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Semantic analysis of educational resources is a very interesting problem with

numerous applications. Like any design process, educational resources also have basic 

elements of design and reproduction. In the process of designing test problems, these 

elements are in the form of information objects. Course knowledge can be represented in 

the form of prerequisite relation based ontology using which, assessment and information 

extraction from test problems is possible. We propose a language schema based on Web 

Ontology Language (OWL) for formally describing course ontologies. Using this

schema, course ontologies can be represented in a standard and sharable way. An 

evaluation system acts as the backend for the design and re-engineering system. This 

research aims at automating the process of intelligent evaluation of test-ware resources by 

providing qualitative assessment of test problems. Some synthetic parameters for the 

assessment of a test problem in its concept space are introduced. The parameters are 

tested in some real world scenarios and intuitive inferences are deduced predicting the 

performance of the parameters. It is observed that the difficulty of a question is often a 

function of the knowledge content and complexity of the concepts it tests.
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Chapter 1.

Introduction and Background

Since the advent of the Web a great optimism has been created about online 

sharing of course material. Many educators worldwide today maintain course websites 

with online accessible teaching materials. The primary use of these web-sites is for 

dispensing lecture materials to immediate students. There have been many organized

attempts as well to create large digital courseware libraries to promote sharing. Some of 

the significant efforts in this direction are NIST Materials Digital Library Pathway [2, 3], 

NSDL Digital Libraries in science, technology, engineering and mathematics (STEM) 

[10], OhioLink [4], ACM Professional Development Centre with over 1000 computer 

science courses [5], etc. Most universities, colleges and even schools now actively

encourage online course material dispensing through portals.  MIT’s Open Course Ware 

(OCW) project [7] has more than 1000 course materials freely available, Universia [6]

maintains translated versions of OCW courses in 11 languages, China Open Resources 

for Education (CORE) has a goal to include Chinese versions of the OCW for over 5000 

courses, NSDL has focused on collecting specialized learning materials and currently has 

more than 1000 such collections [8], Centre for Open and Sustainable Learning [9] at the 

Utah State University, etc. the amount of digital courseware content available online is 
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huge. Surprisingly, the real sharing of the materials among the educators is still very low. 

In OCW it has been noted that only 16% of the users are educators out of which not more 

than 26% use it for planning their course or teach a class [10]. The actual reuse for most 

sites is mostly unreported and possibly lower. Surprisingly despite such massive 

intention, organized efforts and the market, effective sharing of courseware among 

teachers is almost non existent. A fresh and critical look has to be undertaken to tackle 

the central problem of sharing learning objects. It seems good courseware is the product 

of complex design [12, 13]. The process of teaching requires continuous innovation, 

adaptation and creative design on the part of the teacher. Unfortunately the current form 

and status of courseware doesn’t aid to this process at all. Teaching is a high level 

cognitive activity of knowledge organization and dissemination and requires complex and 

continuous customization. 

Most courseware today, on the web or otherwise, is not accompanied with a 

conceptual design. Any composition, engineering design or courseware or an art work 

always takes place in the context of a conceptual design space. The conceptual context is 

the most important factor in any formative learning process. Consider a lecturer giving a 

presentation on some topic. If the lecturer simply talks about the presentation topic 

without giving any reference to a slide or a diagram, it is very difficult to understand. 

Conversely if the lecturer just presents the slides without explaining them in some 

context, the presentation remains incomplete. There is no well formed encoding principle 

for capturing and sharing this invisible design without which the course materials 

significantly loose much of their reusability. In desperate cases, teacher has to manually 
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reverse engineer the design from the courseware. Therefore, it is not surprising that 

instructors and educators find it easier to build the course materials from scratch rather 

than reusing online available resources. The background design of the course material is 

vital for creation and reengineering of courseware. It is very unlikely that without the 

design, finished courseware available will ever be used creatively. 

Currently the web is huge repository of assorted digital resources without much 

reusability. Most educational content is scattered, replicated and not linked to each other 

by any kind of relationship. To make this digital content reusable, sharing the metadata 

associated with it is necessary. A clear distinction has to be made between knowledge 

and information. Knowledge is the means by which intelligent design and sharing of test-

ware and other web resources is possible. The main problem of information on the web is 

that it is hardly machine usable [11]. To make the data on the web reusable it is necessary 

to have information about the data itself. Thus the Meta information associated with the 

actual data is just as important as the data. Palazzo et.al. [13] address this problem and

propose a system for courseware authoring taking into account the student learning style, 

technical background, presentation preferences and other inclinations.

Traditionally concepts maps are used to represent the backend context for the 

course knowledge. Many efforts [16, 17, 18, 19] have gone into representing course 

knowledge using concept maps. In the recent past ontologies progressively are being used 

to represent structured information in a hierarchical format. Concept maps offer a means 

to represent hierarchical knowledge; however they are too expressive and consequently 

contain more information and semantic relationships than necessary for effective 
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computation. Ontologies provide a means to effectively map this knowledge into concept 

hierarchies. Course ontology, particularly, can be roughly defined as a hierarchical 

representation of the topics involved in the course, connected by relationships with 

specific semantic significance. Using ontologies for course concept hierarchies in the 

domain of education is only obvious. Currently the process of designing of test problems 

is completely manual, based on human experience and cognition. Design of test problems 

also follows the basic principles of any engineering design process. The primary elements 

of design in this case are the information objects. Much effort has been put in the creation 

and reusability of these information objects called as the learning objects. The Learning 

Object Metadata (LOM) [26] standard for the representation of information about 

educational resources is the product of this effort. Recent standardization of semantic 

representation standards like RDF and OWL offers great technical platform to represent 

the concept knowledge space symbolized by ontologies. The representation of meta data 

for educational resources greatly improves it machine usability. These progressive steps 

taken in the field of knowledge and metadata representation now provide a great platform 

for researchers and theorists to create resourceful and innovative applications which 

effectively utilize the background knowledge in a particular domain to intelligently and 

automatically design, compose, evaluate, reengineer and share information rich resources 

like courseware, web resources, educational materials etc. 
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1.1. Related Work

There have been numerous attempts to quantify the complexity of problems [14, 

15, 16, 17, 21]. The approaches to problem difficulty assessment can be distinguished 

into two types, knowledge based approaches and cognition based approaches. 

Researchers which follow knowledge based approach generally present mathematical 

models for calculating difficulty of a problem based on the knowledge it tests. The 

cognitive researchers look at the problem from learning point of view and try to find 

answers from the student and education perspective. 

Li and Sambasivam [17] experiment with static knowledge structure of computer 

architecture course to compute problem difficult. The difficulty is calculated based on 

normalized weights of the concepts connected to and from the question. Kou, et.al. [14, 

15] propose a very innovative technique to represent concept maps using information 

objects. These objects act as input to a system which calculates difficulty. Difficulty is 

considered a function of numerous factors like, number of attributes, learning sequence of 

concepts, concept depth, number of unknown parameters, and number of given attributes

mathematical complexity etc. However the system does not calculate difficulty for 

complex problems, i.e. problems based on more that one concept. Palazzo, et. al. [12] 

provide a great representation for course knowledge. Though they do not consider the 

problem of difficulty assessment, they provide an excellent means for course ware 

authoring based on course ontologies linked with prerequisite relationships. The main 

problem with these approaches is that no solid course representation technique is used 
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consistently. The representations used are often rigid, incomplete and incomputable. Li 

and Sambasivam’s static knowledge structures are intuitively generated structures where 

weights are allocated on parent child relationship without any external considerations. 

Kou et.al. use a number of other factors the values for which are calculated mostly 

empirically and are highly subjective. 

The other group is the one of cognitive and educational researchers. Lee, F-K and 

Heyworth R.,  attempt to calculate the difficulty of a problem based on factors like, 

perceived number of difficult steps, steps required to finish the problem, number of 

operations in the problems expression and students degree of familiarity with the 

question.  Studies by Croteau, Heffernan & Koedinger (2004), Koedinger & Nathan, 

(1999), [24, 25, 26, 27] try to figure “why algebra word problems are difficult?” They 

propose difficulty measures which are based on arithmetic and symbolization in a 

problem. The reasoning behind this is that, greater the number of symbols in an

arithmetic problem, greater is the difficulty. Cognitive research also reason that much of 

the difficulty children experience with word problems can be attributed to difficulty in 

comprehending abstract or ambiguous language [44].

This thesis follows a purely knowledge based approach to assessment of problem 

difficulty. The main problem with previous works is that they fail to give a coherent 

representation of the knowledge domain. We present a novel approach to course ontology 

representation which is standard and coherent, and propose some assessment parameters 

for problem complexity computation. 
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1.2. Thesis contribution

In this thesis we present a novel approach to course knowledge representation 

using course ontologies, in an expressible and computable format using has-prerequisite

relationships where concepts involved in teaching a course are arranged in hierarchical 

order of their importance. It differs from traditional ontologies most significantly in that, 

it is not IS-A relation based and it is not a directed acyclic graph (DAG) as most 

traditional ontologies. A schema language is developed called, Course Ontology 

Description Language (CODL) for representing course ontologies which can provide a 

framework for encoding and sharing courseware. It is based on OWL and provides a 

powerful framework for representing course ontologies in a standard and sharable way. 

