793: 
a) Security/Compartment and Precedence processing. 
b) The STATUS user call. 
c) The PUSH mechanism (i.e., PSH control bit) 
d) The URGENT mechanism (i.e., URG control bit) 

 

4.4.2 The Complete TCP EFSM 

The TCP EFSM=(S, s0, E, f, O, V) can be described as follows: 
1. States (S) = {CLOSED, LISTEN, SYN-SENT, SYN-RCVD, ESTABLISHED, FIN-WAIT-1, FIN-

WAIT-2, CLOSING, CLOSE-WAIT, LAST-ACK, TIME-WAIT} . 
 
2. Initial State (s0) = {CLOSED}  
 
3. Events (E) 

User  Calls (subscr iber events) = {Active OPEN, Passive OPEN, SEND, RECEIVE, CLOSE, 
ABORT} . 

 
Arr iving Segments (service events) = {SEGMENT ARRIVE (SYN, ACK, RST, FIN)} . 
 
Timeouts (internal events) = { 
REXMT TIMEOUT:  The Retransmission Timer (REXMT) has timed out, 
, TIME-WAIT TIMEOUT, USER-TIME TIMEOUT} . 
 

4. Transition Function (f) = {described in [Zag05]}  
 



 
 

26 

 

5. Output Signals (O) = {Return (message), Return Error (error message), Signal User (message), and 
Segment (SEG)} . 

 
6. Var iables (V) 

A. Segment Var iables 
SEG.SEQ: segment sequence number 
SEG.ACK: segment acknowledgment number 
SEG.LEN: segment length 
SEG.WND: segment window (Receiver Advertised Window) 
SEG.CTL: control bits (ACK, RST, SYN, FIN)  

 
B. Send Sequence Var iables 

SND.UNA: send unacknowledged 
SND.NXT: send next 
SND.WND: send window 
ISS: initial send sequence number 

 
C. Receive Sequence Var iables 

RCV.NXT: receive next 
RCV.WND: receive window 
IRS: initial receive sequence number 

 
D. Timers 

REXMT: Retransmission Timer.   
TIMEWAIT: Time-wait Timer 
USERTIME: User Timer 

 
E. Counters 

dACK: duplicate ACK counter 
ExpBoff: exponential backoff counter 

 
F. Other  

CurrState: Current State  
PrevState: Previous State 
RTO: Retransmission Timer Out value 
RTT: Round Trip Time—used to calculate RTO 
SRTT: Smoothed RTT—used to calculate RTO 
CWND: Congestion window 
MSS: Maximum Segment Size 
SSthresh: Slow Start Threshold 
MSL: Maximum Segment Lifetime 

 
G. Buffers 

Send Buffer: Send Buffer  
RCV Buffer: Receive Buffer  
OO RCV Buffer: Out of Order Receive Buffer  
Rexmt Queue: Holds sent but unacknowledged segments  
User Calls Queue: Holds outstanding user calls (e.g., SEND, RECEIVE, CLOSE)  

4.5 Classification of EFSM Components 

Figure 13 classifies the main components of a generic communication protocol EFSM and connects 
those to the EFSM components of TCP. The upper part of the figure (shown in yellow) presents the generic 
classification with three main components: Events, States, and Variables. The lower part of the figure 
(shown in green) classifies the TCP components. 
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4.5.1 Events 

Events can be External (i.e., they are triggered by receiving a signal from an external entity), or 
Internal (i.e., they are triggered when a timer times out). Signals that trigger external events can come from 
two types of entities: Service Providers (i.e., lower-level protocols that provide communication services to 
this EFSM), or Service Subscribers (i.e., upper-level protocols that uses the communication services 
offered by this EFSM). A signal received from a Service Provider triggers a Service Event, and a signal 
received from a Service Subscriber triggers a Subscriber Event. In the TCP part, the Service Provider is 
IP and the Service Subscriber is the user, therefore, user calls like (OPEN, SEND, RECEIVE, etc) are 
classified as Subscriber Events, and receiving a segment from IP (SEGMENT ARRIVE) is classified as 
a Service Event. Whenever one of the three timers in TCP expires, it generates an Internal Event.  
Internal Events in TCP happen whenever one of the timers expires.     

4.5.2 States 

States can be classified in a hierarchy, where the top level contains the states in this EFSM. Each state 
on the top level can itself contain a smaller EFSM whose states can be considered as second level states. 
For example, the four states of the congestion control EFSM presented in the previous section (i.e., Slow 
Start, Data Transfer, Window Closed, and Fast Recovery) are all considered to be part of the 
(ESTABLISHED) state of this EFSM, and therefore they can be classified as second level states. In Figure 
13 we only show the 11 states of the complete TCP EFSM at the top level.  

4.5.3 Var iables 

We have classified Variables into two categories: Simple and Complex. Simple variables have 
simple data types like integers or character strings. Complex variables are class objects defined with 
methods and values. Timers are special type of complex variables since (i) they have built in methods in 
SDL (e.g., SET, RESET) and (ii) they trigger internal events when they expire. In the TCP part we classify 
simple variables into three parts: Segment, Send Sequence, and Receive Sequence (the EFSM has 
additional variables but we did not include them in the figure due to space limitation). We also show the 
three timers (REXMT, TIME-WAIT, and USER-TIME) and all the Buffers/Queues as Complex variables. 

4.6 Conclusion 

In this chapter we have first reviewed some of the issues concerning congestion control in TCP and 
the need for application involvement in designing adaptive TCP-friendly solutions. Then, we have shown a 
real application of the InTraN meta-engineering on TCP which gave an InTraN-enabled version of TCP (or 
iTCP). In the next chapter we demonstrate a TCP-friendly, congestion management scheme based on iTCP 
and the InTraN Transientware mechanisms. 
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Figure 14. SDL descr iption of a simplified TCP transmitter  

Process TCP Transmitter 
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state is slow start, (2) data transfer, (3) 
fast recovery, and (4) window closed. The 
EFSM diagram of this process is given in 
Figure 12 */ 
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ackno : Header field (ACK number) 
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Figure 14 (continued) 
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Figure 14 (continued) 
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Figure 14 (continued) 
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Figure 15. iTCP's (Slow Star t) state extended with InTraN components 
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CHAPTER 5  

iTCP part I I : Implementation and Performance 

 

5.1 Implementation Details 

5.1.1 System Architecture 

Figure 16 depicts the conceptual architecture of the system on FreeBSD. The scheme works in three spaces: 
user space, system space, and kernel space. Once it establishes a TCP connection, the user process starts by 
binding the TCP kernel with a set of chosen events from Table 7 using a Subscription API that extends the 

standard socket API (1). An entity called Event-Monitor runs in the TCP kernel space and monitors all 
subscribed events for every socket (2). Assuming at some point event (evt) occurs in socket (sock). The 
Event-Monitor sends a (SIGIO) signal that is caught by the (Signal Handler) (3a), and at the same 
time writes the socket descriptor of the socket (sock) in the process structure proc{} of every process 
that is currently subscribed with this socket. Also, it marks all subscriptions of event (evt) in the socket 
(sock) as outstanding (3b)—i.e., waiting to be handled. The OS activates the signal handler 
(SigHandler) associated with the (SIGIO) signal whenever this signal is caught. The (SigHandler) 
first uses the probing API to retrieve the socket id (sock) of the socket that generated the event. Then, it 
uses the probing API again to access the socket (sock) and get relevant information about the outstanding 
subscription of event (evt). The information retrieved includes the event type and the name of the TM 
bound to it (4a,b). Immediately after that, the (sighandler) invokes this TM (5). TMs are usually small 
programs supplied by the user or by a third-party as ready to run executables custom-designed to handle 
certain events. One TM is forked by the (sighandler) for each valid (SIGIO) signal. The probing API 
allows the TM to probe additional information about the state of the TCP connection (6a, b). We show two 
TMs in Figure 16, LossTM1 and LossTM2 to handle the two loss events mentioned above. These TMs 

Figure 16. The TCP-interactive extension and API 
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employ a symbiosis throttling mechanism based on the TCP state to calculate an optimized reduced bit rate 
(hbest) to put the transcoder in a frugal state. They also calculate an optimal duration (Trecovery) for the frugal 

Table 8. The API Extension of  iTCP 

Level Caller  Descr iption 

void GetEvents (int *NumOfEvents, evtInfo *EventList[]); 

User User process Retrieve the complete list of available events in the TCP kernel. Retrieve evtInfo{} struct for each 
event in the list. 

int SubscribeEvt (int sock, int evt, int T-ware); 

User User process Subscribe with the socket sock for event type evt. Register handler T-ware for this event. This call 
will add a subInstance{} structure to the evtList list in the subscribed socket. 

int UnsubscribeEvt (int sock, int evt); 

User User Process Unsubscribe a previously subscribed event. Afterwards, no signal will be sent when this event occurs. 
Remove the subInstance{} from the evtList list in the subscribed socket. 

int GetSockid (void); 

System Signal Handler Get the descriptor of the socket that sent the signal when the subscribed event had occurred. This is 
necessary since a process can subscribe to many sockets, and the Signal Handler needs to know which 
socket triggered the event. 

int ProbeEvtInfo (int sock, struct evtInfo *info); 

System Signal Handler Get the number and the Handler name of the event that has just occurred in the socket sock. 

int ProbeSocket (int sock, struct connState *conn); 

User Event Handler Probe the socket sock to retrieve the current state of the TCP connection is the connState{} 
structure. 

int GetSubPerm (int sock, int evt, int *perm); 

User User Process Get the current access permission string perm for the event evt subscribed with socket sock. Get four 
flags: (Read, Write, Subscribe and Trigger) for two levels (System and User). 

int GetSubPriority (int sock, int evt, int *priority); 

User User Process Get the Priority Level of the event evt subscribed with socket sock. Returned Priority is between 
1 and 3. 

int GetHandlerPerm (int sock, int evt, int *mask); 

System Root Process 
 

Get the Connection Access Mask mask for the event evt subscribed with socket sock. The returned 
value in mask specifies which fields in the connState{} struct are accessible by the T-ware and 
which fields are not.  

int SetSubPerm (int sock, int evt, int perm); 

System Root Process 
 

Set a new access permission string perm for the event evt in the socket sock. The integer perm 
should specify four flags: (Read, Write, Subscribe and Trigger) for two levels (System and User). 

int SetSubPriority (int evt, int priority); 

System Root Process Set a new Priority Level for the event evt in the socket sock by assigning a value to priority.  

int SetHandlerPerm (int sock, int evt, int e_hand, int mask); 

System Root Process 
 

Set a new access mask mask for the event evt in the socket sock. The integer mask should specify 
which fields in the connState{} structure are accessible and which fields are not.  

int GetEvtState (int evt, int *state); 

User User Process Get the Subscription State of event evt.  Return zero in state i f the event is subscribable or one 
otherwise. 

int DelEvent (int evt); 

System Root process Set the deleted flag in the evtInfo{} structure to true. Afterwards, evt will be ignored by subsequent 
system calls.  

int AddEvent (int evt); 

System Root Process Reset the deleted flag in the evtInfo{} structure to false. Afterwards, evt will be reported by 
subsequent calls. 

int UntriggerEvt (int sock, int evt, int status); 

User User process Trigger/untrigger subscribed event evt. 
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Figure 18. Subscr iption and probing scenar ios 

struct evtInfo *evtList[] 
int n; 
s = makeSocket(); 
SubscribeStub{ 
   GetEvents(&n, evtList); 
   For(i=0; i<n; i++){ 
      if (evtList[i]->subscribable == 1) 
  if ((i == REXMT_TOUT) ||  
            (i == THIRD_DACK)) 
         SubscribeEvt(s, i, EvtHandler[i]); 
   } 

   iSockets = iSockets ∪ s; 
} 

struct evtSubInfo *ESinfo; 
Probe{ 
   s = GetSockid(); 
   if (s ∈ iSockets){ 
 ProbeEvtInfo(s, ESinfo); 
 if (ESinfo->evt in (REXMT_TOUT,THIRD_DACK)){ 
  Switch (ESinfo->Tware){ 
     case 1: Tware1(); 
     case 2: Tware2(); 
     ... 
  } 
 } 
   } 
} 

Figure 17. iTCP internal data structures  

proc{} socket{} 

subList 

proc{} 

p_fd p_fd 

subInstance{} 

P1 P2 

evtList 

 

 
 
 

 
 0 

evtInfo{} 

subscribable=1 

deleted=0 

triggerable=0 

importance=3 

description 

 

eventPerm 

event 

priority 

handler 

handlerPerm 

prev_sub 

next_sub 

subProcess 

socketfd socketfd 

status 

 
… 

subInstance{} 

eventPerm 

event 

priority 

handler 

handlerPerm 

prev_sub 

next_sub 

subProcess 

status 

evtInfo{} 

subscribable=1 

deleted=0 

triggerable=1 

importance=2 

description 

1 

2 

3 



 
 

37 

 

state—after which the transcoder returns to its normal rate. They convey this rate reduction to the 
transcoder by writing the new rate to the file named "rate.par" (7) and they start a timer that will expire 
when Trecovery time has passed after which a recovery handler is invoked to write the normal rate into 
"rate.par" (8). 