Another original approach for specifically pointing out areas in ontologies of maximum 

relevance is given. This approach allows for the effective processing of only the relevant 

part of the ontology by which the computation time and resources are effectively saved.  

This thesis investigates the properties of test problems by following a purely 

knowledge based approach for assessment using course ontologies. Here assessment 

refers to evaluation of test problems for their knowledge content and complexity. We 

isolate the main pedagogical challenge as finding measurable quantities that can provide 

guidance in the process of automatic evaluation. We reason that the qualitative 

assessment of problems in their concept space is a very important step in making online 

testing, e-learning or web based pedagogy even remotely effective. Standardizing 

problems by evaluating the complexity can be a backend system with immense potential 
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for test-ware composition and sharing applications. It has the potential to make the 

already available test-ware resources on the web reusable. These evaluation parameters 

are calculated by applying mathematical formulations to the course ontology. The 

parameter performance is also tested in real world test scenarios and it is shown that they 

are very good indicators of problem complexity. Interesting logical inferences are made 

from the observed behavior of evaluation parameters with respect to the knowledge a 

problem tests and the observed performance of the students. The semantic evaluation 

system can intuitively be applied in varied application areas like automatic test and 

question generation and solution grading. We present a few possible applications of this 

system.
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Chapter 2.

Course knowledge representation using ontologies

Automated design and evaluation involve formal mathematical assessment 

models unlike cognition based models in humans. These cognition based assessment 

models for design and evaluation are developed by the human mind over a period of time,

by learning and collecting and assessing information from corpora of incoming 

knowledge. Recently great deal of research is being done to make these corpora of

knowledge available for machines. A machine understandable and computable 

assessment system therefore is essential. This body of knowledge is represented using 

techniques from knowledge representation like semantic networks and ontologies. 

Ontology is a method for representing elements in a domain or corpus of knowledge in a 

hierarchical fashion and links these elements with semantic relationships. 

The corpus of course knowledge is hypothetically divided into two tiered 

description framework namely, concept space and resource space. The course ontology is 

the conceptual representation of the concept space graph, where in concepts are linked to 

each other using semantic relations. The resource space gives the description of actual 

resources for the corresponding concepts from the concept space. The course concept 
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Figure2. 1: Two tired representation of concept space and resource space

space, symbolized by course ontology, is built using a language variant of Web Ontology 

Language, OWL [31]. The language is designed to harness maximum computability at 

the cost of reduced expressive power. The types of relations and properties are kept at 

minimum. The second tier of description, the resource space, requires more 

expressiveness. LOM [28] developed for learning object classification is used to provide 

the base elementary description for the learning objects, the resources. In this section we 

discuss in detail the definition, specification, and constructs for the language used to 

represent course ontologies.

2.1. Knowledge Representation Issues
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In computer science and artificial intelligence, knowledge representation is a 

technique by which knowledge about a particular domain is structured to increase its

usability. Knowledge representation techniques are used in AI, cognitive science, and 

other fields for problem solving, logical reasoning, data mining, question-answering, 

theorem proving, neural networks, expert systems etc. Davis, Shrobe and Szolovits define 

knowledge representation as a “set of ontological commitments” and “a medium of 

pragmatically efficient computation” [45]. It means that knowledge representation is set 

of vocabulary agreed upon, to represent knowledge which is practical and computable at 

the same time. It is important for the knowledge representation to be expressible and 

computable. This in turn brings us to the problem of granularity of information in course 

ontology. The granularity of the ontology is an important factor to consider while 

building the course ontology. The ontology can range from being fine-grained to coarse-

grained. A finer grained ontology will contain more concepts in detail and more implicit 

relationships between unrepresented concepts can be discovered. Finer the ontology, the 

application will have more knowledge to work with giving better results. But defining a 

finely grained expressive ontology is costly in terms of computation. As more and more 

concepts and relationships are defined and represented, more is the information to be 

processed. At the same time, though coarse grained ontologies are computable, they do

not have enough information needed for better results. The depth of the knowledge to be 

represented is therefore an important question in representing any kind of knowledge. 

Most available finished materials today are coarse granular. Unfortunately, this is not 

suitable for semantic evaluation. Any design system requires the basic ability to 
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transcend between multiple levels of granularity. In other words the mechanism of 

decomposing as well as re-composition is fundamental.

2.2. Course Ontology

Ontologies derive their roots from philosophy. In philosophy ontologies are used 

to represent the account of what exists. In computer science they are generally defined as

“a specification of a conceptualization” [46]. Ontology is a data model that represents a 

domain and is used to reason about the objects in the domain and the relations between 

them. In the context of this research the domain is that of a “course”, the objects are 

“concepts in the course” and the relations between the concepts are that of “has-

prerequisite”. Simply put, ontology is a group of concepts organized to reflect the 

relationships between the concepts. It is a method of specification and speculation about 

information. In recent past ontologies are increasingly being used to represent 

information in various domains like biological sciences, accounting and banking, 

intelligence and military information, geographical systems, language based corpus, 

cognitive sciences, common sense systems etc. The applicability of computer science is

in the efficient representation of these ontologies and the subsequent algorithmic 

processing. Most ontologies today are so extensive in the breadth of knowledge that 

processing of these ontologies becomes almost impossible and a gargantuan computation 

task. There needs to be a way to efficiently process the relevant information in these 
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ontologies to give optimum results in minimum time and complexity of computation. We 

present a method which points out to a portion of the ontology which is of maximum 

relevance and then start processing on this portion. The size of this portion of the 

ontology, which we call as the projection graph, can be changed according to the desired 

semantic significance. 

Ontologies are made up of individuals, classes, attributes and relationships. 

Individuals, the instantiations of classes, form the basic elements of ontology. Classes are 

abstract concepts which define and may contain other classes or individuals or both. 

Attributes are the properties of individuals or relationships. The name of the property is 

the attribute under consideration while the values of attributes can take form in various 

data types ranging from integers, strings, boolean etc. An individual is also allowed to 

have multiple attributes in the definition. Relationships are the way the concepts in the 

ontology are structured with respect to each other. Relations can be thought of as 

attributes whose value is another object in the ontology and is used to define the 

relationship between two or more different objects. Semantic relations particularly 

important in the context of ontologies are: Meronymy (part-of), Holonymy, Hypernymy, 

and Hyponymy. The has-prerequisite relationship is like holonymy relationship, where in 

the child node is a part of the parent node. However, in the context of course ontology, 

the part-of semantics refers to the prerequisite understanding of the child node needed to 

understand the parent node. On the whole the course ontology is constructed in such a 

hierarchical fashion that the children of node represent the knowledge required to 

understand the parent node, and their children represent the knowledge required to 
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Figure2. 2: View of Operating Systems ontology 2 level deep

understand them, so on and so forth. The ontology is created using the principle of 

“constructivism” borrowed from learning theory. The theory states that any new learning 

occurs in the context of and on the basis of already acquired knowledge. We use this 

theory to practically implement the has-prerequisite relationship based course ontology. 

See in Figure 2.2. “Process Management” is the prerequisite of “OS”.

A node is characterized by two values namely, self-weight and pre-requisite 

weight. The self-weight of a concept node is the value or the knowledge which is inherent 

to that node itself. It means that, the self-weight is the numerical realization of the 

knowledge required to grasp the concept, not in its entirety, but in partiality with respect 
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to itself. To understand the concept entirely, knowledge of the prerequisite concepts is 

also required, which is given by the prerequisite weight of the node. It gives the 

numerical realization of the importance of the understanding of the prerequisite concepts 

in the absolute understanding of a parent concept. Another value which characterizes the 

course ontology representation is the link weight. The link weight again is the numerical 

realization of the semantic importance of child concept to the parent concept. Child 

concepts imperative in the understanding of parent concepts will have a greater link 

weights than the others. Thus the course ontology representation is a collection of

concepts nodes with self-weights and prerequisite weights and has-prerequisite

relationships linking these nodes with a value attribute given by the link weight.

2.3. Representation Standards

The recent advances in Semantic Web representation languages such as RDF, 

RDF schema [35], and recently OWL [29, 30] now provide  a promising technology basis 

for metadata representation. The course ontology is represented using OWL. OWL offers 

a convenient platform for the representation of hierarchical concepts like that in the 

course ontology. There are 3 sub categories of the OWL language namely, OWL Lite, 

OWL DL and OWL Full. Among these profiles OWL Full offers maximum 

expressiveness but it does not guarantee computability. OWL Lite offers computability 

by restricting expression power of the language. OWL DL (OWL Description Logic) 
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offers a balance between the expressiveness of OWL Full and the computability of OWL 

Lite. It has all the language constructs from OWL Full, but can only be used with 

restrictions. The differences between the three categories are explained below.

1. OWL Full: It contains all the OWL language constructs and provides free 

unconstrained use of RDF constructs. In OWL Full the construct owl:Class is 

equivalent to rdfs:Class, unlike in OWL Lite and OWL DL where owl:Class

is a proper sub class of rdfs:Class. Most importantly, in OWL Full, individuals 

can be treated as classes. It means that, individual of class TypeOfCarSedan, 

HondaAccord, can also be a class, containing all Honda accord cars. In OWL Full 

data values can also be considered as individual. Thus ObjectProperty and 

DatatypeProperty are not disjoint and in fact the latter is the sub class of the 

former. A rdfs:Resource is equivalent to owl:Thing in OWL Full, which means 

that any Thing can be a resource. OWL Full provides the expressivity of OWL 

with flexibility and meta modeling feature of RDF.