 

5.1.2 API 

Table 8 shows the complete API system designed. In this table for each system call we list its 
prototype, the level of its caller (user or system), its potential caller (application, signal handler, or TM), 
and a brief description about its functionality. Some of these functions are designed for the network 
administrator (root process) to manage event subscription by granting priority levels and access 
permissions for the user process. 

5.1.3 Internal Data Structures 

We have implemented the scheme on FreeBSD 4.5 kernel. Here, we discuss some of the internal 
details of iTCP implementation. A user process can open one or more TCP sockets. At the same time a 
socket can be used by more than one process. Figure 17 shows the relevant data structures needed to 
implement the subscription and probing scenarios in iTCP. An open socket maintains a list of events called 
(evtList) as an inventory of all events supported by iTCP. The socket uses the (evtList) field to 
retrieve the static information related to any event type. The list is implemented as an array of pointers to a 
structure called evtInfo{}. The structure evtInfo{} shown in Table 9 (a) represents one event type 
and stores information about the event such as its description and relevant attributes. The socket also 
maintains a doubly linked list of subscribed events for every subscriber process called (subList). 

Table 9. Implementation details evtInfo{} and subInstant{}  

(a)  struct evtInfo{} 

Field type Field Name Description 
char * Description A brief description text about the event and its 

meaning. 
int Deleted A flag to mark the event as deleted. 
int Subscribable A flag to decide if the event is subscribable. 
int triggerable A flag to decide if the event can be triggered by the 

subscribing process. 
int Importance Importance level of the event. 
 
(b)  struct subInstance{} 

Field type Field Name Description 
Struct subInstance * next_sub A pointer to the next entry in the linked list 
Struct subInstance * prev_sub A pointer to the previous entry in the 

linked list 
int event Event number/name. 
int status The status of the signal. 
int eventPerm Access permission string for this 

subscription instance. 
int Priority Priority of the event in this subscription 

instance. 
int handler The number of event handler for this 

subscription instance. 
int handlerPerm Access pattern mask for the connection 

state variables. 
struct proc * subProcess A pointer to the subscribing process. 
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 Whenever a user process subscribes with a new event, the socket adds a new entry to this list called 
subInstance{}. The structure subInstance{} represents one subscription instance for a given 
process/socket pair. It contains information such as event number, status and name of the TM bound to the 
subscribed event. Table 9 (b) shows the complete subInstance{} structure. The socket removes a 
subInstance{} entry from the (subList) if a user process decides to unsubscribe from a previously 
subscribed event. 

5.1.4 Subscr iption and Probing Scenar ios 

Figure 18 demonstrates subscription and probing scenarios. We explain an application stub routine 
SubscribeStub() which handles this stage. After creating a socket (s), the SubscribeStub() 
routine uses the GetEvents() system call to retrieve the set of events available from the socket in 
evtList[] and their number (n) from the kernel. Let's assume that the application wants to subscribe to 
two events: The retransmission timer time-out event (REXMT_TOUT) and the third duplicate ACK event 
(THIRD_DACK). Here, we let the index (i) represent the event number in the list evtList[]. 
SubscribeStub() first checks if the current event (i) is either (REXMT_TOUT) or (THIRD_DACK), 
if this is true; it makes a SubscribeEvt() system call to subscribe to the event. After finishing the loop 
this system call adds the socket (s) to the set (iSockets), which includes all sockets that the application 
had subscribed with. When the kernel sends a SIGIO signal, a system routine catches it. This routine then 
uses the probing function Probe{} (shown in Figure 18) to handle the signal. The Probe{} routine calls 
GetSockid() to find out which socket has sent the event, and stores its descriptor in (s). If the socket (s) 
was among the set of subscribed sockets (iSockets) of this application, it calls ProbeEvtInfo() to 
retrieve the subscription information for this subscription instance. Internally, when the ProbeEvtInfo() 
system call is made, the kernel traces the subList[] of socket (s) and looks for a subscription instance 
subInstance{} whose status field equals 1, i.e., this is an outstanding instance waiting for the signal 
handler attention. Normally there should be only one outstanding instance per application in the socket’s 
subList[]. Once found, the kernel returns two fields from the outstanding instance to the application in 
the evtSubInfo{} structure: the event number (evt), and the TM name (Tware). When the 
ProbeEvtInfo() returns, the Probe() checks if the event (evt) is iTCP related, i.e., it is either 
(REXMT_TOUT) or (THIRD_DACK), and then it executes the proper TM as dictated by the value 
returned in ESinfo->Tware. 

 

 

Figure 19. Symbiosis throttling model  
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5.2 Symbiosis Throttling Model 

The key to the system is the intermediate event gluing mechanism—or as we call it symbiosis 
throttling.  It performs the key task of dynamically specifying the target rate for the application based on 
the event notification interrupt. The idea is to accept the event feedback provided by the underlying 
interactive transport layer, and generate a corresponding rate feedback for rate formation capable 
applications. This feedback is estimated in a way that ensures transport service with applications specified 
delay conformation over the otherwise classic transport service.  

The main idea is that when a time-out event ( 1=ξ ) occurs in the transport, we let the subscriber rate 

retract to a smaller rate.  We call this retraction state as frugal state. The key issue is how to optimally 
design the frugal state’s retraction point so that the overall system meets the delay bound of the application. 

5.2.1 Analysis of Symbiotic Throttling  

Let g(t) be the generation function denoting the data rate at which the rate formation capable application 
produces data as a function of time. Let w(t) is the bandwidth function provided by the transport channel 
over which, the application sends the data. Figure 19 explains the model. During normal operation w(t) 

�
 

g(t). When a loss event is detected (e.g., timeout) the transport bandwidth retracts to some smaller effective 
value due to window resizing. The underlying cause might be a packet loss or a congestive delay deep 
inside network. In either case, the sender transport buffer builds up and results in increased communication 
delay. In response to the loss event, we let the subscriber adjust its generation rate to a lower generation 
state (we call this state the frugal bandwidth state). The normal operation is however by a satisfied 
bandwidth state. In any practical feedback system there is also always a reaction delay in the feedback loop. 
Let τ be the reaction time needed by the subscriber process to react and adjust its rate. Given the above 
model, the particular design problem we address is the following: 

 

 
Here the delay bound dQ is the maximum delivery delay an application can sustain between generation 

endpoint and delivery endpoint of the application layer. We now further define two additional concepts 
important for the derivation to be presented.  

5.2.2 Cr itical-delay-point inequality  

Assuming the loss is detected at time tloss. After the loss assume it takes tequal time for the transport 
system to again equalize the transport bandwidth with the frugal state generation rate of the subscriber. This 
is the point where w(t)= g(t). We call this point the even-point. Since the generation rate is larger than the 
transport rate before the even-point is reached, therefore the transport buffer will build up until the even-
point is reached. The buildup will gradually decrease after the even-point. Thus the bytes entering the 
buffer exactly at the even-point will face maximum delay. Let this time be called critical-delay-point tcritical.  
Thus, if the transport buffer already has Q bytes in it (before moving to the frugal state), the buffer size at 
even-point is given by the LHS of equation—(1a). Let d be the maximum acceptable delay, then the 
following inequality must hold. We name it critical-delay-point constraint: 

� �
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Given the bandwidth function w(t), the generation function g(t), the satisfied state bandwidth (Bsat), and 
the upper bound on the acceptable data delivery delay (dQ), determine the best possible frugal state 
(generation rate and its duration) for which the bound dQ can be ensured.  
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5.2.3 Recovery-point inequality  

The bytes entering the transport buffer after the even-point will face less but non-zero delay. This data 
too will be entering into the buffer quite full. Additional bytes, those generated between the even-point and 
the critical-delay-point, will still populate the buffer. Therefore our ultimate goal is to take the buffer into 
pre-event state before returning to normal generation. Thus, the subscriber system should still continue to 
operate at somewhat less than satisfied state. This extended frugality will allow remaining buffer buildup to 
dissipate—completely erasing the effect of the timeout event. We define this time as the full-recovery-point.  
Let’s call it the recovery time trecovery, then the following second inequality in equation—(1b) must hold. 
We call it full recovery-point constraint. � �
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--(1b)

5.2.4 Frugal State Determination 

The two inequalities respectively can provide a general solution for the level and duration of the 
frugal state for any general transport bandwidth and generation function. It can also predict the 
corresponding recovery time.  

Below, we solve specifically for the case where the iTCP transport control is similar to TCP (binary-
back-off and additive-increase) and a piecewise step g(t). For simplicity, we assume that when a loss event 
is detected the window function decelerates to zero (i.e., w(tloss)=0). We first solve for a fast reacting 
system, where the reaction time is very small and let the buildup before subscriber reaction is Q. Let g(t) is 
a piece-wise step function. We further assume that the post-fault w(t) is a linear function with bandwidth 
acceleration m.  

Let dQ is the maximum buffer delay tolerable by the application data. Given a maximum propagation 
delay limit TP, and bandwidth w(t), we can say that dQ= d+TP+(1/w(t)) where d is the total delay faced by 
the byte entering at critical-delay-point.  Since, typically w(t)>>1, then d can be approximated by d = dQ - 
TP. Let T be the time it takes the system to reach the even-point (i.e., T = tequal – tloss). Then critical buffer 
equality (1a) can be expanded into:  
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It solves to: 

m

Q
ddT

2
2 2 −±=  

--(3)

Only positive real solutions are practical. For any given system arbitrary delay bound cannot be met. 
In that case both the solutions are imaginary. The model can now be used to determine the limit on the 
maximum acceptable delay. For the real solution the minimum delay requirement cannot be smaller than: 

m

Q
d ≥min  

--(4)

T can have two solutions. Both solutions are positive if: 

m

Q
d

2≤  
--(5)

Otherwise, only one solution is positive. From T, we can determine the frugal state bandwidth of the 
generator function. It should be stepped down to: 
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Out of the two solutions, the best possible frugal state (the one which allows higher transmission rate 
in the frugal state) is: 
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And the other solution is: 
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The second solution, when exists, provides a second possible frugal state with lower generation rate. 
If this solution is taken, the data-generation allowance at frugal state will be lower. However, it will result 
in faster recovery. 

The next question we ask is how long the system should stay in frugal state.  We first derive a lower 
bound.  This is given by the critical recovery time: 
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For the special case, when, the initial buildup (or reaction time) is zero, the corresponding height and 
duration of the frugal state is: 
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For step g(t), between the critical-point and recovery-point the system continues to be in frugal state 
accelerating the recovery.  Corresponding recovery time is the complete duration of the frugal state. It can 
be determined by solving equality—(2), and is given by: 
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For the general case, when there is a buffer buildup due to the reaction delay=τ, the buildup can be 
estimated from the satisfied state generation rate and the reaction delay. Let H be the bandwidth satisfied 
state generation rate, when τ is small, B can be approximated by: 
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The slop m can be approximated from the effective RTT and the segment size (up to the current 
threshold TCP window grows exponentially).  
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Here Bchannel is the target channel bandwidth, I is the increment step or segment size and RTT is the 
round trip delay estimate used by TCP to resize its window. For symbiosis with the underlying transport 
protocol, each time a retransmission timeout event (at t=0), reported the frugal state bandwidth is 
determined as following. 
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5.3 Symbiosis Mechanism: The Transientware 

The important task of gluing between the transport layer and the application unit (MPEG-2 rate 
transcoder) is finally performed by the symbiosis unit (Transientware Module or TM). The TM essentially 
executes the throttling model. It estimates the parameters required to execute the model by probing iTCP as 
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needed and finally it provides the rate parameter to the application as it requires operating in symbiosis.  
Below we describe its parameter estimation process and invocation operations. 

5.3.1 Estimation of the Model Parameters from iTCP States 

To be able to use the symbiosis throttling model described above, we now show how the model 
parameters can be estimated from the TCP state and event times made accessible by the iTCP. Namely, we 
want to find � , H, RTT, and I from the TCP internal state variables now made available by iTCP.  

 
A) Reaction Delay (τ ) 

The reaction time τ  was approximated as following: 

TCPrateEvenTtimesponseTime uutt ++−= )( Reτ  --(13a)

EventTime is when the signal handler was invoked. The quantity uTCP is a constant approximating 
the time taken by iTCP’s kernel signaling. We assume uTCP =0. Thus EventTime is used here as an 
approximation of the real time when the event has occurred deep in the TCP layer. ResponseTime 
approximates the time of the real rate reduction (i.e. when the calculated hbest is saved to “r at e. par ”  file). 
Quanltity urate is the estimate of the rate control systems reaction time after receiving the new rate, we also 
assume urate=0.  

 
B) Round Trip Time (RTT) 

RTT is directly returned by TCP from its state variable TCPstate->t_rtttime.  TCP 
implementation uses the following process to measures round trip time (RTT) and retransmission timer out 
(RTO). First, TCP measures the RTT between sending a byte with a given sequence number and receiving 
an acknowledgment that covers that sequence number (M denotes the measured RTT). Afterwards, TCP 
updates a smoothed RTT estimator R using the low-pass filter: 

MRR ).1(. αα −+←  --(13b)

Where α  is a smoothing factor with a recommended value of 0.9. The smoothed RTT is updated 
whenever a new measurement M is made. This means that 90% of each new estimate R is from the 
previous estimate and 10% is from the new measurement M. TCP then calculates a new retransmission 
timer out value (RTO) based on the mean and variance of the RTT measurement. The technique was 
proposed by Jacobson [Jac88]. He used the mean deviation as a good approximation of the standard 
deviation since it is easier to compute. In each RTT measurement M, the following calculations are made: 
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Where A is the smoothed RTT (an estimator of the average) and D is the smoothed mean deviation. 
Err is the difference between the measured value just obtained and the current RTT estimator. Both A and D 
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are used to calculate the next RTO. The gain g is for the average and is set to 1/8. The gain for the deviation 
is hgain and is set to 1/4. 

 
C) Maximum Segment Size (I) 

RTT is directly returned by TCP from its state variable TCPstate->t_maxseg. Maximum 
segment size MSS (we called it I in our model), is the largest ‘chunk’  of data that TCP can send to the other 
end. When a connection is established, each end has the option to announce the MSS it is willing to receive. 
When TCP sends a SYN segment, it can send an MSS value up to the outgoing interface’s MTU, minus the 
size of the fixed TCP and IP headers. In our experiment, TCP chose an MSS of 1460 bytes. 

 
D) Satisfied State Bandwidth (H) 

1:  Loss- TM( socket  s ,  event Ti me) {  
2:  s t r uct  connSt at e * TCPst at e;  
3:  pr obeSocket  ( s ,  TCPSt at e) ;  
4:  f scanf ( t i meFi l e,  “ %l d” ,  v i deoSt ar t Ti me) ;  
5:  H = ( TCPSt at e- >t _r t seq – TCPSt at e- >t _i ss) * 8  
               /  ( v i deoSt ar t Ti me -  event Ti me) ;  
6:  get t i meof day( r espTi me) ;  
7:  r esponceDel ay = r espTi me -  event Ti me;  
8:  m = 2* ( TCPSt at e- >t _maxseg) *  
                      8 /  TCPSt at e- >t _r t t t i me;  
9:  B=r esponceDel ay *  ( H –( m* r esponceDel ay) / 2) ;  
10:  h_best  = m* d*  ( 1 + sqr t ( 2- ( 2* M/ m* d) ) ) ;  
11:  T_r ecover y = ( h_best / m)  *   
                     ( 1 + sqr t ( 1+( 2* B* M) / ( h* h) ) ) ;  
12:  r at ef i l e = f open( “ r at e. par ” ,  “ w” ) ;  
13:  f wr i t e( h_best ,  r at ef i l e) ;   
14:  St ar t Recover yTi mer ( Recover y- TM) ;  
15:  } / / end LossTwar e 
16:  }  

( b)  

1:   Recover yHandl er ( s i gnum) {  
2:      i f  ( s i gnum == SI GALRM) {  
3:    wai t Ti mecount ++;  
4:    i f  (  wai t Ti mecount  && ! r at eOK && 
                        ( wai t Ti me > T_r ecover y) ) {  
5:   r at ef i l e = f open( “ r at e. par ” ,  “ w” ) ;  
6:   f wr i t e( or i gi nal Rat e,  r at ef i l e) ;   
7:   r at eoK = 1;  
8:    } / / end i f  
9:      } / / end i f  
10:  } / / end Recover yTwar e 

( c)  

1:   Si gnal Handl er ( s i gnum) {  
2:     s t r uct  evt SubI nf o * handI nf o;  
3:     i f  ( s i gnum == SI GI O) {  
4:       get t i meof day( event Ti me) ;  
5:       s  = Get Socki d( ) ;   
6:       Pr obeEvt I nf o( s,  handI nf o) ;  
7:       i f  ( ! ( chi l d = f or k( ) ) ) {  
8:    execl ( handI nf o- >handl er ,  s ,  event Ti me) ;  
9:    ex i t ( 0) ;  
10:      } / / end i f   
11:    } / / end i f  
12:  } / / end Si gnal Handl er  

 
( a)  

 

Figure 20. (a) Signal Handler, (b) Loss TM and (c) Recovery handler  
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H can be calculated by finding the ratio: number of bytes transmitted so far over elapsed time since 
the video has started. This is estimated from two TCP state variables (t_rtseq and t_iss) and two local 
measurements: 

eventTimeTimevideoStart uu

isstTCPstatertseqtTCPstate
H

−
×→−→= 8)__(

 

The difference: 
isstTCPstatertseqtTCPstate __ →−→  

Between the state variables gives how many bytes have been transmitted so far. We multiply it by eight to 
convert it to bits since all our calculations will be in bit/second units. The time uvideoStartTime is the time when 
the video started; it was saved in a file by the encoder prior to sending the first frame. 

5.3.2 Transientware Implementation 

The Symbiosis Throttling of equation 12 is actually implemented in the loss event handler or the TM. 
Basically, we need to calculate hbest and Trecovery every time the TM is invoked. The role of the signal 
handler was merely to catch the signal from the kernel and invoke the appropriate TM. To simplify things 
we let the encoder subscribe with the retransmit timer out event only. Figure 20 (a) outlines a sketch of the 
signal handler code. After catching the SI GI O signal, it needs to know which socket generated the event 
(line 5) then it probes the socket to get the event number and the TM id (line 6). Once retrieved, it forks a 
new child and executes the appropriate TM for the event type (lines 8-10). If a loss event is detected, e.g., 
timer out event, the handler activates the TM shown in Figure 20 (b) which we call Loss- TM.  The signal 
handler passes the socket id (s) and time when the event occurred (event Ti me) to the TM. Once 
activated, the Loss- TM first probes the socket to retrieve the following parameters from TCP: 
t _r t t t i me (round trip time), i ss (initial send sequence number), t _r t seq ( sequence number 
being timed), and t _maxseg (maximum segment size). Then it calculates the satisfied state bandwidth 
generation rate H, the reaction delay �  as explained before. Afterwards, the Loss- TM calculates m, B, hbest, 
and Trecovery in a straightforward manner (lines 8-11). In line 13, it stores the reduced rate hbest in the 
“rate.par”  file which will be noticed immediately by the symbiotic encoder. Finally, it starts a timer for 
recovery and associates a handler (Recover yHandl er ) with this timer—this handler is outlined in 
Figure 20 (c). When the timer reaches Trecovery, the recovery handler writes the normal rate (i.e., original rate 
before reduction) into the file “rate.par” .  

 

Figure 21. Video transcoder experiment setup  
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5.4 Experiment and Performance Analysis 

We ran the experiment using the real implementation of iTCP kernel and the MPEG-2 Symbiotic 
Transcoder. The performance results were obtained from a live experiment of video delivery sessions over 
the Internet. Before presenting our results first we will describe the testbed and the setup. 

 

 

5.4.1 The ABone Testbed 

We wanted to run the experiment on the real Internet environment. This required running the 
symbiotic transcoder, a sender equipped with iTCP transport protocol, and a set of players on remote hosts 
around the world. We could have done this manually by conventional methods to reach a number of remote 
nodes worldwide. But this would have required extensive overhead to setup the testbed and maintain. 
Therefore, we decided to run the experiment on ABone testbed [Ber02b].  The ABone, developed under the 
DARPA Active Network program forms a virtual network infrastructure on which a growing set of active 
network components can be tested and experimentally deployed. ABone is an operational network and 
provides an Internet wide network of routing as well as processing capable nodes. Providers can contribute 
confederation of computing capable nodes. Independent application involving multiple trust domains can 
be securely launched and executed. It also specifically allows new transport protocol components to be 
remotely deployed. ABone nodes are available from Europe, Asia and North America. Individual nodes are 
contributed and managed locally and independently by the contributing site administrators. However, the 
administrators do not have to manage the remote users. Researchers can remotely install and execute 
programmed components on any collection of these nodes via the ABone backbone management and 
control backplane being a part of a centralized user pool. The codes are distributed via an enlisted set of 
Trusted Code Servers (TCS), which help authenticating them prior to distribution. The security domains are 
handled by the backplane control system. The backplane is being maintained by the ABone Coordination 
Center (ABOCC) at ISI at the University of Southern California. ABone status can be monitored live from 
the ABOCC web site [Ber02b]. In addition to the iTCP machine we have a cluster of 10 registered ABone 

Figure 22. Congestion Injector mechanism  

i nt  bur st s = 3;  
i nt  bur st Ti me[ ] ={ 3,  3,  3} ;  
i nt  i nt er Bur st Ti me[ ] ={ 10,  10,  0} ;  
s l eep( 10) ;  
f or  ( i =0;  i <bur st s;  i ++) {  
   r emove ent r y f r om r out i ng t abl e;  
   s l eep( bur st Ti me[ i ] ) ;       
   r et ur n ent r y t o r out i ng t abl e;  
   s l eep( i nt er Bur st Ti me) ;  
}  

Table 10. Player locations on the ABone  

RTT measurment 
Target ABone node Country 

min average max mean 
deviation 

Number 
of hubs 

ave.willab.fi Finland 0.16355 0.16606 0.16647 0.798 24 

zzz.abone.supermedia.pl Poland 0.14705 0.14844 0.15701 3.023 23 

abone-01.cs.princeton.edu USA 0.03945 0.04002 0.04524 1.319 17 

dad.isi.edu USA 0.06548 0.06572 0.06610 0.186 19 
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nodes in our lab at Kent State University (mk00-mk09.maunakea.medianet.kent.edu). Four of these nodes 
run on FreeBSD and the rest run on Linux. At the time of our experiment (Nov. 2003), there were 24 Linux 
nodes, 5 Solaris nodes, and 12 FreeBSD nodes registered at the ABone. For our experiment we simply sent 
our video player to one of the ABone’s trusted code server at (http://bro.isi.edu/KENT). Then we 
configured and registered our iTCP-kernel machine (kawai.medianet.kent.edu) as a primary node on the 
ABone to run iTCP and the symbiotic transcoder.  The server remained in a traditional (non active) node. 
The ABone allowed the automatic loading of the sessions on designated machines worldwide.  

5.4.2 Experiment Setup 

This experiment describes the performance of an MPEG-2 ISO/IEC13818-2 (176×120) resolution 
video encoded with base frame rate of 2 Mbps at main profile. Figure 21 illustrates the deployment setup. 

Table 12. Average frame delay and acceptance ratio  

princeton.edu isi.edu willab.fi supermedia.pl 
mode 

Average 
Delay 

Accept 
Ratio 

Average 
Delay 

Accept 
Ratio 

Average 
Delay 

Accept 
Ratio 

Average 
Delay 

Accept 
Ratio 

iOPT 0.518 0.797 2.018 0.415 2.504 0.319 1.38 0.692 

iEXP 2.613 0.529 -0.015 1 -1.239 1 2.411 0.284 

iOFF 6.279 0.455 10.82 0.197 8.752 0.155 8.485 0.133 
d=2 

Classic 3.047 0.461 10.957 0.217 6.615 0.273 8.485 0.147 

iOPT 0.897 0.976 2.029 0.737 -0.641 1 0.727 1 

iEXP 2.613 0.529 -0.015 1 -1.239 1 2.411 0.777 

iOFF 6.279 0.455 10.82 0.197 8.752 0.293 8.485 0.277 
d=4 

Classic 3.047 0.805 10.957 0.395 6.615 0.299 8.485 0.291 

iOPT 0.883 1 3.974 0.679 1.623 1 1.387 1 

iEXP 2.613 0.997 -0.015 1 -1.239 1 2.411 1 

iOFF 6.279 0.455 10.82 0.329 8.752 0.295 8.485 0.277 
d=6 

Classic 3.047 0.805 10.957 0.395 6.615 0.535 8.485 0.52 

 

Table 11. Experiment control flags and running modes  

Control flag Effect 

iTCP Turns on/off the interactivity service.  