2. OWL DL: It has the same constructs as in OWL Full but governed by some 

additional restrictions. In OWL DL an individual cannot be treated as a class, 

which means that all classes, data types, data type properties, object properties, 

annotation properties, ontology properties, individuals, data values etc. are all 

disjoint. This means that data type properties in OWL DL can never be inverse, 

inverse functional, symmetric and transitive. Also no cardinality can be placed on 

transitive properties, to maintain decidability of reasoning [31]. Most RDFS 
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vocabulary cannot be used in OWL DL. Axioms must be well formed and always 

refer to class names. In particular, the OWL DL restrictions allow the maximal 

subset of OWL Full against which current research can assure that a decidable 

reasoning procedure can exist for an OWL reasoner [30].

3. OWL Lite: OWL Lite abides by all the restrictions OWL DL puts on the use of 

the OWL language constructs. In addition, OWL Lite forbids the use of 

owl:oneOf, owl:unionOf, owl:complementOf, owl:hasValue, 

owl:disjointWith, owl:DataRange. The subjects of all axioms in OWL Lite 

must be identifiers or restrictions. The idea behind the OWL Lite expressivity 

limitations is that they provide a minimal useful subset of language features that 

are relatively straightforward for tool developers to support. The language 

constructs of OWL Lite provide the basics for subclass hierarchy construction: 

subclasses and property restrictions. In addition, OWL Lite allows properties to 

be made optional or required. The limitations on OWL Lite place it in a lower 

complexity class than OWL DL. This can have a positive impact on the efficiency 

of complete reasoner for OWL Lite. Implementations that support only the OWL 

Lite vocabulary, but otherwise relax the restrictions of OWL DL, cannot make 

certain computational claims with respect to consistency and complexity. 
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<?xml version="1.0"?>
<rdf:RDF
xmlns:owl = "http://www.w3.org/2002/07/owl#"
xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs= "http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd = "http://www.w3.org/2001/XMLSchema#">

<owl:Ontology rdf:about="###">
<rdfs:comment>A schema for CODL (Course Ontology Description Language)</rdfs:comment>
<rdfs:label>Course Ontology</rdfs:label>

</owl:Ontology>
<owl:Class rdf:ID="Concept">

<rdf:comment>Course ontology concept</rdfs:comment>
<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Class"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasPrerequisite"/>
<owl:allValuesFrom rdf:resource="#Relation"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
<owl:Class rdf:ID="Relation>

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#connectsTo">
<owl:allValuesFrom rdf:resource="#Concept">

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
<owl:ObjectProperty rdf:ID="hasPrerequisite">

<rdfs:range rdf:resource="#Relation"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="connectsTo>

<rdfs:range rdf:resource="#Concept">
</owl:ObjectProperty>
<owl:DatatypeProperty rdf:ID="hasLinkWeight">

<rdfs:domain rdf:resource="#Relation"/>
<rdfs:range rdf:resource="xsd:float"/>

</owl:ObjectProperty>
<owl:DatatypeProperty rdf:ID="hasSelfWeight">

<rdfs:domain rdf:resource="#Concept"/>
<rdfs:range rdf:resource="xsd:float"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="hasPrerequisiteWeight">

<rdfs:domain rdf:resource="#Concept"/>
<rdfs:range rdf:resource="xsd:float"/>

</owl:DatatypeProperty>

<Concept rdf:ID="MemoryManagement"/>

<Concept rdf:ID="OS">
<hasPrerequisite>

<Relation rdf:ID="relation_1">
<connectsTo rdf:resource="#MemoryManagement"/>
<hasLinkWeight rdf:resource="#0.2"/>

</Relation>
</hasPrerequisite>
<hasSelfWeight rdf:resource="0.39"/>
<hasPrerequisiteWeight rdf:resource="0.61"/>

</Concept>

</rdf:RDF>

Figure2. 3: CODL schema
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2.3.1 Course Ontology Description Language (CODL)

It is the language we define to represent course ontologies. The schema for the 

course ontology description is mostly adherent to OWL Lite, with a few extensions. 

OWL Lite is used because it supports basic classification hierarchy and simple constraint 

features and due to its computational advantages over the other sub languages. However, 

representing the schema for our course ontology in OWL is an extremely non trivial issue 

as we will see in the explanation for the schema. The CODL schema is shown in the 

Figure 2.3. The elements of CODL defined course ontology are header information, class 

definitions, property definitions and individuals.

1. owl:Ontology: 

It is a collection of assertions about the course ontology. This section can contain 

comments, version information and imports for inclusion of other ontologies. For

example, the course ontology for a specific course, say “Operating Systems”, can include 

another separate ontology for a course on “Calculus” from Mathematics. The CODL 

schema provides a method for conformant exchange of course ontologies. Ontological 

information about individuals appearing in multiple documents can be linked in a 

principled way. 

<owl:Ontology rdf:about="###">
<rdfs:comment>A schema for CODL (Course Ontology 

Description Language)</rdfs:comment>
   <rdfs:label>Course Ontology</rdfs:label>

</owl:Ontology>
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The owl:priorVersion element can be used to reference the previous version of 

the ontology. Versioning can effectively be done to different levels of granularity of the 

ontology. The owl:import element, which takes rdf:resource element as its subject, is 

used to import another ontology in to one ontology.

2. class:Concept:

The course ontology is structured in the form of individual concepts arranged in a 

hierarchy. All the individuals in the OWL representation are the instantiations of the class 

Concept. The class Concept is the super class which defines all concepts in the course 

ontology, including the restrictions on the values of the properties they can take. The 

class Concept has the rdfs construct of rdfs:subClassOf. The sub class axiom is used to 

define the necessary conditions for belonging to a sub class or a property restriction. 

OWL Lite requires the subject of the rdfs:subClassOf statement to be a class identifier. 

The instances of the class Concept are also instance of the universal class owl:Class in 

OWL, which comprises of all the classes which can be legally defined in the vocabulary 

of OWL language. The object of the sub class axiom is a property restriction. It describes 

an anonymous class, namely a class of all individuals which satisfy the restriction. 

<owl:Class rdf:ID="Concept">
<rdf:comment>Course ontology concept</rdfs:comment>
<rdfs:subClassOf 

rdf:resource="http://www.w3.org/2002/07/owl#Class"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasPrerequisite"/>
<owl:allValuesFrom rdf:resource="Relation"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
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For example, in the above property restriction, the statement owl:Restriction

defines an anonymous class, all of whose instances satisfy the restriction on properties 

hasPrerequisiteWeight. The property restriction states that, for all instances of class 

Concept, if they have a prerequisite (hasPrerequisite) then it must belong to extension 

of Relation. The extension of Concept means the set of all the members of the class 

Concept. 

3. class:Relation: 

The class Relation is used to give values to the hasLinkWeight property. In our 

representation, two instances of class Concept are connected by the property 

hasPrerequisite which has a link weight value. Accordingly, we want to be able to link 

an individual to another individual with a value and semantic relationship. These kinds of 

relationships are called as n-ary relationships [33]. There are two types of properties in 

the OWL world, object properties which connect instances of classes to each other, and 

data type properties which connect instance to data values. OWL does not offer means to 

link individuals with data values. Therefore we make a very important abstraction in the 

schema to form a separate class for Relations. The main objective of the class 

Relation is to link two individuals of the class Concept with a data value. We first link 

instance of the class Concept to an instance of Relation, and then link that instance 

again to instance of Concept.  

<owl:Class rdf:ID="Relation>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#connectsTo">
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<owl:allValuesFrom rdf:resource="#Concept">
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

Thus by defining relationships between individuals as another class, n-ary

relations can be defined in the schema and property restrictions can be applied.

4. ObjectProperty: hasPrerequisite

In our representation, hasPrerequisite property links an instance of Concept

and instance of Relation. The semantic relationship of hasPrerequisite between two 

individuals is defined as an ObjectProperty. 

<owl:ObjectProperty rdf:ID="hasPrerequisite">
<rdfs:domain rdf:resource="#Concept"/>
<rdfs:range rdf:resource="#Relation"/>

</owl:ObjectProperty>

The rdfs:domain is a property feature which is used to limit the domain of the 

individuals in which the property applies. If a property relates an individual to another 

individual, and the property has a class as one of the domains, then the individual must 

belong to that class. Here the property is applicable in the domain of class Concept. It is 

possible to have more that one domain. The rdfs:range feature limits the individual the 

property may have as its value. This means that if a property has range as a class, the 

instance of only that class can have the property. In other words, if a property relates one 

individual to another, and the property has class as its range, then the other individual 

must belong to range class. When an instance of the concept class has the property of 
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hasPrerequisite, the other individual to whom it relates to, must be from class 

Relation. Domain and range both are global restrictions. 

5. ObjectProperty:connectsTo

<owl:ObjectProperty rdf:ID="connectsTo>
<rdfs:range rdf:resource="Concept">

</owl:ObjectProperty>

This property is used to link instance of Relation to instance of Concept. The 

property restriction on connectTo, implies that all members of class Relation which 

connectsTo another member, the other member must be an individual of class Concept.

6. DatatypeProperty: hasLinkWeight

A data type property links individual to data values. Link weight is a 

characteristic of a relation therefore hasLinkWeight applies to instances of class 

Relation. The range of the property is set by the resource xsd:float. For the purpose of 

computational ease we set the values for all the concept and link properties between 0 

and 1. In OWL Lite the range of a property must be a class identifier. ObjectProperty

and DatatypeProperty are not disjoint in OWL Full unlike in OWL Lite and DL and are 

both sub classes of the rdf:Property class. The hasLinkWeight property links an 

instance of class Relation to a data value.

<owl:DatatypeProperty rdf:ID="hasLinkWeight">
<rdfs:domain rdf:resource="#Relation"/>
<rdfs:range rdf:resource="xsd:float"/>

</owl:ObjectProperty>

7. DatatypeProperty: hasSelfWeight
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hasSelfWeight is used to define the self weight of a node. It too is applicable in the 

domain of the class Concept and range of values can be between 0 and 1.

<owl:DatatypeProperty rdf:ID="hasSelfWeight">
<rdfs:domain rdf:resource="#Concept"/>
<rdfs:range rdf:resource="xsd:float"/>

</owl:DatatypeProperty>

8. DatatypeProperty: hasPrerequisiteWeight

This property is used to relate an individual of the class Concept to its 

prerequisite weight values. By definition, the summation of self weight and prerequisite 

weight for a node is 1. Therefore this property is actually redundant as the prerequisite 

weight values doesn’t need to be explicitly specified and can be calculated from the self 

weight values. However this property is included in the definition language, to 

incorporate the structural changes needed in an ever growing ontology. Nodes can be 

added and subtracted from the ontology, which may affect the prerequisite weight. 

Therefore this property is included to explicitly specify the values in such cases.

<owl:DatatypeProperty rdf:ID="hasPrerequisiteWeight">
<rdfs:domain rdf:resource="#Concept"/>
<rdfs:range rdf:resource="xsd:float"/>

</owl:DatatypeProperty>

9. Individuals:

<Concept rdf:ID="MemoryManagement"/>
<Concept rdf:ID="OS">

<hasPrerequisite>
<Relation rdf:ID="relation_1">

<connectsTo rdf:resource="#MemoryManagement"/>
<hasLinkWeight rdf:resource="#0.2"/>

</Relation>
</hasPrerequisite>
<hasSelfWeight rdf:resource="0.39"/>
<hasPrerequisiteWeight rdf:resource="0.61"/>

</Concept>
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This is an instance of a typical individual in course ontology. Here the concept 

instance “MemoryManagement” is a prerequisite for “OS”. Individuals are generally 

described by facts about their class membership and their property values. Individual 

member “OS” is a member of class Concept and has the property values for 

hasLinkWeight as 0.2, hasSelfWeight as 0.39 and hasPrerequisiteWeight as 0.61. 

The most important part of the course ontology structure is the semantics between 

parent and child concepts. The representation should be able to not only define 

prerequisite relationship between them, but also define the value strength of this 

relationship. OWL does not have provision to relate two individuals using data values. In 

CODL, we define these kinds of n-ary relationships by defining a separate class of 

relations. Therefore the tool which uses CODL defined course ontology should be able to 

infer that, since connectsTo links relation_1 and MemoryManagement and 

hasPrerequisite links OS to relation_1, MemoryManagement is prerequisite of OS.

Characteristics of hasPrerequisite and connecsTo properties are as follows:

1. Transitivity: 

hasPrerequisite(a,r), hasPrerequisite(r,c) iff  hasPrerequisite(a,c)

connectsTo(a,b), connectsTo(b,c) iff connectsTo(a,c)

Both hasPrerequisite and connectsTo are transitive.

2. Symmetric:

hasPrerequisite (a, b) ≠ hasPrerequisite (b, a)

connectsTo (a, b) ≠ connectsTo (b, a)
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Both hasPrerequisite and connectsTo are not symmetric.

3. Functional Property:

hasPrerequisite (a, b) and hasPrerequisite(a, c) does not imply b=c

connectsTo(a, b) and connectsTo(a, c) does not imply b=c.

Both hasPrerequisite and connectsTo are not functional.

4. Inverse of: The inverse properties of hasPrerequisite and connectsTo are 

isPrerequisiteTo and connectsFrom repectively.

hasPrerequisite(a, b) iff isPrerequisiteTo(b, a) and;

connectsTo(a, b) iff connectsFrom(b, a)

5. Inverse Functional: 

hasPrerequisite (b, a) and hasPrerequisite(c, a) does not imply b=c

connectsTo(b, a) and connectsTo(c, a) does not imply b=c.

Both hasPrerequisite and connectsTo are not inverse functional.

NoNoNoNoFunctional 
Inverse Of

NoNoNo NoFunctional

connectsFrom--isPrerequisiteToinverseOf

NoYesYesNoSymmetry

YesYesNoYesTransitivity

connectsToequivalentTorootEquivalentTohasPrerequisite

CODL PropertiesProperty 

Characteristic

NoNoNoNoFunctional 
Inverse Of

NoNoNo NoFunctional

connectsFrom--isPrerequisiteToinverseOf

NoYesYesNoSymmetry

YesYesNoYesTransitivity

connectsToequivalentTorootEquivalentTohasPrerequisite

CODL PropertiesProperty 

Characteristic

Figure2. 4: CODL Object property characteristics
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2.3.2 Extensions to CODL

In this section we define some more properties to make extensions which can be 

incorporated in to the CODL schema for making some powerful inferences from the 

language. 

1. ObjectProperty:rootEquivalentTo

<owl:ObjectProperty rdf:ID="rootEquivalentTo">
<rdf:range rdf:resource="#Concept"/>

</owl:ObjectProperty>

The namespace declarations in OWL ontology provide a means to reference 

names defined in other OWL ontologies. The owl:import element can be used to import 

the entire set of assertions made by the imported ontology into the current ontology. 

However no current definition of import allows us to specify a node as an entirely 

different ontology. The rootEquivalentTo property provides a mechanism to expand a 

node in course ontology to a completely new ontology. That means that, a node in course

ontology is allowed to be a root node of any other ontology.

<Concept rdf:ID="OS">
<rootEquivalentTo rdf:resource="#OperatingSystem"/>
...

</Concept>

This means that “OS”, which is an instance of the class Concept, and is 

rootEquivalentTo the individual “OperatingSystem”, which is a member of the class 

Concept specified by the range. The equivalence property for individuals’ owl:sameAs
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can be used to the same effect. However, defining the property as restriction on relations

rather than concepts, allows for more freedom of expression in the schema.

2. ObjectProperty:equivalentTo

<owl:ObjectProperty rdf:ID="equivalentTo">
<rdf:range rdf:resource="#Concept"/>

</owl:ObjectProperty>

This property provides a mechanism to equate all the nodes within ontology, so 

that ultimately the whole ontology is one node. It is important to note that relating all

nodes by equivalentTo property doesn’t actually mean that they are semantically equal. 

The purpose of equivalentTo property is only to unify the whole ontology as just an

instance of the class Concept. This has very powerful implications for importing and 

sharing ontologies with different schemas. More power can be attributed to the 

representation by interspersing different kinds of relationships within ontology. Thus the 

ontology need not be based solely on hasPrerequisite relationship, but can also have 

other relationships like those stated above.

2.4. Mathematical representation of Concept Space Graph (CSG)

The course ontology is mathematically defined in the form of a concept space 

graph (CSG). A CSG is a view of the concepts space distribution in the domain of a 

particular course. 
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Figure2. 5: CSG rooted at concept A

A concept space graph T(C, L) is a projection of a semantic net with vertices C 

and links L where each vertex represents a concept and each link with weight l (i, j) 

represents the semantics that concept cj is a prerequisite for learning ci, where (ci, cj) Є 

C and the relative importance of learning cj for learning ci is given by the weight.  Each 

vertex in T is further labeled with self-weight value )(iW s  cumulative prerequisite set 

weight )(iW p . 

The self-weight )(iW s represents the relative semantic importance of the root 

topic itself with respect to all other prerequisites. The prerequisite weight 

)(iW p represents the cumulative, relative semantic importance of the prerequisite topics 

to the root node. Link weight is the strength of the prerequisite relationship between the 

parent and the child. A CSG with root A is represented as T (A) in Figure 2.5. For any
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node, co, in the CSG, the sum of self-weight and prerequisite weights and the sum of the 

prerequisite link weights to its child node set   nccc ..., 21 are both always 1:

1 ps WW
...(1)

1),(
1
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

n

j
jccl …(2)

2.4.1 Node Path Weight

It is the propagated prerequisite effect of a subject node along a particular path to 

a root node. The notion of node path weight is introduced to compute the effect a 

prerequisite node has on a root node through a specific path. A single node, therefore, can 

have different prerequisite effect on a root through different paths.

When two concepts x0 and xt are connected through a path “p” consisting of 

nodes given by the set  tmm xxxxx ,...,,...,, 110   then the node path weight between these two 

nodes is given by:

       11

1

0 *,, 
 mpmm

tm
tst xWxxlxWxx ... (3)

The node path weight for a node to itself is its self weight.

   111 , xWxx s …(4)
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Figure2. 6: Example of Node path weight calculation

In the Figure 2.6 concept L is connected to concept B through E and F. Therefore 

the prerequisite effect it has on B is dependent on the prerequisite effect both E and F 

have on B respectively. Node path weight calculates the prerequisite effect a node has on 

another node. Therefore the factors of self weight of subject node and prerequisite 

weights of all the nodes in the path are included in the formula.