EVENT Turns on/off the event notification service. 

SYMB 
Turns on/off the symbiosis feature of the transcoder. When this flag is set, the signal 
handler invokes the event handler to reduce the bit rate of the decoder. Otherwise, the 
signal handler just records the event type and time. 

OPT 
Means (OPTimal mode). Used to choose between two modes of Symbiotic rate reduction (i) 
optimal backoff mode which uses the symbiosis throttling model described in section 4. or 
(ii) exponential backoff mode which uses a preset retraction rate and duration. 

  
Control Flags Running 

mode i T C P EVENT SYMB O P T 
Comments 

iOPT ON ON ON ON Full interactivity. Use the optimal backoff symbiosis throttling. 

iEXP ON ON ON OFF Full interactivity. Use the exponential backoff symbiosis 
throttling. 

iOFF  ON ON OFF X Subscribe, report event, but do not change bit rate. Used to 
measure overhead. 

Classic OFF X X X Turn off all interactivity features. 
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The video server runs on a classic TCP machine (manoa) and feeds the video stream into the transcoder, 
which runs on the iTCP active node (kawai).  To create some forced congestion in the experiment we also 
run a congestion injector program on a first-mile active gateway router (lahaina). The injector creates 
congestion bursts. Figure 22 shows the congestion injector. It allows the duration, and the interval between 
bursts to be programmed for three consecutive bursts. During a congestion burst the router will simply 
disrupt its routing table by removing the entry that leads to the player machine. When the burst time is over, 
the router restores the routing table back to normal. In our experiment, we used 3 three-second bursts at 10 
second intervals. A three-second burst usually triggers 1 to 2 retransmit timer out events depending on the 
player’s location. We ran the players on selected remote ABone node. We repeated the experiment on four 
ABone nodes, two in the US and two in Europe. Some general network conditions observed of the four 
target nodes are shown in Table 10. The player and transcoder units were enhanced to collect detail frame 
arrival, and delivery measurements. 

5.4.3 Impact on Video Frame Delay 

For detail comparison we have performed several sets of experiment.  These are: i OPT, i EXP, i OFF, 
and Cl assi c  modes. In the i OPT (optimal backoff) mode, we activated the throttling model described 
above to calculate hbest and Trecovery with every loss event. We challenged the system to provide the frames 
at guaranteed d=6, 4, and 2 seconds. As a base case we also repeated the experiment with the same 
congestion schedule in classical mode where the interactive and symbiotic rate adaptation features were 
turned-off and the entire system run in classical TCP mode. We call it Cl assi c  mode. For comparison we 
also included the case of i EXP used in our previous work to demonstrate the effectiveness of iTCP.  It is a 
non-optimized simple heuristics-based symbiosis which performs a lazy binary back-off scheme for the 
generation rate. The method adapts but it can not provide QoS guarantee as of the throttling model. Detail 
of this simple scheme is in [Kha03c]. With the i EXP (exponential backoff) mode, we used a predetermined 

reduction ratio ( �  = 0.35) and multiplied that with current bit rate to calculate the frugal state bit rate, we 
also used a fixed recovery time of 4.0 seconds. We also repeated the experiments in another mode called 
i OFF for overhead estimation. The mode is similar to classic TCP. No symbiosis is performed. But the 
event subscription mechanism remains active. This will be explained later. In all the iTCP enabled runs 
(i OPT, i EXP and i OFF), the transcoder subscribes with iTCP for the retransmission timer out event. In 
the experiment, we took frame-wise detail event trace of the first 750 frames of the video at both sending 
and receiving ends. For a given discard threshold time in the receiving end we also traced which frame was 
successfully received or not at the MPEG-2 player. As explained earlier, we traced four transport aware 
cases (i OPT with three values of delay tolerance d=2, 4, and 6 seconds and i EXP) and two transport 
unaware cases (i OFF and Cl assi c). Please, return to Table 11 for running modes details.  
Now we show the dramatic impact of iTCP’s interactivity based symbiosis. In Figure 23 we plot the delay 
experienced by the video frames in terms of frame arrival time at the player for the six modes mentioned 
above. In addition to that, we also show the ideal expected frame delivery time—Expect ed in the 
figure—based on linear generation rate. As can be seen iTCP outperformed classical TCP; after every 

Table 13. hbest and Trecovery statistics for three ABone nodes  

princeton.edu willab.fi supermedia.pl isi.edu 
d(sec) event 

hbest Trecovery hbest Trecovery hbest Trecovery hbest Trecovery 

e1 512240 1.520135 1443311 15.68562 1333511 14.49148 824810 4.952 

e2 491954 1.459965 1292875 14.04808 1223663 13.29792 969318 5.81185 2 

e3 496552 1.476599 1309004 14.22661 1257601 13.66691 891772 4.94007 

e1 279963 0.851075 602184 6.551785 665086 7.228908 453645 2.7236 

e2 261526 0.792414 564819 6.145352 584324 6.355469 499010 2.58743 4 

e3 259565 0.788820 604674 6.579283 602115 6.550372 399208 2.47848 

e1 186117 0.573669 486808 5.301540 467211 5.085250 340233 1.90652 

e2 173629 0.525550 419186 4.557723 401019 4.368733 323222 1.73493 6 

e3 172046 0.539606 307244 3.343913 411801 4.480751 299405 1.86838 

 



 
 

48 

 

congestion burst, the unaware cases (Cl assi c and i OFF) continuously fell behind. The delay built up 
and it could hardly recover. This is evident by the step jumps in the delay line. The TCP aware cases also 
suffered some step buildup, but it was much smaller and it could recover after few seconds due to the rate 
retraction. In Table 12 we present the frame delay and acceptance ratio comparison for the whole stream. 
The table shows the performance for three choices of delay tolerance d=2, 4, and 6 seconds. For each value 
of d we traced the four running modes (i OPT, i EXP, i OFF, and Cl assi c) and recorded the average 
delay in seconds that each frame has experienced and the frame acceptance ratio at the four receiving 
player ABone nodes. It can be clearly noticed that iTCP/aware modes achieved low delays and high 
acceptance percentages while the unaware/classic modes suffered from higher delays and lower acceptance 
percentages. We present this information visually in Figure 24. In this figure we show the number of 
frames accepted at by the video player for the three choices of delay tolerance. Clearly iTCP’s TM 
mechanism allowed the application to use sophisticated optimization techniques to optimally control the 
temporal qualities of its traffic. 

5.4.4 Symbiotic Rate Control 

In the next set of experiments we present the internals of the symbiosis mechanism in more detail. 
Figure 25 depicts the symbiotic frame rate transcoding that occurred due to the joint rate specification at the 
rate control logic at the symbiosis unit and in the transcoder for each frame. In the figure we show four 
plots for the four target ABone nodes. Each plot represents the iOPT mode run for the delay tolerance case 
d=4. Table 13 presents the actual values of hbest and Trecovery that controlled the frugal mode operation as 
calculated by the symbiosis controller TM after being activated by each one of the three loss events created 
in the experiments. In each plot of Figure 25 we see the target bit rate and the retraction ratio as specified 
by the symbiosis controller, and the resulting outgoing actual frame rate generated by the transcoder. The 
timer out events (in this case there are 3 timeout events) reported by iTCP resulted in the symbiosis unit to 
modify the rate according to the optimal backoff symbiotic rule (equation 12). Though, the precise MPEG-
2 generation rate varied widely from frame to frame to accommodate the frame type, but the general trend 
followed the specified target. Table 14 provides the overall stream compression due to symbiotic adaptation 
for the entire stream (i OPT and i EXP cases), as compared to the normal non-symbiotic cases (i OFF and 
Cl assi c  cases).  In the Cl assi c and i OFF cases, there were no adaptation (thus retraction =1). 
Compared to this both i OPT and iEXP reduced the overall delivered bits about 83-95%. However, it is 
interesting to note that i EXP without its optimization logic, operated more aggressively and compressed 

Table 14. Percentage of total bits delivered for each mode  

 princeton.edu isi.edu supermedia.pl willab.fi 

 Target Actual Target Actual Target Actual Target Actual 
iOPT, d=2 0.912 0.913 0.898 0.901 0.886 0.886 0.929 0.929 

iOPT, d=4 0.966 0.966 0.892 0.897 0.814 0.826 0.789 0.791 

iOPT, d=6 0.975 0.98 0.94 0.945 0.87 0.88 0.867 0.874 

iEXP 0.843 0.843 0.835 0.835 0.862 0.862 0.86 0.86 

iOFF, Classic 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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 iOPT iEXP OFF Classic 

Figure 24. Number of frames accepted for three values of delay tolerance  
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Figure 23. Frame Arrival Trace  
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 iOFF iEXP iOPT, d=4 

Figure 26. Frame Arrival time and frame SNR quality tradeoff  
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Figure 25. Symbiotic Rate Reduction  
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more (for example i EXPs’  85% vs. i OPTs’  91% in d=2). In comparison i OPT operated more 
confidently (i.e., reduced less bits), yet achieved higher temporal quality (average delay is 2.6 sec vs. 0.5 
sec for same cases). 

5.4.5 Observation at Application Level:  

In the above experiments we illustrated how the symbiosis mechanism worked from the video 
transport protocol (MPEG-2) and the network transport protocol TCP layers beneath it. In this plot we will 
illustrate how this mechanism appears from the very top—at the application layer itself. An application 
receives and delivers uncompressed frames. The performance metric this end-system uses is the temporal 
and spatial quality difference between the transmitted and the reproduced uncompressed video frames. The 
underlying MPEG-2 system and the network layer TCP together provide the transport service.  The specific 
compression, windowing etc. and other detail mechanisms are external techniques to the end systems. 

In Figure 26 each frame is plotted as a point in the video quality/frame delay plane. The figure shows 
four plots for the four ABone nodes, and each plot represents three running modes (i OPT with d=4, i EXP, 
and Cl assi c). As can be seen from the region of the three QoS distributions, in TCP-classic, although 
frames have been generated with SNR quality ranging between 18-40 dB, but many of these frames 
suffered long delay and were lost in transport. In contrast, the interactive i OPT mode managed to deliver 
all frames with guaranteed delay with the bulk of the frames had 10-32 dB quality. It is interesting to note 
that the i EXP mode achieved the same tradeoff, but since it took a non-optimized and thus more aggressive 
approach in symbiotic rate reduction the quality suffered more loss and recorded values as low as 7 dB. 
Fundamentally, what iTCP has offered is a qualitatively (as opposed to the quantitative improvements 
offered by any unaware solution) new empowering mechanism, where the catastrophic frame delay can be 
traded off for acceptable reduction in SNR quality. 

 

5.4.6 Interactivity Overhead 

The dramatic advantage in application level performance came at a cost since the event tracking 
mechanism added some overhead. We were also curious to find out the overhead of the event mechanism.  
To track the overhead, we recorded the total data transmission time under the three conditions (i OPT, 
i OFF, and Cl assi c). The left most bar of Figure 27 plots the transport time for the optimal interactive 
mode where we activate both event delivery and symbiosis. To observe the overhead of the event service, 
in the i OFF mode we used the iTCP implementation, however, we stopped the symbiotic reduction so the 
transport layer handled the same amount of data. As expected the overall transmission time increased in all 
three cases. However, in the third column (Cl assi c mode) run we turned off the interactive service 
altogether and thus we saved its overhead and lost its benefit. As can be seen, the slight increase in the 

Figure 27. Interactivity service overhead  
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event delivery overhead was vastly offset by the application level technique. The advantage the application 
gained from the event delivery was much bigger than the overhead. 