From the node path weight calculations we can see that L has a stronger 

prerequisite effect on B through F rather than E. This is because, L is more important to F 

(0.5) than E (0.15), prerequisite importance of L is more to F (0.8) than E (0.6) and 

subsequently F (0.55) is more important to B than E (0.4). Thus node path weights takes 

into consideration not only the singular effect a node has on its immediate parent but also 

the combined prerequisite effect a node would have to a root, B in this case, along a 

certain path. 
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2.4.2 Incident Path Weight

Incident path weight is same as node path weight except that it does not include 

the factor of self weight of the subject node. By doing this, we can compute the 

prerequisite effect the node may have on a root node, excluding the factor of knowledge 

of the subject node. It is defined as, the absolute prerequisite cost required to reach the 

root node from a subject node.

   
 
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 nn
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From Figure 2.6, the incident path weight calculations for paths between B and L 

are given by, 

  176.03.0/0528.0/,),(  sWLBLB 

  0288.03.0/00864.0/,),(  sWLBLB 
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Chapter 3.

Educational resources and Test Problems 

Most of the educational resources today are not accompanied with metadata 

which makes it very difficult for machine processing. For educational resources to be 

machine processable, they have to be presented in the proper context [11]. In the last 

chapter we described semantic representation standards and formal mechanism to 

represent the concept space in detail. In this chapter we look at resource space which is 

made up of educational resources and the mapping between the resource space and the 

concept space. One aspect of research in educational technology is the development of 

technology in standards and practices for educational material research, design, reuse, 

development, and reengineering. Though educational resources can hardly replace the 

instructor, they can be very helpful in providing the context of the subject matter. 

Therefore educational resources need to be precise and intelligible.

A problem/question is one type of educational resource. The commonly observed 

properties of testware are difficulty or simplicity, breadth and depth of knowledge 

required to answer, relevance of the question to the root topic, the semantic distance 

between the concepts tested, ability of the question to test varying populations of 

students, applicability of the topics taught to a problem, etc. While designing a test, an 
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educator always tries to come up with questions which have maximum coverage of 

desired topics, diversity among the topics, good testing capabilities with respect to 

student knowledge, relevance to the material taught, overall generality or specificity. 

There are many other factors too; however the sub division of those factors almost always 

leads to the above given basic properties of a good question. It is important to understand 

these properties for better design and reengineering of test problems. In this thesis, we 

attempt to visualize and understand these properties of test problems by qualitative 

evaluation.   

3.1. Problem concept mapping

The mapping between the resource space and the concept space is called as the 

problem concept mapping. All educational resources, including test problems are based 

on a few selected concepts from the ontology. When an educator creates test problems, 

although instinctively, there is a complex cognitive designing process behind the whole 

task. The educator has a mental map of the concepts taught in the course and depending 

on this map, the problems are composed. We define a rudimentary version of this mental 

map in the form of course ontology. The problem points to certain concepts from the 

ontology on which it is based. This is called as the problem concept mapping. This is a 

highly cognitive process which takes place in the human brain and needs a lot of research 
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Figure3. 1: Problem-concept mapping

work to be able to explain it properly and formally. The research problem of mapping a 

problem to concepts from ontology automatically is an extremely non-trivial problem 

which involves research in natural language processing, knowledge representation etc. 

We limit our research to using of the problem-concept mapping in semantic evaluation. A 

mapping signifies the concepts which are used to form the question, which also are the 

same concepts required to answer a particular question. 

The connection of the concepts to the testware resource entity can be in the form 

of an “and” relationship or “or” relationship. An “and” relationship is used to define 

concepts which are imperative to answer the particular problem. While the “or” 

relationship defines an alternative between concepts to answer the problem. Example of 

problem-concept mapping is shown in Figure 3.1. The dotted lines represent the concepts 

which the problems maps to. The angle between the dotted lines is used to represent 

“and” or “or” relations. If there is an “or” relation between two or more mapped concepts 
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then it means that, knowledge about any of the concepts is enough to answer the problem. 

An “and” relationship between two or more concepts means that, problem cannot be 

answered without the knowledge of all “anded” the concepts. From the figure 3.1, 

concept B and F are and’ed while concepts T, K and F are or’ed. 

These implicit relationships between concepts can be effectively used in 

evaluating mathematics related problems. It is observed that math problems generally 

involve a very well defined ontology and numerous ways can be formulated to solve the 

problems. These solutions can be conceptualized and mapped using or mapping. Whereas 

a more prose based problem may require combined knowledge from various concepts to 

form a single solution. These can be mapped as and concepts. 
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Chapter 4.

Test Problem Assessment

Educational resources must be accessible and intelligible to varied groups of 

populations for consumption and reuse. Currently there is no formal method for 

evaluating the utility of an educational resource. We propose an assessment system which 

attempts to evaluate an educational resource like test problem for its knowledge content 

and complexity. The system is a framework based on assessment parameters. These 

parameters can give guidelines for setting up a standard for test problem assessment. This 

chapter describes in detail the assessment approach and assessment parameters.

4.1. Approach

The assessment process is essentially a two step approach. The first main step is 

the extraction of the relevant concepts from the CSG and is called as “CSG extraction”. 

As seen in the previous chapter, each and every problem maps to some concepts from the 

course ontology. The set of mapped concepts act as the input to the assessment system

hence the concept set has to be precise and methodically selected. The mapping of the 
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concepts signifies that to answer that particular question, the set of mapped concepts are 

required. However, the course ontology being a prerequisite relation based ontology, 

knowledge required for understanding a concept, and consequently answering a question,

is represented as its prerequisite child concepts. Thus to comprehend a concept, say A, all 

child node concepts of A have to be understood first, and to understand all the child node 

concepts, their child node concepts have to be understood, and so on. Therefore for better 

understanding of a concept, we have to go as far down the ontology as possible. 

However, most ontologies are vast and there is virtually no limit to how deep one can go 

in the ontology. Therefore there needs to be a limit set for controlling the propagation. 

This limit is set by a variable called as the threshold coefficient and the process of 

extracting this relevant piece of sub graph, called as the projection graph, is called as 

CSG extraction. These concepts are further explained in the later sections.

The second step in the assessment process is applying algorithms to the individual 

projection graphs of each of the mapped concepts to calculate the assessment parameters. 

In the subsequent sections we define some assessment parameters which can help us in 

understanding the relationships concepts have with a test problem, the knowledge content 

required to answer a problem and properties of associations which concepts have with 

each other and the ontology root. Figure 4.1 shows the assessment process. In the first 

step the CSG extraction module is given the input i.e. the course ontology, the problem 

concept mapping and the threshold coefficient value. Using these inputs the CSG 

extraction process outputs individual concept projection graphs. In the next step the 
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Figure4. 1: Problem assessment approach

projection graphs and course ontology act an input to the assessment module which 

calculates the values of assessment parameters.

4.2. CSG Extraction

A generalized CSG can be vast. Therefore we define a pruned sub-graph called as 

projection graph which cuts the computation based on a limit on propagated semantic 

significance. The process of selecting projection graph nodes from the Concept space 

graph is called as CSG extraction. There are quite a few reasons to apply CSG extraction 

to ontology. The most important reason for CSG extraction is computability. It is 
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computationally very expensive to work on big ontologies. Nowadays ontologies used 

range from thousands to millions of concepts. Therefore processing the whole ontology is 

very expensive and also doesn’t logically make sense. The concepts which the question 

maps to are relatively very less as compared to the total number of concepts in the whole 

ontology. More over, say if the mapped concepts are very distant from each other in the 

ontology. This implies that the knowledge required to understand these concepts is very 

diverse in the concept space. Therefore it would be a squandering of computational 

resources to process the whole ontology instead of just the relevant portions. 

The concept space graph gives the layout of the course in the concept space with a 

view of course organization, involved concepts and the relations between the concepts. 

Examples of large CSG’s include WordNet (150,000) an English language ontology, 

CYC (47,000 concepts, 30,000 assertions) a well known common sense knowledge 

mapping project using ontology, LinKBase (1 million in English, 3 million in other 

languages) a comprehensive medical/clinical ontology, Gene Ontology (now known as 

GO, over 19000 concepts) the genome mapping project, ThoughtTreasure (27,000 

concepts, 51,000 assertions) another common sense mapping project, and so on. Thus 

defining a workable area of ontology is of the utmost importance from the perspective of 

semantic relevance and computability. The pruning is achieved by introducing a variable 

called as the projection threshold coefficient (λ). 
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4.2.1 Threshold Coefficient (λ)

By varying the threshold coefficient the size of the computable projection graph 

can be varied and thus the semantic significance. Since the projection graph is a sub-

graph of the concept space graph, it is necessary to have pre-requisite weights for the leaf 

nodes too, although most times the pre-requisite weight for the leaf nodes is zero. 

Flexibility for optional pre-requisite weights for the leaf nodes allows the CSG to be 

extensible and easily extractable for the projection.