5.5 Conclusion 

In this chapter, we have presented a case of rate symbiosis mechanism in line with current advances in 
TCP-friendly systems. We collected the results of our experiment by running the video session on the 
global Active Network (ABone) testbed. In the previous discussion we have demonstrated the case of 
quality conformant congestion control for time-sensitive video traffic. The approach exposed the overall 
advantage of network ‘ friendly’  applications. However, it also departs significantly from the mainstream 
TCP friendly systems that have been suggested recently in two senses; First, it does not add any new major 
component in network software structure. One of the principal strength of the proposed scheme is its 
relative simplicity at network layers—yet its effectiveness. It only expects some form of interactivity 
directly from the concerned network protocols as a general interface feature. Thus, there is no expectation 
of (or conflict with) additional services (such as combined congestion control from multiple applications). 
Secondly, the applications do not have to be designed dependent on other auxiliary indirect probing tools or 
network utilities, nor it excludes their use when available. Some of the information measured by the 
auxiliary tools suggested by other approaches might be already available (or are being estimated/tracked) at 
lower layers anyway. At least this is the case with TCP congestion. The direct protocol interactivity we 
propose thus seems to be the logical path that can avoid potential duplication of efforts. 
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CHAPTER 6  

IPMN: Interactive Protocol for Mobile Networking 
 
There are two well known challenges in the literature for Internet host mobility; (i) improving TCP 

level performance and (ii) reducing handoff latency. Until now, most solutions that were proposed were 
kept in lower network layers (i.e., link layer, IP, or TCP layer). In this chapter we present an end-to-end 
host mobility solution based on the InTraN paradigm. The solution allows continuous operation of TCP 
between the two endpoints even with the presence of handoffs and long disconnections, and it also enables 
the mobile node to perform fast handoffs with minimum or no loss. We have implemented the scheme on 
FreeBSD and tested the real system over the Internet. We show with experimentation on three types of 
traffic (Voice, WWW, and FTP) that our scheme can substantially reduce handoff latency and improve 
TCP performance. 

6.1 Introduction 

Classic IP protocol was designed long time ago for wireline Internet with no support for node 
mobility. Its routing mechanism relies on IP address semantics to deliver packets to a destination node 
whose location is assumed to be fixed. The same argument also applies to TCP, whose congestion control 
mechanism assumes that the path between the two endpoints is 'wired'. Since the advent of wireless 
technology and the tremendous growth of mobile networking applications, a persistence need has emerged 
to remedy the TCP/IP stack and make it mobile networking compatible. On the IP level, we need to be able 
to deliver packets to a mobile node regardless of its current point of attachment, and on the TCP level we 
need to be able to identify the reasons behind packet loss and react to them differently; if loss was due to 
congestion on the wired link, we let TCP run its native course–invoke the appropriate congestion control 
procedure. However, if the loss was due to radio disturbance on the wireless link or due to handoff 
disconnection, TCP should retransmit as soon as possible without any rate throttling. 

Fortunately, classic IP allows a mobile node to roam from one access point to another as long as it 
remains in the same IP subnet. In this case, the mobile node has to perform link-layer (L2) handoffs in 
order to maintain its wireless connectivity and these L2 handoffs remain transparent to the IP layer (L3). 
However, if the mobile node migrates to a different IP subnet, its current IP address becomes topologically 
invalid and it must acquire a new IP address from the newly visited network, i.e., it must also perform L3 
handoff. Otherwise, all its existing TCP/IP connections become useless. 

Extensive research has been done recently to address these problems. One of the most well known 
mobility solutions on the IP level is Mobile IP (MIP) [Per96] which has been endorsed by the IETF. MIP 
provided a global logical solution by introducing indirection through a set of Mobility Agents. Each mobile 
node is identified by an IP address assigned to it by its home network—called home address—regardless of 
its current point of attachment. MIP introduced three new entities, namely the home agent, the foreign 
agent and the mobile node. Whenever a mobile node performs L3 handoff, it must register its current point 
of attachment with the home agent. For every registered mobile node, the home agent intercepts all 
incoming traffic from a given sender—usually referred to as the correspondent node—and redirects it 
through tunneling (packet encapsulation) to the mobile node’s most recently registered location. Traffic 
from the mobile node to the correspondent node is routed normally (possibly bypassing the home agent). 
This kind of traffic flow is referred to in the literature as triangular routing. In MIP, foreign agents 
periodically broadcast agent advertisements to detect mobile node's movement. When the mobile node 
decides to migrate to a new subnet, it configures a new care-of-address, and then it registers this address 
with the home agent. The home agent updates its address binding cache and sends an ACK to the mobile 
node. Communication between the two endpoints cannot resume until registration is completed at the home 
agent.  

Although MIP has provided a global solution for IP level mobility, but it has also introduced its own 
performance problems. Some of them stem from the complicated handoff procedures which resulted in 
longer handoff latencies—which have also affected TCP level performance—and others from the longer 
routes due to triangular routing. Since its release, MIP has gone through several modifications like route 
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optimization extensions [Per00] [Per01]. Actually, a great deal of the research on mobile networking is 
focusing on MIP and its performance. For example, Researchers aimed at reducing registration signaling 
delay by introducing a hierarchical structure and therefore allowing regional registration and reduced round 
trip delay [Cam01] [Gus01] [Hri02] [Ram99]. Other proposals took a different approach by suggesting a 
deployment scheme of MIP based on existing infrastructure like The RAT (Reverse Address Translation) 
scheme [SiT99] which is based on the network address translation (NAT) protocol [Sri99]. 

At the TCP level, many solutions have been proposed to fix its performance problem over mobile 
networks. These solutions have been classified in the literature in three categories; link layer protocols 
[Aya95] [Bal95], split-connection protocols [Yav95 ] [Bakr97], and end-to-end solutions [Mat96] [Baks97]. 
A good survey on TCP extensions for mobile networks can be found in [Anj03] [Ela02]. Most of these 
proposals however, mainly targeted TCP level performance assuming the IP mobility solution already 
existed. Therefore, to solve the mobility problem on both levels (TCP and IP), we can either (i) combine a 
TCP level solution with an IP mobility solution (e.g., use SACK [Mat96] over MIP), or (ii) just propose 
one complete solution for both problems. The first option can be extremely costly in terms of extra 
overhead—and probably redundancy—due to lack of synchronization between the two solutions. The 
second option may be effective only if both protocols can share relevant events and state transitions 
(possibly through a third party) to be able to synchronize their actions. 

In this chapter we present IPMN (Interactive Protocol for Mobile Networking). IPMN provides a 
solution for IP mobility problem as well as TCP performance problem over mobile networks. The 
scheme—which diverts from the MIP approach—is based on the InTraN paradigm. With IPMN the 
correspondent node can send packets directly to the mobile node and eliminates triangular routing. More 
importantly, it can also perform rapid handoff with very little or no loss of TCP segments.  

6.2 Related Work 

We found several proposals in the literature with some kind of protocol interactivity. For example, 
Wu, et al. [Wu01] proposed an intelligent handoff scheme for mobile wireless Internet over MIP. One 
aspect of this scheme is to let L2 send a notification to L3 whenever L2 has successfully finished 
performing handoff. Also, Fikouras, et al, [Fik01] aimed at reducing movement detection delay in MIP by 
introducing a hinted based movement detection algorithm called Fast Hinted Cell Switching (FHCS). The 
scheme allows L2 to send ‘ triggers’  to L3 whenever a handoff event is initiated. These proposals have 
shown that such simple form of interactivity has an obvious advantage. However, they are fundamentally 
different from our scheme in two aspects: (i) they are based on MIP while our scheme offers a complete 
mobility solution that can replace MIP, and (ii) their event notification remains within lower network layers. 
But, since our interactive paradigm allows interactivity between lower layers and the application layer, we 
can deploy the solution at the application layer itself which has several advantages over low-layer solutions 
only. 

6.3 Interactive Protocol for Mobile Networks (IPMN) 

6.3.1 The Scheme 

We employed the InTraN paradigm to design a global IP level mobility solution which also 
incorporates a TCP level performance solution during handoff. The basic idea of our scheme is to enable 
the mobile node to obtain a new IP from the future access router before handoff is performed, replace the 
‘source IP’  field in the TCP/IP stack of the mobile node with the new IP, and relay the new IP to the 
correspondent node. Once it receives the new IP, the correspondent node immediately switches to the new 
IP by replacing the ‘destination IP’ field in the TCP/IP stack with the new IP. A best case scenario for this 
scheme would happen if the mobile node can locate the new access router and obtain a new IP address (e.g., 
through a DHCP server) before loosing connection with its current access router. Once it obtains its new IP 
address, the mobile node proceeds with L3 handoff as follows: 

1. Freeze the TCP connection by advertising a zero window to the correspondent node. 
2. Perform actual L3 handoff by replacing the IP fields in the TCP/IP stack at both the mobile node and 

the correspondent node with the new IP address. 
3. Wakeup TCP by advertising a nonzero window to the correspondent node. 
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Handoff pre-processing, i.e., locating a future access router and obtaining a new IP address, can also be 
done at the application level prior to L2 handoff. Fortunately, since we allow protocol interactivity, we can 
configure L2 to send an early signal the application layer about an impeding handoff. This gives the 
application layer a grace period to do all this 'bookkeeping' while it is still connected through the current 
access router. Naturally, a simple application level IP-lookup module should perform the task. We can 
benefit from interactivity again by allowing this IP-lookup module to probe L2 for the identity of the next 
access router (e.g., its IP address). Then, this module can contact the router and obtain the next IP address 
via a DHCP attached scheme. A number of previous works like [Fik01] [SiT99] and [Yok02] have shown 
excellent schemes that can support this methodology. We can re-model these schemes—or some aspects of 
them—via the InTraN paradigm to implement the handoff pre-processing illustrated above. Furthermore, 
we believe that since the mobile node can obtain a new IP before handoff, this pre-processing should not 
impact handoff latency. The purpose of this current implementation of IPMN is to experiment the basic 
idea of physically changing the IP number at both end-points whenever the mobile node configures a new 
IP address. Therefore, this version of IPMN, only implements the three-step L3 handoff procedure shown 
above. 

6.3.2 The Architecture 

We propose two modes of our scheme: A light-weight implementation that we call IPMN-Half and a 
more robust, heavy-weight implementation we call IPMN-Full. The primary difference between the two 
modes is the amount of internal inter-protocol interactivity involved. While in IPMN-Half a mobile node 
uses an explicit application-level message to relay the new IP number to the correspondent node, in IPMN-
Full the mobile node uses interactivity and TCP level communication to perform the same task. 

 
A) IPMN-Full Mode: 

Figure 28 describes the conceptual architecture of IPMN-Full, and Table 15 describes the 
corresponding events and their handling sequences at each endpoint. At the mobile node, when the link 
layer detects signal fading and initiates L2 handoff (event 1), it signals the subscribing application. When 
the event is received at the application layer, a Transientware module (handler 1) is activated immediately; 
this module simply makes a simple system call which lets TCP advertise a zero window to the 
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correspondent node. This would normally cause the correspondent node to stop transmission. When the 
mobile node gets a new IP from the future network (event 2), it activates (handler 2) which transmits the 
future IP to the correspondent node at TCP level through a system call. The new IP is sent in a special TCP 
segment with ‘opt i on=SWI TCH_I P’ . At the correspondent node, When TCP recognizes this option 
(event 4) it activates (handler 4) which then triggers a swi t ch_i p( )  system call to replace the 
‘destination IP’ field in the TCP/IP stack with the newly received IP number. Meanwhile, at the mobile 
node (handler 2) also makes a similar system call which changes the ‘source IP’ filed in its own TCP/IP 
stack. When the previous ‘SWI TCH_I P’  segment is ACKed at the mobile node (event 3), the mobile node 
advertises a non-zero window to the correspondent node which enables it to resume transmission. 
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Figure 29. IPMN-Half architecture 

Switch IP message 

Table 15. IPMN-Full events 

Node Event  
No. 

Layer Event tracked Action taken by event handler 

1 LL Wireless signal fading. 
Prepare to perform 
handoff to next BS.  

Advertises a zero window to the FH. The freeze 
mechanism of TCP will force the FH to stop 
transmission. 

2 IP A new IP has been 
assigned to the MN from 
the new BS. 

Call the switch_ip() system call. This will replace the 
source IP filed in the IP header of the MN with the new IP 
and will send a segment to the FH with TCP option = 
SWITCH_IP to replace the destination IP field on the FH. 

M
obile N

ode 

3 TCP The ‘SWITCH_IP’ 
segment has been ACK-
ed. 

Advertises a non-zero window to the FH. This will 
unfreeze the connection and enable the FH to resume 
transmission. 