Threshold coefficient is a kind of virtual limit by which the size of the projection 

can be controlled. Greater the coefficient more is the screening for the nodes to be added 

to the projection and thus smaller is the graph. Less coefficient value means more 

concepts will be included in the projection. The threshold coefficient can be thought of as 

a parameter which can set the depth to which the topic has been taught. If a topic is not 

taught in its entirety, a greater coefficient is assigned so that the depth of the projection 

graph will be less. Conversely, if a topic is pretty well covered, the value assigned to the 

threshold coefficient is low, so that the projection graph for the concept is large,

encompassing more prerequisite concepts. By varying the threshold coefficient the exact 

semantic relevance of the question to the whole graph can be computed, the result of 

which is the projection graph, on which we operate. Threshold coefficient sets the limit to 

how far one should go down the ontology. 
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Figure4. 2: Projection calculation example



43

4.2.2 Projection Graph 

Given a CSG T(C, L), with local root concept x0, and projection threshold 

coefficient λ, a projection graph P (x0, λ) is defined as a sub graph of T with root x0 and 

all nodes xt where there is at least one path from x0 to xt in T such that node path weights  

),( 0 txx  satisfies the condition:    txx ,0 .

The projection set consisting of nodes  nxxxx ...,, 210  for a root concept x0 is represented 

as,    00000 ...,,, 2100
x
n

xxxx xxxxPxP  ; where 
j

ix
represents the ith element of the projection 

set of node j. 

The projection graph points to that area of the ontology of maximum semantic 

relevance. Consider an example CSG as in Figure 2.5. We find the projection of the local 

root concepts B and D given the threshold coefficient of λ=0.001. The projections and 

calculations are shown in Figure 4.2 (a) and (b) and Tables 1 and 2. All nodes that satisfy 

the condition of node path weights greater than threshold coefficient are included in the 

projection. Nodes can have multiple paths to the root (J, L, and O). For node J and L, 

both the path satisfies the condition, whereas for O only one path satisfies the condition 

(O-I-D-A). Still, O is considered in the projection of D, because it still wields some 

prerequisite effect on D through one of the paths. If the condition for the threshold 

coefficient is satisfied then the node is included in the projection.
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4.3. Assessment parameters

The main objective of the assessment parameters is to assess the overall 

knowledge content and the perceived complexity of a test problem. In this section we 

describe three such assessment parameters namely, coverage, diversity and conceptual 

distance.

4.3.1 Coverage (α)

The coverage of a question gives a quantitative effect of the selected projection 

set on the knowledge required to answer a particular question. Coverage of a concept is a 

direct indicator to the scope of the question in context of the concept space of the course. 

Formally, “coverage of a node x0 with respect to the root node r is defined as, the product 

of the sum of the node path weights of all nodes in the projection set P(x0, λ) for the 

concept x0 , and the incident path weight γ (r, x0) from the root r”.

If the projection set for concept node x0, P(x0, λ) is given by  nxxxx ...,, 210  then the 

coverage for node x0 about the ontology root r is defined as, 





n

m
mxxxrx

0
000 ),(),()(  ...(6)

where ),( 0xr  is the Incident Path Weight. 
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Total coverage of multiple concepts in a problem given by set [C1, C2 … Cn] is,

       nCCCT   ...21 …(7)

In eq.6, it is seen that the main factor contributing to the coverage is the 

summation of the node path weights of all the nodes in the projection of a concept. From 

the definition of node path weight, we know that it defines the semantic importance of a 

node to its designated root. Therefore the summation of the node path weights of all the 

nodes in the projection set gives the cumulative semantic importance of the node in the 

projection graph on their respective mapped concept roots. The concepts in the projection 

graph in turn are the concepts which are required to understand a particular concept, 

controlled by the threshold coefficient. The summation of the node path weights is the 

amount of knowledge required to answer or rather understand a particular concept. The 

reason why the factor of summation of node path weights is propagated to the ontology 

root using the incident path weight is because the questions are asked about the ontology 

root even though they do not directly point towards it.

Suppose a question tests concepts B and D, Figure 4.2, calculate the coverage of 

the question given threshold coefficient λ=0.001. The first step is to calculate the 

individual projections of the concepts as seen in the projection calculation example. The 

coverage of a concept is then the summation of the node path weights of all the concepts 

in its projection, propagated to the ontology root. According to the formula,
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4.3.2 Diversity (∆)

Diversity tests the extent of the knowledge domain required to answer particular 

question. If the projections of some of the mapped concepts overlap with each other, i.e. 

they have some concepts in common; it means that they are less diverse as both indirectly 

depend upon some common ground for their complete understanding. Whereas when no 

two concepts are common it means that, the question has high diversity. Diversity is 

calculated by measuring the effect of common and uncommon prerequisite concepts from 

the projections of the mapped concepts. It is dependent on the uncommon concepts rather 

than the common concepts because the disparate concepts attribute the diversity to a 

question rather than the common concepts. Prerequisite concepts in the projection sets of 

two or more of the mapped concepts, i.e. the common concepts, only help in reinforcing 

the requirement for those concepts, rather than contributing towards the diversity. A 

question has high diversity value if the concepts it tests are distinct in the context of 

knowledge space.
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Alternatively diversity measure can be thought of as an inverse of similarity 

measure. There have been numerous attempts to quantify the similarity between two 

concepts in ontology. Different measures based on information content [36, 40, 42], 

distance [41], mutual information, etc. have been studied. Our concept of diversity 

between two concepts can give some insight into the similarity measures. It can be 

thought of as an inverse similarity measure. We present a definition of diversity which is 

not node based, link based or information based, but rather a knowledge based approach 

which renders it uniqueness. 

Diversity is formally defined as “the ratio of summation of node path weights of 

all nodes in the non-overlapping set to their respective roots, and the sum of the 

summation of node path weights of all nodes in the overlap set and summation of node 

path weights of all nodes in the non-overlap set.”
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Consider a question asks a set of concepts,  nCCCCC ...,, 210  . The respective projection 

sets are given by, 

            nnn C
c

CC
n

C
b

CCC
a

CC xxxCPxxxCPxxxCP ...,,...,...,,,...,, 21211210
111000  

The non-overlapping and overlapping sets are,   i
pNNNNN ...,, 210  and   j

qOOOOO ...,, 210 , 

where i and j are the local root parents of any element from N and O respectively and

Cji  , .
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Diversity is given by,
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Figure 4.3, shows the nodes in the projections of B & D, and the shaded area 

shows the nodes in the overlapping region. Diversity can be calculated by the means of 

the formula as,

97.0
44714.10448045.0

44714.1





This means that the diversity between concepts B and D is 97%. The concepts have high 

diversity.
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4.3.3 Conceptual Distance (δ)

Conceptual distance is a measure of distance between two concepts with respect 

to the ontology root. According to one of the definitions of similarity between nodes in 

taxonomy by Resnik, it is the distance of the nodes from the subsuming parent [36]. 

Alternatively conceptual distance measures the similarity between two concepts by 

quantifying the distance of the concepts from the ontology root. Formally it is defined as 

“the log of inverse of the minimum value of incident path weight (maximum value of 

threshold coefficient) which is required to encompass all the mapped concepts from the 

root concept”. 

The conceptual distance parameter is designed in such a way that it should be 

sensitive to the depth of the concepts. Hence it is a function of maximum threshold 

coefficient required to cover all the nodes from the ontology root. Incident path weight 

(γ) of a concept to the root is equivalent to the threshold coefficient (λ) required to 

encompass the node. If question asks concept set  nCCCCC ...,, 210  then the conceptual 

distance from the root concept r is,

        










n
n CrCrCr

CCC
,...,,,min

1
log...,

10
210 

 …(9)

Calculation of conceptual distance for concept set [E, F, and M] is shown in 

Figure 4.4. Different types of arrows represent the paths to the root from the respective 
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nodes. In case on multiple paths (M) the lowest values of incident path weight is 

considered.
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Chapter 5.

Performance analysis and results

The performance analysis of assessment parameters is two fold. In section 5.1 and 

5.2 we analyze the assessment parameters for their ability to be factors for reasoning 

about the perceived complexity of problems and their knowledge content. In section 5.3, 

we analyze the data qualitatively and make deducible inferences from the data.

For complexity analysis of assessment parameters we use an extensive course

ontology comprising of around 1500 concepts, for the course “Operating Systems” taught 

as graduate level course at KSU. The ontology was created for the course by consulting 

the related instructor and referring to standardized textbooks. The node weights and link 

weights, which form an important constituent of the ontology, were assigned by intuition 

and guidance from the course instructor. Concepts with more intrinsic importance for 

understanding were assigned more self-weight and those which depended on many other 

prerequisite concepts were assigned more prerequisite weights. Consequently it is 

observed that concepts higher up in the ontology have lower self-weights, and self-

weights of nodes go on increasing further down the ontology, reaching the maximum for 

leaf nodes. However, for the CSG to be extensible, the leaf nodes are also allowed to 

have prerequisite weights in case more prerequisite concepts are added later on. Keeping 
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the ontology extensible allows for inclusion of newer concepts, results, researches, etc. 

adding to the inherent knowledge base, making the course ontology an ever changing and 

improving repository of course knowledge. The link weights were assigned based on the 

semantic importance and contribution of the child topic to the understanding of the parent 

topic. If the understanding of the child concept is detrimental to the understanding of 

parent concept than the other, then it was assigned a greater link weight. Although by 

definition, the summation of the link weights for a node should add up to 1, it is generally 

not observed consistently. Most of the times, some space is left for the inclusion of newer 

links for prerequisite concepts which are newly added or already existing in the ontology. 