F
ixed 

H
ost 

4 TCP A special TCP segment 
received with TCP 
option=SWITCH_IP. 

Strip the new IP number from the options part of the 
segment, then call the Switch_IP() system call which 
stores the new IP in the destination IP field of the IP 
header overwriting the old IP number.  
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B) IPMN-Half Mode: 

In this mode, we deploy the interactive protocol only at the mobile node. Figure 29 depicts the 
conceptual design and Table 16 describes the corresponding events and their handling sequences. Events 1 
and 3 have the same meaning and handling as in the previous ‘Full’  mode. Event 2, however, is handled 
differently; when (handler 2) is activated, it makes a system call to probe the TCP layer for the new IP 
number. It then sends this IP number to the correspondent node using a normal wr i t e( )  socket operation. 
Naturally, since the correspondent node can ‘ r ead( ) ’  the new IP directly from the socket, it does not have 
to catch any events or activate handlers. When the correspondent node receives the message it strips off the 
IP number and makes a swi t ch_i p( )  system call—as in the previous mode—to change the ‘destination 
IP’  number in the TCP/IP stack. The remaining procedure is identical to the 'Full' mode.  
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Internet 
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Figure 30. Experiment setup 

Table 16. IPMN-Half events 

Node Event  
No. 

Layer Event tracked Action taken by event handler 

1 LL Wireless signal fading. 
Prepare to perform 
handoff to next BS.  

Advertises a zero window to the FH. The freeze 
mechanism of TCP will force the FH to stop 
transmission. 

2 IP A new IP has been 
assigned to the MN from 
the new BS. 

Send a special message to the peer application on the 
FH. The message carries the new IP just assigned to the 
MN. When the FH receives the message, it runs a 
module that makes a special system call Switch_IP(). 
This system function will replace the destination IP field 
in the IP header with the new IP. 

M
obile N

ode 

3 LL Handoff has just finished Advertises a non-zero window to the FH. This will 
unfreeze the connection and enable the FH to resume 
transmission. 
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C) Freeze TCP: 
Advertising a zero window to the correspondent node to temporarily freeze the TCP connection was 

proposed in [Gof00] by Goff, et al, to improve TCP level performance over wireless networks. We adapted 
this part of the solution in our interactive scheme as a way to avoid packet loss during handoff. Although 
this will slightly disrupt the service while handoff is being performed, but since we avoid packet loss, the 

correspondent node will not resort to congestion control procedures avoiding unnecessary retransmissions 
and sender rate throttling. As we show later, this will definitely improve TCP performance and save 
network resources. 

6.4 Experiment Setup and Traffic Generation 

We have implemented the scheme on FreeBSD-4.5 by extending the kernel source code with InTraN 
components. In addition to that, we have created a number of system calls that implement the system’s API 
shown in Table 17. These functions were used by the TMs as we described earlier in the IPMN architecture.  

6.4.1 Experiment Setup 

Figure 30 explains the experiment setup. We used three machines with AMD 1.6 GHz processor (BS1, 
BS2, and BS2) as our Base Stations and a laptop with Intel P-II processor as our mobile node. The (GW) 
machine was our gateway to the Internet and was also used to configure each one of the Base Stations as a 
separate subnet with four IP numbers per subnet. We installed FreeBSD-4.5 on all BS machines, the mobile 
node, and the correspondent node. For IPMN experiments we installed the BSD-interactive on the mobile 
node and the correspondent node only. For the MIP experiments we installed the MIP implementation of 
the Portland State University [Bin99]–also known as PSUMIP—on the mobile node and the three BS 
machines. One of the three Base Stations machine (BS1) was configured as the Home Agent (HA), and the 
other two (BS2 and BS3) were configured as Foreign Agents.  
 

For MIP signaling to work correctly, the time must be synchronized on all machines which run the 
MIP daemons. To achieve this we used the (nt pd) utility in FreeBSD to synchronize with three STATUM-
2 external time servers. We used the simplest possible MIP configuration to reduce unnecessary overhead. 
We placed the correspondent node in three locations, one locally (in our lab) and two remotely: at Al-Quds 
University in 

Table 18. Correspondent node locations 

Name Location IP number Average RTT Hops from MN 

Local Kent, Ohio 131.123.36.11 1 ms 3 

Virginia Chantilly, Virginia 66.94.95.235 90 ms 19 

Al-Quds Palestine 62.90.25.58 356 ms 25 

 

Table 17. IPMN API 

System Call Usage 

Relay_IP(IP_addr) Let TCP transmit a special segment carrying the new IP to the other 
end. Used in ‘full interactive’ mode only. 

Switch_Source_IP(IP_addr) Changes the source IP address in local TCP/IP stack. 
Switch_Dest_IP(IP_addr) Changes the destination IP address in local TCP/IP stack. 

Freeze_TCP() Let TCP freeze its transmission by advertising a zero window to the 
other end. 

Resume_TCP() Let TCP resume its transmission by advertising a non-zero window. 
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Palestine, and in Virginia, U.S.A. Correspondent node locations and their characteristics are shown in 
Table 18. In each run, we let the correspondent node generate traffic and transmit to the mobile node. We 
also let the mobile node move along the cyclic path (BS1� BS2� BS3� BS2� BS1� …). We configured 
the mobile node to perform handoff every 3 minutes. We used a switch to simulate L2 wireless handoff; for 
example, in Figure 30 the mobile node is connected to BS1 through the switch. To perform L2 handoff 
from BS1 to BS2, we manually unplugged BS1 from the switch and instantly plugged BS2 to an empty port 
in the switch. We kept the mobile node connected to the switch all the time. 
 

6.4.2 Traffic Characteristics 

In order to model real-world traffic, we used a tool called NetSpec [Jon98] which was developed at 
The University of Kansas—to generate traffic at the correspondent node. Netspec offers several source 
models which can generate simulated traffic for Telnet, FTP, Video, Voice, and WWW [Lee95]. We ran 
the experiment with three types of traffic: Voice, WWW, and FTP. Below, we explain the statistical 
properties of these three traffic types. 
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Figure 32. Sampling of call duration over 5 hours 
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A) Voice Traffic: 
In NetSpec, voice has been characterized by a constant bit rate (CBR) source. Sampling rate is 8 kHz 

and each sample is 8 bits. This gives the standard bit rate of 64 Kb/sec for acceptable voice quality. Call 
arrivals are modeled by a Poisson process with fix hourly rates within one-hour periods. This means that 
the interarrival time between two calls is exponentially distributed. The probability density function of 
exponential distribution is given by: 

x
X exf λλ −=)(  mean/1, =λ  

Session duration (holding time) for voice calls was also modeled by a Poisson process and followed 
the exponential distribution. Figure 31 shows an example of call arrivals with 

�
=1 over 5 hours sampling, 

and Figure 32 shows an example of call duration over 5 hour sampling with three values of 
�
: 

�
1=0.004167, �

2=0.003333, 
�
3=0.002777. If we take the inverse of these 

�
s, we get mean call durations 3, 4, and 5 

minutes respectively. At the call level, the source is presented to the network as a constant-bit stream. To 
generate a 64 Kb/sec voice stream, talk bursts were generated by a 144-byte blocks separated by 18 ms 
silence periods. 
 

B) WWW Traffic: 
WWW traffic is modeled at two levels: call level and session level. The call level models the 

interarrival times of multiple sessions. The session level on the other hand models the document size. 
Request arrivals are modeled by a homogenous Poisson process within one-hour intervals. The interarrival 
time between two requests is exponentially distributed. The distribution of document size is a Pareto 
distribution. The probability mass function of a Pareto distribution is: 

1)( −−= ααα xkxf X   

And its cumulative distribution function is given by: 
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C) FTP Traffic: 
Like www traffic, FTP traffic is modeled at two levels: call level and session level. The call level 

models the interarrival times of multiple sessions. The interarrival time between two FTP sessions is 
exponentially distributed. During a single FTP session multiple data items of varying sizes are transferred. 
NetSpec used a fixed distribution to model the number of items per session called (ftpNOfItems), and a 
fixed distribution to model items' sizes called (ftpItemSize). Both models were based on the log-normal 
distribution. For a detailed discussion on these distributions and other traffic types in NetSpec please refer 
to [Lee95].  

For WWW traffic, we repeated the experiment with two choices of the interarrival parameter 
�
 and 

shape parameter � ; we combined 
�

1=0.000001 and � 1=0.4 in one set of runs, and we combined �
2=0.000005 with � 2=0.55 in another set. For Voice and FTP traffic we ran all experiments with the same 

two choices of the interarrival parameter 
�
. Since 

�
 is the inverse of mean interarrival, 

�
2 will yield longer 

interarrival intervals. 

6.5 Performance Results and Analysis 

6.5.1 Handoff Latency 

One of the most important features of our interactive scheme is its short handoff latency. In Table 19 
we show the handoff latency (in milliseconds) of the three traffic types (FTP, WWW, and Voice) on two 
cases of the correspondent node location (Local, and Virginia). The columns show the three running modes 
of the experiment (IPMN-Full, IPMN-Half, and Mobile IP). For each running mode we show two sub-
columns (Protocol Latency, and Total Latency). The Protocol Latency column shows the time needed by 
the protocol (i.e. IMPN or MIP) to finish L3 handoff and become ready to resume its communication 
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service. The Total Latency column shows the time needed to resume communication at the application 
level. We show the first four handoffs of each run. For example, for the (IPMN-Full/FTP/Local) run, in the 
first handoff the Protocol Latency time is 91 ms, and the Total Latency time is 98 ms. Also, for each traffic 
type, we add an extra row (the shaded one) to show the average of all eight runs of that traffic type. 

We can make three observations on Table 19. Firstly, we observe a big difference in handoff latency 
between IPMN and MIP that can reach up to three orders of magnitude. For example, in (FTP/IPMN-Full) 
the average protocol latency is 101.88 milliseconds, while in (FTP/MIP) the average protocol latency is 
72,981 milliseconds. This substantial reduction in handoff latency highlights the advantage of event-based 
protocols like IPMN over timer-based protocols like MIP. The former allows protocols in different layers 
to interact and pass events and new state information–like the new IP number in our case—to upper layers 
instantly. This enables peer protocols to respond immediately cutting down overhead time. Timer-based 
protocols on the other hand usually use a periodic probing mechanism to discover state changes. For 
example, in this particular implementation of MIP that we have tested, the foreign agent sends beacon 
signals (agent advertisements) to discover mobile node movement every 60 seconds! A best case scenario 
will happen if L2 handoff was performed right before the periodic beacon signal arrives. Therefore, this 
process will take half of that time on average–i.e. 30 seconds. Adding to this communication and 
registration overhead we can easily reach one minute latency or more. Secondly, actual application-level 
latency on MIP was even longer; by the time MIP has recovered and is ready to resume service, TCP has 
already timed out and will probably need even more time to discover the change and then resume 
communication on its own level. We show this quantity in the Total Latency column as we explained 
earlier. In IPMN-based protocols (Full and Half), the difference between these two quantities was very 
small (3 to 10 milliseconds) which can be regarded as negligible. Therefore, we only show this difference 
for the MIP case in the column labeled (Difference). A closer look at the Difference column, we see a great 
variation; it can be as low as 788 milliseconds, or as big as 114,974 milliseconds. This variation is due 
mainly to the dynamics of TCP congestion control and how it responds to long disconnections. But in 

Table 19. Handoff Latency 

  IPMN-Full  IPMN-Half  Mobile IP 
 

 
Protocol 
Latency 

Total 
Latency  

Protocol 
Latency 

Total 
Latency  

Protocol 
Latency 

Total 
Latency Difference 

91 98  517 520  40615 60017 19402 
102 109  543 552  52655 58841 6186 
94 103  541 545  34767 57067 22300 

Local 

89 94  540 550  37690 57966 20276 
109 110  131 134  70934 185907 114973 
110 120  126 132  78928 130120 51192 
111 116  130 139  203575 204395 820 

Virginia 

109 113  129 135  64684 122791 58107 

F
T

P
 

Average 101.88 107.88  332.13 338.38  72981 109638 36657 
108 118  527 532  28687 29600 913 
90 91  544 551  53636 58148 4512 
88 93  521 524  74728 122712 47984 

Local 

92 96  539 547  54417 64867 10450 
91 92  166 171  40533 54872 14339 
87 96  170 178  49610 57733 8123 
87 91  178 182  20564 59801 39237 

Virginia 

92 101  167 173  39057 61007 21950 

W
W

W
 

Average 91.88 97.25  351.5 357.25  45154 63592 18438 
106 107  146 153  12654 90615 77961 
107 110  148 155  7124 87099 79975 
111 117  140 146  1524 70140 68616 

Local 

115 124  148 152  48945 154591 105646 
114 121  124 134  58669 121124 62455 
106 114  139 144  24975 25763 788 
106 106  129 139  22672 25570 2898 

Virginia 

102 126  133 136  77414 125582 48168 

V
O

IC
E

 

Average 110.63 115.63  138.38 144.88  31747 87560 55813 
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general, this Difference has really added yet another long delay (between 18.4 and 55.8 seconds on average) 
to the already high MIP handoff latency. Actually, the column Difference highlights another advantage of 
IPMN which takes into consideration TCP performance in addition to its main purpose as a mobility 
solution. 

The third observation is IPMN-Full superiority over IPMN-Half; IPMN-Full handoff took 91 to 110 
milliseconds on average, while IPMN-Half handoff took 138 to 351 milliseconds on average. Again, this 
observation also emphasizes the benefit of interactivity. Recall that IPMN-Full employs interactivity on 
both endpoints while IPMN-Half uses interactivity on the mobile node only. As we can see this feature was 
to the advantage of IPMN-Full which managed to perform handoff in almost half the time needed by 
IPMN-Half. 

6.5.2 Traffic Arrival Trace 

A) Voice Stream Trace: 
Here we show application level performance by observing voice stream arrival trace. At the MN, we 

kept a log file to register the arrival time of each 144-bytes block (talk burst) in the voice stream. Figure 33 
plots the arrival times of the first 30,000 blocks at the MN from two of the correspondent nodes: Local and 
Virginia. The figure shows the case of interarrival parameter 

�
1=0.000001. The 

�
2=0.000005 case showed a 

similar trace but we did not include it for space limitation. 

Figure 33. Voice stream arrival trace 
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We can make two observations on these plots; firstly, in the Local node plot, MIP actually outperformed 
IPMN-Half and almost tied with IPMN-Full. Maybe the only advantage of both IPMN schemes was the 
smoothness of the arrival trace—which is still important for voice traffic. This behavior can be explained 
by the fact that all nodes were in the same room. In such situation, only handoff latency can be seen as a 
performance metric, other issues will be dictated by TCP dynamics and LAN load. However, in real 
Internet scenario the two endpoints are usually far a part—as in case (B)—and there we can see the 
relevance of the interactive scheme. In Figure 33 (B), we see that both IPMN schemes outperformed MIP 
mainly due to the huge step jumps on the MIP trace. These step jumps and the impact of TCP dynamics 

Figure 35. WWW traffic trace 
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(C) WWW message trace from Al-Quds node 
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created jitter on the voice stream as we will show in the next section. Also, it is worth noting that IPMN-
Full was slightly more efficient than IPMN-Half.  
 
B) Jitter on the Voice Stream: 

Figure 34 plots the interarrival times of the first 16000 blocks arriving at the MN from Virginia node, 
(A) on IPMN-Full, and (B) on MIP. On IPMN-Full almost all blocks were delivered at (75 to 90) 
milliseconds apart, except (mainly) those that faced a handoff –only 22 blocks were delayed for more than 
100 milliseconds. In Figure 34 we show a maximum of 150 ms on the y-axis to be able to see the 
mainstream case. Average interarrival time for all blocks on IPMN was 85.57 milliseconds. On MIP the 
situation is different; about 177 blocks in the stream faced more than 100 milliseconds interarrival –10 of 
these blocks faced more than 8000 milliseconds delay—and average  interarrival time for all blocks was 
129 milliseconds. 

 
C) WWW Traffic Trace: 

To trace WWW and FTP traffic, we kept two log files at the mobile node: one that registered the 
arrival time of each document and one that regarded the incoming stream as a whole sequence and 
registered the arrival time whenever 1 KB-fragment was received. Figure 35 (A) plots the arrival times in 
seconds of the first 30,000 fragments that arrived at the mobile node from the Local node, (B) traces the 
first 30,000 fragments from Virginia node, (C) traces the first 10,000 fragments from Al-Quds node, and (C) 
plots the arrival times of the first 500 documents that arrived from Al-Quds node—we show only this 
sample of documents' trace for space limitations. In each plot there are four runs: two for MIP and two for 
IPMN (all plots shows IPMN-Full except (A) which shows IPMN-Half). For each mode we generated 
WWW traffic using the two values of interarrival parameter 

�
 that were mentioned earlier—shown in the 

figure as L1 and L2.   Again, on the Local plot (A), MIP seems to outperform IPMN especially with L1 
traffic. But on the Virginia plot (B), IPMN managed to deliver all fragments 2 – 3 times faster than MIP. 

Figure 36. FTP traffic trace 
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On the Al-Quds plots (C) and (D), the difference was even bigger. A closer look at the (C) plot reveals the 
impact of TCP's congestion control dynamics on the trace due to long disconnections on the MIP runs. This 
coarse behavior disappeared on the smoother IPMN traces. From this pattern of behavior, we can say that 
IPMN performs better when the two endpoints are furthest apart. 

 
D) FTP Traffic Trace: 

We show FTP traffic trace in Figure 36. Plot (A) of the figure shows the arrival times in seconds of 
the first 30,000 1 KB fragments that arrived at the mobile node from the Virginia node, plot (B) traces the 
first 6,500 fragments from Al-Quds node, plot (C) traces the first 300 files from Virginia node, and (D) 
plots the arrival times of the first 250 files that arrived from Al-Quds node. As in the WWW case, there are 
four runs in each plot: two for MIP and two for IPMN with the same interarrival parameters L1 and L2 that 
were used before. These plots further confirm the obvious advantage of IPMN over MIP as we saw with 
Voice and WWW traffic. It is worth noting the great impact of the long handoff disconnections on the trace 
of MIP cases in Al-Quds plots (B) and (D).  

6.6 Conclusion 

IPMN uses true end-to-end signaling to update the current state of the mobile node’s location at both end-
points. Using interactivity, the mobile node was able to freeze the TCP connection and to perform loss-free, 
rapid handoff by simply changing the 'source IP' field in TCP/IP stack of the mobile node and the 
'destination IP' field in the TCP/IP stack of the correspondent node. As a mobility solution on the IP level, 
IPMN offered two key advantages over conventional timer-based MIP; (a) it allowed direct end-to-end 
communication between the correspondent node and the mobile node at a very little overhead cost, and (b) 
it dramatically reduced handoff latency by canceling movement detection and address registration. On the 
TCP level, IPMN managed to significantly improve TCP performance by the successful employment of the 
Freeze TCP technique in the InTraN paradigm. We have demonstrated these features of IPMN by real 
experimentation with Voice, WWW, and FTP traffic on remote nodes over the Internet. The results 
demonstrate the benefit of the principle of interactivity in networking. It enables event based action and 
response. It distinguishes from the traditional timer-based MIP which depends on periodic actions. The 
periodic agent advertisements used in MIP is one of the prime reasons for its sluggishness. MIP has to 
maintain a delicate balance between advertisements' frequency/size and their impact on network 
throughput1. Event-based scheme such as the one demonstrated by IPMN does not require this compromise. 
Indeed the benefit of instant interactivity was so dramatic that it could easily wipeout the seeming 
advantage of MIP’s low layer implementation. 

                                                
1 The original MIP proposal [Per96] recommended shortest agent advertisement rate of 1 per second. The implementation that we 
have tested in this paper (PSUMIP) uses a much slower rate of 1 per minute. We tried to lower this rate, but it did not work. Since 
PSUMIP was the only available implementation compatible with FreeBSD-4.5 kernel at the time, we could not test with faster agent 
advertisement rate. Many other MIP implementations allow the user to set a preferred rate of one or more seconds. The best rate that 
would yield optimal network throughput is still controversial and is highly dependent on mobile node's movement frequency and 
traffic load. 
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CHAPTER 7  

Protocol Modeling 
 
In this chapter we briefly describe two well-knows protocols; Snoop [Bal95] by Balakrishnan et al., 

and WTCP [SiV99] by Sinha et al. They are among many other schemes proposed in the literature to 
improve TCP performance over wireless links. Then, we show how they can be modeled with the meta-
engineering of the InTraN paradigm. 

Wireless networks have certain characteristics that are not handled properly by regular TCP such as 
high bit error rate (BER) and long disconnections due to handoffs or bad reception. When a packet is lost, 
regular TCP assumes that it is due to congestion and will always trigger congestion control procedures at 
the fixed host. However, in a wireless environment, radio transmission errors or handoffs can also cause 
packet loss. This will result in significant reductions in throughput that can severely degrade overall 
performance. A good survey on proposed protocols for improving TCP performance over wireless 
networks can be found in [Anj03] [Bal96] [Ela02]. 

 

7.1 Snoop 

The Snoop protocol introduced a module, called Snoop, at the base station that monitors every packet 
that passes through in both directions. The Snoop module maintains a cache of TCP packets sent from the 
fixed host that have not yet been acknowledged by the mobile host. A packet loss is detected either by the 
arrival of duplicate acknowledgment or by a local timeout. To implement the local timeout, the module 
employs its own retransmission timer. The Snoop module retransmits the lost packet if it has it in the cache. 
Thus, the base station hides the packet loss from the fixed host, therefore avoiding its invocation of an 
unnecessary congestion control mechanism. Figure 37 describers the basic architecture of the classic Snoop 
protocol and Figure 38 shows the InTraN-enabled model of Snoop. The scheme represents part of the 
snoop protocol that handles one direction of the traffic only (Data segments from FH to MH and ACK 
segments from MH to FH). The Snoop protocol uses a different technique to handle traffic on the other 
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direction, but it can be easily modeled with the InTraN framework in a similar fashion. The model shown 
in Figure 38, assumes that data segments are cached in the network as in conventional Snoop for 
performance reasons.  

 
Assuming that the ‘Snoop Agent’ shown in Figure 38 has subscribed with the InTraN-enabled IP 

protocol (or iIP) for two events: an ACK received from MH event (evt_ACK_MH), and data segment 
received from FH event (evt_DAT_FH). Whenever any one of these two events occurs, iIP sends a signal 
to the SM which invokes the appropriate TM: TM-Data or TM-ACK. The Snoop Agent is a process that runs 
in the application layer. Its main role is to initialize and maintain the Snoop State, subscribe with the 
InTraN service. Afterwards, most of the work is done by the TMs. The Snoop State is similar to the one 
used in the conventional snoop protocol. The TM-Data handles the (Data segment received) event. It 
implements the Data processing algorithm of the snoop protocol. The TM-ACK handles the (ACK segment 
received) event. It implements the ACK processing algorithm of the snoop protocol. Both algorithm are 
describes in detail in [Bal95]. Both TM-Data and TM-ACK need to interact with iIP; they use the Access 
API of the InTraN service to (i) probe the IP layer and Read relevant header parameters from the TCP 
segment that has just arrived and (ii) to update the cache of TCP segments. The TM-Data adds segments to 
the cache and the TM-ACK clears the cache or part of it as decided by their respective algorithms. We 
assume that both TMs have full access to the Snoop State; they can read and update state variables as 
necessary. 