Again it is seen that higher up in the ontology there is no need to actually leave this 

space, as the probability of addition of newer links to higher level concepts is less than 

that to the concepts lower in the ontology. 

For the purpose of evaluation, several problems were composed by the course 

instructor each mapping to some concepts from the ontology. The problem concept 

mapping was provided by the instructor in most cases with some inputs from students. 

These test problems were administered by undergraduate and graduate students, the 

results from which were used for the performance analysis. The answers to the problems 

were graded by a minimum of three graders per question, and the averages of the scores 

were considered for the analysis to remove anomalies. The coverage and diversity of the 

concept set changes according to the changing values of λ because they are the functions 

of node path weight which is relative to the projection set, which in turn depends upon λ. 
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Accordingly we experimented with changing the threshold coefficient values and 

observing the result for different projection graphs.

5.1. Parameter performance against average score

In this section we evaluate the performance of all the assessment parameters 

against the average score per question. The coverage analysis for each question with 

varying threshold coefficient can be explained by the graph shown in Figure 5.1. It is 

observed that the coverage has an inverse relationship with the average score. As the 

average score increases the coverage for that particular question decreases and vice versa. 

For all values of λ the coverage has the same relationship; however this relationship 

becomes more and more evident with decreasing values of λ. As λ decreases, the 

projection graph increases, thus increasing the coverage values. Hence if the inverse 

correlation of the coverage graph with average score graph is more for decreasing values 

of λ, we can infer that more concepts are required to answer that particular question. 

Coverage gives an approximation to the knowledge required to answer a particular 

question. From the graph it is seen that most of the times, coverage is inversely correlated 

to average score. 

Diversity is also inversely correlated to average score. Diversity graph 

characteristics are similar to coverage graph, Figure 5.2. In the case of diversity it is 

observed that as the threshold coefficient λ decreases, the diversity values for all the 
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questions also go on decreasing. This is because as the λ decreases the projection set for 

each concept in the concept set increases. As the projection set increases the probability 

of having more common concepts increases, thus increasing the coverage of overlap set 

and decreasing the diversity. In some cases however the diversity increases with decrease 

in λ. This happens because, sometimes when the threshold coefficient decreases, the 

projection obviously increases; however instead of having more overlapping nodes, the 

non overlapping node set increases consequently increasing the diversity.

The performance of conceptual distance versus average score is observed in 

Figure 5.3. Although not directly dependent on projection graph, distance is also 

inversely correlated to average score. This means that distance is a very good indicator of 

the similarity between concepts. As the distance between two nodes decreases, the 

similarity increases. As the similarity increases, the knowledge required to answer the 

concepts decreases, consequently increasing the average points scored. As conceptual 

distance is not a factor of projection graph, behavior in the graph is constant for all 

threshold coefficients. Distance is a logarithmic function as log gives the inverse 

behavior of an exponential function, which is observed here. Similar to coverage and 

diversity the conceptual distance is also inversely correlated to average score with good 

correlation. As seen from the behavior of all three assessment parameters, the average 

score has an inverse correlation with the parameters. This means that the parameters are 

pretty good indicators of the perceived difficulty of test problems.
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5.2. Correlation Analysis

In this section we study the correlation between the parameters and average score 

for varying threshold coefficient values. A high degree of inverse correlation is desired, 

so that as average score increases, the values of the assessment parameters go down, and 

vice versa. From Figure 5.4 it is seen that as the threshold coefficient value decreases, the 

correlation for coverage and diversity with average score also decreases and then remains 

constant for lower values of threshold coefficient. The reason for this behavior is that, 

when the threshold coefficient decreases, the projection sets of the respective concepts 

increase as more and more nodes are added. However the average score for a particular 

problem remains constant. Hence if a problem has a high average score, it means that 

originally the coverage and diversity for that problem was lower, but since the projection 
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set has increased, now their values have also increased. Due to this the correlation 

between coverage and diversity and average score decreases. Similarly, if a problem has 

low average score, it means that originally the coverage and diversity for that problem 

were high, but since the projection has increased, their values increase too. In this case 

the correlation has decreased in the reverse direction. After some value of threshold 

coefficient though, the projection set remains constant, and so does the correlation 

between coverage and diversity and average score. The correlation between conceptual 

distance and average score remains constant throughout because, conceptual distance is 

independent of the projection graph and therefore the threshold coefficient.

5.3. Qualitative Data Analysis

5.3.1 Test based analysis

Though most of the times coverage and diversity values are inversely proportional 

to average score, it is important to observe and measure the percentage variation to draw 

inferences. 
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Figure 5.5 shows the distribution of concepts according to the concept mapping of 

the problems according to the tests. Problems 1-6 are in test a, 7-12, 13-18, 19-37 are in 

tests b, c and d respectively. A simple scatter plot of question-concept can give a lot of 

information. Observations and Inferences:

1. Questions 13, 14, and 29, 30, 33, and 35 ask almost similar concepts. Out of these 

13, 14, 33 and 35 have good inverse correlation with average score, but 29 and 30 

don’t. This implies that these questions have some implicit factors other than the 

mapped concepts which made them difficult, which in turn decreased the average 

score correlation. 

2. Most questions are based on or relate to concepts from 100-400 and 750-1000. 

That means that most of the tests were based on that part of the ontology. This 

inference has a very interesting implication. It means that, the instructor chose to 

set the problems only on select topics from the course ontology. The obvious 
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inference is that; those were the only topics covered in the course from the 

ontology. The exact portions of the ontology which were taught and tested can be 

pointed out using this analysis.

3. Test “a” asks concepts only around 200, but the distribution of concepts increases 

with the tests. As more and more topics are taught from the ontology, tests are 

increasingly based on more concepts than the previous. 

4. There is a small clustering of concepts followed by a slightly bigger clustering, 

between concepts 50-250. Since the concepts were numbered levels wise it means 

that the small cluster are the mapped concepts, while the rod is the projection of 

the mapped concepts. This behavior is seen through out the graph. Clustering 

following smaller clustering usually means projections of mapped concepts. 

5.3.2 Correlation based analysis

In this analysis, we separate out the problems which do not show good correlation 

with average score from those which do. In the context of assessment parameters and 

average score, an inverse correlation between the two is considered good, and vice versa.

These problems are then analyzed to make intuitive inferences as to why the observed 

correlation is good or bad. In Figures 5.6, 5.8 most of the problems have high inverse 

correlation with average score, while in Figures 5.7, 5.9 most have very low inverse 

correlation as seen in the plots. For correlation based qualitative data analysis, the 
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problems which have an inverse correlation between coverage and average score were 

separated out from those which don’t.

0

0.005

0.01

0.015

0.02

0.025

1 3 5 7 9 11 13 15 17 19 21 23

questions

co
ve

ra
ge

-10

10

30

50

70

90

110

no
rm

al
iz

ed
 a

vg
. s

co
re

λ=(0.02)

λ=(5E-3)

λ=(5E-5)

λ=(5E-7)

λ=(5E-9)

normalized
avg. score

Figure5. 6: Problems with high coverage-score inverse correlation

-0.001

0.001

0.003

0.005

0.007

0.009

0.011

0.013

0.015

0.017

0.019

0.021

0.023

0.025

1 2 3 4 5 6 7 8 9 10 11 12 13

question

co
ve

ra
ge

0

20

40

60

80

100

120

no
rm

al
iz

ed
 a

vg
. s

co
re

λ=(0.02)

λ=(5E-3)

λ=(5E-5)

λ=(5E-7)

λ=(5E-9)

avg. score

Figure5. 7: Problems with low coverage-score inverse correlation



61

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Problems

D
iv

e
rs

ity

0

10

20

30

40

50

60

70

80

90

100

a
ve

ra
g

e
 s

co
re

diversity(0.02)

diversity(5E-3)

diversity(5E-5)

diversity(5E-7)

diversity(5E-9)

normalized
avg. score

Figure5. 8: Problems with high diversity-score inverse correlation

-0.3

0.2

0.7

1.2

1.7

2.2

1 3 5 7 9 11 13 15 17 19 21

problem

di
ve

rs
ity

-10

10

30

50

70

90

110

av
er

ag
e 

sc
or

e

diversity(0.02)

diversity(5E-3)

diversity(5E-5)

diversity(5E-7)

diversity(5E-9)

normalized avg.
score

Figure5. 9: Problems with low diversity-score inverse correlation

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

0 100 200 300 400 500 600 700 800 900 1000 1100

concepts

pr
ob

le
m

s

high problem-concept inverse corelation

low problem-concept inverse correlation

A

B

Region 1

Region 2

Figure5. 10: Problem-concept mapping by high/low inverse correlation with average score



62

On carefully observing the set of concepts to which these problems map to, it is 

seen that there are surprisingly high number of common concepts and among the 

problems with good and bad correlation. It is important to note here that, rather than just 

considering the mapped concepts, the projections of the mapped concepts were 

considered as they would give a better understanding of the whole set of prerequisite 

concepts required to answer the question. Figure 5.10 shows the problem-concept 

distribution separated for the questions with high inverse and low inverse correlation

between coverage/diversity and average score. Interesting inferences can be made by 

observing the graph.