7.2 WTCP 

Wireless Transmission Control Protocol (WTCP) is specifically designed for wireless wide area 
networks. WTCP is based on the following two key principles: (i) it uses rate-based rather than window-
based transmission control, i.e., it does not use ACKs for self clocking, and (ii) it uses the ratio of the inter-
packet separation at the receiver and the inter-packet separation at the sender as the primary metric for rate 
control rather than using packet loss and retransmit timeouts. WTCP uses a heuristic based on the average 
per-packet separation to distinguish congestion losses from random losses. In this heuristic, the receiver 
initially predicts that all losses are non-congestion losses. The following example from the WTCP original 
paper [SiV99] explains the main concept of this heuristic: consider that packets i and j were received (i < j), 
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but packets i+1 … j−1 were all lost. In this case the receiver computes the average inter-packet separation 
for each of the lost packets as:  

ij

recvTimerecvTime
perPktSep

ij

−
−←  

Where recvTimei is the time at which the last bit of packet i arrive. If the value of perPktSep is close 
to the measured inter-packet separation at the receiver (i.e., within the band [average − K × mean deviation, 
average + K × mean deviation], where K is a constant), then the receiver predicts that the losses were all 
random losses. Otherwise, the receiver predicts that there was at least one congestion loss, and the sending 
rate is reduced. The basic mechanism of the WTCP’s rate-based scheme is shown in Figure 39. The 
receiver computes the desired sending rate via its rate control mechanisms, and notifies this rate to the 
sender in the ACK packets. ACKs, thus, carry both reliability information (SACK) and rate control 
information. The sender monitors the reception of ACKs, and adjusts its rate accordingly. It also monitors 
the ACKs to tune the ACKing frequency, which it then notifies to the receiver in future data packets. We 
show the InTraN-enabled model of WTCP in Figure 40. Basically, we have moved most of the processing 
to the application layer as TMs; i.e., the rate control algorithm at the receiver (MN) and reliability algorithm 
at the sender (FH).  The InTraN extension provided the necessary API that allows TCP to trap events on 
both ends. On the MN, when a new packet is received, this event triggers the (inter-packet time 
computation) TM, which calculates new timers and updates the internal state of WTCP. When it is time to 
perform the periodic update, this event triggers the (sender rate heuristic) TM to calculate a new rate for the 
sender. The updated rate is transmitted to the sender through the API. On the sender side, when an ACK 
packet is received, one TM handles (ACK monitoring) and (SACK processing) since the ACK packet 
carries both ACK and SACK information. The (SACK processing) part of the TM discovers holes in the 
transmitted packet sequence, i.e., discovers lost packets, and issues retransmission request through the 
InTraN API. The (ACK monitoring) part of the TM calculates a new ACKing frequency rate based on the 
current transmission rate and the internal state and sends the updated rate to the receiver periodically. 
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7.3 Performance Issues 

7.3.1 Overhead Cost 

The transparency model implementation of both protocols adds some extra cost to the original scheme 
as a result of the added signaling and system calls overhead. Here, we show an abstract comparison of both 
interactive and conventional schemes of the Snoop protocol. In Table 20 we show several quantities that 

define cost variables and wireless link characteristics. The first column in Table 21 shows the estimated 
cost incurred by deploying the Snoop protocol for three wireless link scenarios: (1) error-free, handoff-free 
wireless link, (2) error-prone link with BER = 1 error for each x Mbytes, and (3) a moving mobile node that 
triggers a handoff every n seconds. The second column represents the InTraN version of Snoop. In the first 
scenario (a reference case) iSnoop added overhead came from Sub, S, H, and Ui - Un.  Actually, in real 
practice these added costs should be very small (almost negligible). For example Sub, H, and Ui all involve 

Table 22. Running modes for the getrusage() experiment 

Mode name Description 

Classic TCP No interactivity overhead. This is the reference case. 

Invoke only Subscribe with a Signal-only type TM. The TM does not perform any 
Read/Write operations. 

File access Subscribe with a Signal-only type TM. We let the TM open a disk file and 
perform one read operation and one write operation. 

Protocol access Subscribe with a Read-only type TM. We let the TM perform one ReadVar() 
operation from TCP. 

iTCP 
modes 

Protocol & File Subscribe with a Read-only type TM. We let the TM perform both a disk 
read/write and a ReadVar() operation from TCP. 

 

Table 21. Algebraic overhead cost of Snoop and iSnoop 

Scenario Classic Snoop Interactive Snoop (iSnoop) 
Error-free, handoff-free 
wireless link  

SNOOPfree  =  
NDAT  (CDAT  + Un)  
+ NACK (CACK + Un) 

iSNOOPfree =   
Sub + NDAT (S + H + CDAT + Ui) +  
NACK (S + H + CACK + Ui) 

Error-prone link with BERx 
= 1 error / x MB 

SNOOPfree + (T / BERx) iSNOOPfree + (T / BERx) 

Handoff every n seconds SNOOPfree + Choff  (8 · T / n · R) iSNOOPfree + Choff  (8 · T / n · R) 

 

Table 20. Cost parameters for Snoop and iSnoop 

Name Meaning 
CACK Overhead cost per ACK segment 
CDAT Overhead cost per Data segment 
NACK Number of ACK segments 
NDAT Number of Data segments  
Un Update State/Cache cost in normal mode 
Ui Update State/Cache cost in interactive mode. We assume that Ui > Un 

since Un might involve making a system call.  
Sub Subscription cost 
S Software Interrupt ‘Signal’ cost 
H Signal Handler cost 
R Retransmit cost 
T Total transfer size (Mbytes) 
Choff Handoff cost 
R Wireless link bit rate (Mbps) 
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running a small system call and OS context switch cost. Besides the reference case, the other two scenarios 
were identical in both protocols. The same kind of analysis holds for the WTCP case. To get a real 
measurement of interactivity service overhead we performed a simple experiment on iTCP. We ran the 
video session (server, transcoder, and player) on classical TCP (the reference case) and on iTCP with four 
different modes by varying the access complexity of the TM. These five modes are explained in Table 22. 
We used the FreeBSD utility getrusage() to collect statistics about system resources used by the video 
transcoder (our subscriber program) in the five running modes. In the four iTCP modes, we measured the 
overhead cost of invoking the InTraN service which can be summarized by (1) subscription cost, (2) SM 
cost, and (3) TM cost. The most significant part of these is the TM cost since it implements the real protocol 
extension and its complexity can vary significantly. Therefore, we used TM complexity as a criterion to 
classify iTCP runs into four modes. Also, in each mode, we ran the video session ten times by varying the 
number of TMs that were invoked during the session from 1 to 10—we will call this number N. We 
collected the following resource usage information from the getrusage() function: 
1) utime: The total amount of time spent executing in user mode. 
2) stime: The total amount of time spent in the system executing on behalf of the process. 
3) vcsw: The number of times a context switch resulted due to a process voluntarily giving up the CPU 

before its time slice was completed (usually to await availability of a resource). 
4) fcsw: The number of times a context switch was forced by the OS due to a higher priority process 

gaining the CPU or because the current process exceeded its time slice. 
The performance results of the first two parameters are plotted in Figure 41 and the latter two are 

plotted in Figure 42. 
 

A) CPU time Analysis 
In Figure 41 iTCP overhead time is shown on the left Y-axis at the lower part of the figure, and the 

total application running time is plotted on the right Y-axis. Here we see that (utime) overhead varied 
between 0 and 220 msec, while (stime) overhead varied between 0 and 360 msec. This is a small 
percentage of the total running time in both cases as we show in Table 23. In the table we also show the 
standard deviation of the iTCP overhead over the 10 runs. Also, we could not determine a consistent pattern 
of CPU time overhead as N increases. This means that once the InTraN service is deployed in the system, N 
will not have a significant impact on CPU time. But it can be seen that iTCP modes which involve a file 
access took more CPU time—which is reasonable.  

 
B) Context Switching Analysis 

In Figure 42 we show context switching overhead and in Table 24 we show the related statistics. It 
can be seen that approximately 20% of the total number context switching was voluntarily (vcsw) and the 
rest was forced (fcsw). But, iTCP added more to (vcsw)—between 1000 to 4400 context switches—than 

Table 24. iTCP context switching overhead 

 Voluntarily CSW  Forced CSW Total CSW 

Invoke only 24.10% 0.19% 4.16% 
File access 25.10% 0.22% 4.39% 
Protocol access 24.30% 0.20% 4.22% 
Protocol & File 24.20% 0.20% 4.19% 

 

Table 23. CPU time 

 User CPU Time System CPU Time Total CPU Time 

 iTCP% SD iTCP% SD iTCP% SD 

Invoke only 1.10% 55.68 3.80% 67.62 2.53% 200.08 
File access 2.70% 116.47 3.70% 106.94 3.23% 272.28 
Protocol access 0.90% 44.65 3.10% 59.37 2.07% 167.89 
Protocol & File 1.30% 81.09 4.10% 77.95 2.82% 224.89 
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that it added to (fcsw)—between 70 to 170 context switches. Percentage wise, as shown in table Table 24, 
iTCP overhead is 25% of (vcsw) versus 0.22% of (fcsw). Overall, iTCP added less than 4.5% to the total 
context switching. Another observation is the increase pattern of (vcsw) as a linear function of N which can 
be described by f = 252 N + 1500. This means that iTCP service deployment will add at least 1500 to 
(vcsw), and then (vcsw) grows linearly with a slope = 252 as N increases.  

7.3.2 Security and Practice 

The added small overhead cost can be justified for many practical gains allowed by the InTraN 
paradigm. As we mentioned earlier, since TMs run in the application space, they will enjoy a well 
developed provision tuned to run custom codes, share resources, and manage security issues. Actually, the 
security issue is of great importance in such engagement. Running the Active modules inside the network 
raises many security concerns that usually require complex techniques to maintain acceptable security level 
and stability within the network domain. Moving these modules up to the application layer makes security 
management a much easier task. Actually, Subscriber Programs and TMs can only access internal network 

Figure 41. iTCP CPU time overhead 
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services through the API extension. Therefore, by imposing the appropriate access restrictions on each 
party, we can guarantee certain security level. Furthermore, since the API extensions can be implemented 
as system calls, we can simply extend the OS security model and reuse available OS facilities like memory 
management and resource sharing to achieve even better performance. These characteristics make the 
InTraN model an attractive and a practical choice to implement and deploy many useful protocols which 
thus far had been only simulated or tested on a small-scale controlled testbed. 

7.4 Conclusion 

In this chapter we have shown that the Interactive Transparent Networking (InTraN) paradigm can be used 
to re-model existing protocol modifications by protocol meta-engineering and application level 
Transientware Modules (TMs). Actually, the InTraN version of the re-modeled solution can be further 
enhanced without changing the lower level implementation. For example, a protocol like WTCP which was 
intended to improve TCP performance over wireless links can also be augmented with extra TMs to add 
TCP-friendly features. We have particularly chosen two ‘original source’  examples for demonstrating an 

Figure 42. iTCP context switching overhead 
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implementation path via transparent networking—but this is not to endorse them. Please note because of 
their basic usefulness researchers have subsequently proposed several improved variants [Anj03] [Ela02]. 
The proposed transparency via interaction and triggered TM deployment will provide them implementation 
paths as well. In fact, since TMs operate at the application layer it will be much easier even to upgrade a 
certain TM from its current version to another improved one. 
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CHAPTER 8  

Conclusion 
 
In this dissertation we have presented and investigated InTraN, a new paradigm for extensible and 

adaptive networking that can dynamically meet the emerging requirements of modern networking, and the 
increasing demands of distributed applications (e.g., QOS guarantees, security, mobility, fault-tolerance, 
etc). The InTraN paradigm retains a good balance between the classical Internet design principles and the 
more contemporary aggressive approaches like programmable networks and protocol composition tools. 
On one hand, InTraN maintains the benefits of the classical design principles by (i) keeping the core of the 
network as simple and generic as possible, and (ii) maintaining the original semantics of the network layers. 
On the other hand, it can still achieve the goals of contemporary approaches for extensible and adaptive 
networking.  

The InTraN paradigm has a number of unique features that distinguish it from other approaches; first, 
it offers an event/response mechanism (vs. timer-based or probing-based mechanisms) which makes it 
faster and more responsive especially for time-critical applications. Secondly, it requires only a light-
weight re-organization of the existing kernel infrastructure (vs. heavily customized modifications or 
complex middleware) which adds minimal overhead to the network and tolerates high scalability. Thirdly, 
it allows kernel level enhancements to be performed at the application level, and thus, they become much 
practical/easier to deploy and implement (as opposed to direct kernel modifications). Furthermore, this 
feature can greatly simplify other critical issues like security management, maintenance, and resource 
sharing since the application layer has been optimized to handle these issues effectively. We have 
illustrated these principles by presenting three types of solutions based on the proposed InTraN paradigm; 
(1) adaptive applications via a video transcoder, (2) cross-layer optimization via a mobility solution for IP 
networks, and (3) protocol extensions. The experimental results reported in this work—from real prototype 
implementation and world-wide Internet experiments—have shown substantial improvements in network 
level performance as well as application level performance.  

A number of issues are yet to be investigated though; for example, we have proposed a security model 
for InTraN, but we have not implemented that in the prototype, and even though we know—theoretically at 
least—that the proposed security model should be effective in maintaining the safety and correctness of the 
overall system, a real prototype may be needed to expose its real capabilities and complexity. Another 
unresolved issue is scalability; the SM (Subscription Manager) has been designed as a central handler, and 
thus, it might become a bottleneck during heavy traffic or with an increasing number of transientware 
modules. In this current prototype we have used one SM to handle all modules/applications. Another 
alternative approach is to use one SM per application instance. Therefore, a future research can reveal 
which approach is more effective, and to which extent it can scale-up to support bigger, more complicated 
scenarios. Finally, this current design of InTraN does not offer any guarantees that event signals will be 
handled in the same order by which they have occurred. However, in a more sophisticated scenario (e.g., 
multicasting) where potentially many signals might arrive at the SM simultaneously, the issue of event 
synchronization and timing should be addressed. This can also be picked up as a future research topic.   
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