1. In area A there is similar concept distribution across problems with a good 

correlation. From this we can infer that students know those concepts well, or the 

problems based on these concepts were fairly easy to answer, or these concepts 

are intrinsically easier to understand and answer. However it is seen that, for the 

same concepts, there are a few problems (36-37) which have bad correlation with 

average score. This again could mean that these problems were harder because of 

some other parameters, or these problems required knowledge from out of the 

scope of this ontology. If similar clustering behavior is observed in problems 

which have bad correlation with average score, then it can almost conclusively be 

said that, those concepts or that part of the ontology needs more attention i.e. 

either the course instructor should teach the concepts again, or if the concepts are 

intrinsically difficult to understand then they should be somehow be simplified for 

the students. 
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2. It is observed that in problems with low inverse correlation, concepts are more 

dispersed (as in, not clustered) around the ontology as compared to those with 

high inverse correlation.

3. The small clusters in area B, mean that problems usually ask concepts near and 

around a primary concept. These small clustered concepts mostly are those 

concepts which come in the primary concepts projection itself. Two small clusters 

near each other mean two primary concepts projections which are very near to 

each other. 

4. Concepts around 200-400 and 750-1000 are frequently asked among the questions 

with high and low inverse correlation equally. This means that the tests were 

based on those concepts and not specifically on others and the concepts which 

appear scattered around the plot are those which are needed to answer the specific 

problem. The concepts which do not form the part of the cluster are most 

definitely concepts, which are distant from the primary concept, however still 

necessary to answer the particular problem completely.

5. Another interesting observation is that, in the questions which have low inverse

correlation, the projections of the primary concepts are very small (dots) 

compared to those in the questions with high inverse correlation (rods). This 

means that even though the same concepts are asked, with smaller or bigger set of 

prerequisite concepts required to answer it, the question composition itself has 

some properties other than the asked concepts which attribute difficulty/simplicity 

to it. In this vein, a lot of information can be gathered and inferences can be made.
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Chapter 6.

Applications and Future Work

The assessment framework can be intuitively applied to a number of applications. 

It provides a system for qualitative assessment of a test problem and gives values of 

desired coverage, diversity and conceptual distance to work with. To enable automatic 

assessment of any kind, it is important to have numerical values to realize intangible 

aspects of a problem like its difficulty. We present a few applications where the 

assessment framework can be employed. Much of the formal development of these 

applications is a future work. In this thesis we simply put forth the ideas for possible 

applications. 

6.1. Automatic test generation

We propose an algorithm which can select problems from a database with specific 

difficulty values and compose a test with desired complexity and desired area of testing. 

Most of the tests composed by educators today are composed manually. Also the final 

product, the test, is not associated with any characteristics like difficulty and area of 
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testing. It is important to know these characteristics of a test to be able to more efficiently 

teach, grade and analyze. The task of selecting a proper set of problems, which is 

complete in coverage and precise in difficulty, is a mechanical task which can be put in 

an algorithm. Difficulty values for problems can be calculated using function of 

coverage, diversity and conceptual distance. The output is a test with a specific set of 

problems which cover certain topics from the area and also amount to a specific level of 

difficulty. The test composition algorithm is a minimalist binary knapsack algorithm, 

where in the composer has to select questions and also weigh the selection against 

difficulty value constraint. The input to the algorithm is a set of concepts on which the 

test is based. The problems in the database have a difficulty value and problem concept 

mapping. The algorithm selects problems from the database depending on the problem 

concept mapping and difficulty values until all the desired concepts are included in the 

test and a specific difficulty value is met. 

     This algorithm can be used to create variations of difficulty for a test, a relatively 

hard test, a relatively easy test and a test with difficulty centered on a specific value. If 

the algorithm starts by selecting only the more difficult or lesser difficult problems form 

the test we can ultimately compose a test which is harder or easier respectively. To 

compose a test around a specific difficulty the algorithm can be easily modified to select 

a question with difficulty value as close to the desired difficulty value as possible, instead 

of selecting the first question from the question set every time. 
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6.2. Semantic Problem Composition

To design a question we should first be able to properly evaluate the perceived 

difficulty of a question. Semantic problem composition uses the assessment framework to 

compose a problem automatically. A problem composer must be aware of the 

difficulty/ease of a problem, the student knowledge/prerequisite and understanding, 

relevancy of the problem to the topics being taught, student evaluation capability of the 

problem, etc. Also the problems selected for the test have various properties like 

hardness/ease, time required to answer, mathematical complexity, the length and breadth 

of the topics it covers, the relevancy of the topics, etc. Most of these considerations can 

be accounted for in the problem assessment parameters. The architecture of the composer 

is shown in Figure 6.1. The two main modules are the problem assessment module and 

the problem generation modules. The inputs to the problem assessment module are the 

desired set of concepts, the desired maximum coverage and minimum diversity. Based on 

these concepts and the values, the algorithm finds out the projections of the concepts and 

thus the amount of knowledge required to compose the problem with the constraints on 

coverage and diversity. All these selected concepts then act as input to the problem 

generation module. This module puts the concepts in fixed problem templates created by 

analyzing a variety of problems, and puts them into sentences using propositions from the 

database. The final product is a problem which requires a specific set of concepts to 

answer and with a desired coverage and diversity, composed using problem templates 

and sentence construction algorithms.
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Figure6. 1: Semantic Problem Composer

6.3. Semantic Grader

If the cognitive process of problem composition can be automated with the 

necessary knowledge support given by course ontologies, then we can have an efficient 

system that can not only create courses and tests automatically considering various 

factors but also evaluate the tests. At present the process of grading or assessment of 

answers is mostly manual barring a few good exceptions. Automatic grading of answers 

has been an interesting research problem for a long time in the educational technology 

research community. Most of the work in automatic grading is in grading programming 

assignments. One of the prominent examples is KASSANDRA [48]. E-rater at ETS has 

experimented with automated evaluation of answer [47]. In this thesis we propose an
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approach for automatic grading of answers irrespective of the format of the answer. We 

propose an initial architecture for the system and plan to develop a completely automated 

system for grading answers in the future. 

From, Chapter 2 and 4 we understand that problems can be mapped to concepts 

from the ontology. Based on these mapped concepts, we generate projection graphs for 

the individual concepts, and calculate the assessment parameters based on them. With the 

same reasoning, we can apply a CSG extraction procedure to the solutions. A grader 

initially points out the concepts from the ontology which the solution includes. If we 

know this, “solution concept mapping”, we can apply the same procedures for CSG 

extraction to the solution too and obtain a cumulative projection graph of the solution. 

Once we have the cumulative projection graphs for the problem and the solution, we can 

apply graph comparison algorithms to determine parameters which can guide through the 

process on grading of answers. 

This method of grading is more comprehensive and non-trivial. The grading is 

more knowledge oriented. Once the solution projection graph (SPG) is obtained, the 

exact concepts contained in the solution can be pointed out and hence the knowledge 

gained by the student. The SPG can contain more concepts or fewer concepts than the 

required set, governed by the PPG, and the solution is graded accordingly. Figure 6.2

shows the working of the semantic grader. The problem concept mapping, solution 

concept mapping and course ontology act as the preliminary inputs to the CSG extraction 

module. The outputs of this stage, i.e. SPG and PPG then act as input to the module 

which applies graph comparison algorithms on them to finally give parameters needed for 
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grading. Based on these parameters the final grade is computed. The parameters give an 

estimation of how different are the SPG and PPG, does the SPG contain any extra 

concepts which are not needed to answer but are still relevant to the question, are there

any new relationships between the concepts in the SPG which are significant, etc. As a 

part of the future work we propose to implement this system for a more complete course 

ontology based semantic grader.

Course ontology

CSG Extraction Module

Problem
[C1,C2]

Solution

C1 C2 C1 C2

Projection Graphs
Comparison Algorithm

Grading Parameters

Problem Projection 
Graph

Solution Projection 
Graph

Figure6. 2: Semantic Grader
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Chapter 7.

Conclusion

In computer aided automated design of educational resources, specifically test 

problems, a backend system for the assessment of these test problems is an absolute must. 

We propose a system for the assessment of test problems based on a few synthetic 

parameters. The knowledge support for the system is provided by course ontology. 

Course ontology is a formal description of the concept knowledge space associated with a 

course. It is described in a specifically customized language, called as Course Ontology 

Description Language and is written in OWL. The course ontology representation is 

expressible and computable at the same time. We present a novel approach to extract 

relevant information from course ontology depending on the desired semantic 

significance. Using this method computation cost for processing ontological information 

can be greatly reduced. Finally we propose some parameters for evaluating the 

knowledge content and the complexity of a test problem using the concept knowledge 

from the course ontology. The parameters are formulaic and derived from real world 

understanding of the factors which attribute complexity to a problem like, coverage, 

diversity and conceptual distance. The parameters are then tested in the real world 

scenario of tests, and it is observed that they perform very well. These parameters maybe 
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used for the standardization of test-ware which can further the development of 

fundamental applications in reuse and engineering of digital content on the web. 

Interesting observations are made in regards to the information which can be extracted

and used from these ontologies. The assessment framework can be employed to create 

automatic design and evaluation systems like test composition, problem composition, 

semantic grading etc. Further more the ontology expression language can be extended to 

incorporate more information from the course, and thus try to infer more interesting 

results.
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