

DISCOVERING HIDDEN COGNITIVE SKILL DEPENDENCIES

BETWEEN KNOWLEDGE UNITS USING MARKOV COGNITIVE

KNOWLEDGE STATE NETWORK (MCKSN)

A dissertation submitted

to Kent State University in partial

fulfillment of the requirements for the

degree of Doctor of Philosophy

by

Fatema Nafa

November 2018

Dissertation written by

Fatema Nafa

B.Sc., Attahadi University, Libya, 2002

M.S., Attahadi University, Libya, 2006

Ph.D., Kent State University, USA, 2018

Approved by

__________________________________, Chair, Doctoral Dissertation Committee

___________________________________, Members, Doctoral Dissertation Committee

Accepted by

___________________________________, Chair, Department of Computer Science

___________________________________, Dean, College of Arts and Sciences

Dr. Feodor Dragan

Dr. Javed I. Khan

Dr. Arvind Bansal

Dr. Kambiz Ghazinour

Dr. Katherine Rawson

Dr. Austin Melton

Dr. Phillip Hamrick

i

TABLE OF CONTENT

TABLE OF CONTENT ... I

LIST OF FIGURES ... V

LIST OF TABLES .. IX

DEDICATION... XII

ACKNOWLEDGEMENTS .. XIII

LIST OF ABBREVIATIONS ...XV

CHAPTER 1: INTRODUCTION .. 1

1.1 Introduction ... 1

1.2 Motivation ... 1

1.3 Dissertation Objectives ... 5

1.4 Key Terminology .. 5

1.5 Problem Description .. 7

1.6 Proposed Solution ... 9

1.7 Problem Formulation for Applying MCKSN. ... 10

1.8 Subtasks to Support the Main Contribution .. 13

1.9 Application of MCKSN Model .. 14

1.10 Assumptions .. 17

1.11 Dissertation Structure .. 17

ii

CHAPTER 2: LITERATURE REVIEW ... 19

2.1 Introduction ... 19

2.2 Natural Language Processing (NLP) ... 20

2.3 Linguistics ... 21

2.4 Knowledge Object and Mental Models ... 22

2.5 Summary and Discussion .. 24

CHAPTER 3: EXTENDING COGNITIVE SKILL CLASSIFICATION OF

COMMON VERBS IN THE DOMAIN OF COMPUTER SCIENCES 26

3.1 Introduction ... 26

3.2 Bloom’s Verbs and their Cognitive Skill Levels .. 29

3.3 Extension Technique based on WordNet (WN) .. 30

3.4 Extension Technique based on VerbNet (VN) .. 33

3.5 Singular Value Decomposition (SVD) Technique... 36

3.6 Experiment Results and Evaluation .. 41

3.6.1 Experiment Results ... 41

3.6.2 Evaluation Measures ... 43

3.7 Summary and Discussion .. 43

CHAPTER 4: CONSTRUCTING SKILL INFERENCE RULES (SIR)................... 45

4.1 Introduction ... 45

4.2 Logic as a Knowledge Representation Formalism .. 46

4.3 Semantic Knowledge as Skill Inference Rules (SIR) .. 47

iii

4.4 Skill Inference Rules (SIR) Mining ... 48

4.5 Skill Inference Rules (SIR) Based on Cognitive Prediction 49

4.6 Skill Inference Rules (SIR) Based on Hypernym Prediction 53

4.7 Skill Inference Rules (SIR) Based on Hypernym and Cognitive Predication 55

4.8 Skill Inference Rules (SIR) Based on Hyponym Predication 57

4.9 Skill Inference Rules (SIR) Based on Hyponym and Cognitive Predication 59

4.10 Summary and Discussion .. 61

CHAPTER 5: THE APPLICATION OF MCKSN MODEL 63

5.1 Introduction ... 63

5.2 Markov Network (MN) .. 63

5.2.1 Markov Blanket ... 66

5.2.2 Example of Markov Network .. 67

5.3 Markov Logic Network (MLN) ... 71

5.4 Example of Markov Logic Network (MLN) ... 73

5.5 A Markov Cognitive Knowledge State Network (MCKSN) 86

5.5.1 Example of Markov Cognitive Knowledge State Network (MCKSN) 88

5.6 Summary and Discussion .. 106

CHAPTER 6: EXPERIMENT RESULTS AND EVALUATION............................ 107

6.1 Introduction ... 107

6.2 Test Dataset ... 107

6.3 Skill Inference Rules (SIR) Extraction .. 110

iv

6.4 Human Evaluation Model Experiment .. 111

6.4.1 Evaluation Procedure .. 112

6.4.2 Human Model Result .. 115

6.5 A Markov Cognitive Knowledge State Network (MCKSN) Model Experiment .. 115

6.6 Comparing MCKSN Model and Human Model of inferring Cognitive Skill

Dependencies. ... 116

6.6.1 Data Preprocessing .. 117

6.6.2 Performance Evaluation .. 121

6.7 Margin of Errors ... 136

6.8 Summary and Discussion .. 139

CHAPTER 7: CONCLUSION AND FUTURE WORK ... 141

7.1 Conclusion ... 141

7.2 MCKSN Model Application .. 142

7.3 Limitations of the MCKSN Model .. 142

7.4 Future work ... 143

APPENDIX A .. 145

APPENDIX B .. 153

APPENDIX C .. 154

APPENDIX D .. 155

v

LIST OF FIGURES

Figure 1.1. The Changes from the Revised Bloom’s Taxonomy to the Version of

Computer Science Bloom Taxonomy (CSBT). ... 4

Figure 1.2. Example of BLk, SIR, and CSD in Semantic Knowledge................................. 8

Figure 1.3. An Example of Some Cognitive Skill Dependencies between CS-Concepts. . 9

Figure 1.4. Sub Graph of SKM Converted to MCKSN. ... 11

Figure 1.5. The Overall Architecture of the Proposed Model. ... 16

Figure 2.1. Three Different Area of the Literature Review .. 19

Figure 3.1. Sentence Structure .. 27

Figure 3.2. An Example of a Known and Unknown Bloom’s Verbs. 28

Figure 3.3. Example of Bloom Action Verb List Remembering Level. 30

Figure 3.4. The Verb Relationship in WordNet .. 31

Figure 3.5. WordNet Technique Algorithm. ... 32

Figure 3.6. VerbNet Technique Algorithm. .. 35

Figure 3.7. Singular Value Decomposition (SVD) Technique Algorithm 38

Figure 3.8. Singular Value Decomposition Matrixes. .. 38

Figure 3.9. Verb Classification Based on the Three Techniques. 42

Figure 3.10. Verbs Classification based on the Cognitive Levels. 42

Figure 4.1. Skill Inference Rule Understanding. .. 50

Figure 4.2. Skill Inference Rule Applying. ... 51

Figure 4.3. Skill Inference Rule Analyzing. ... 52

vi

Figure 4.4. Skill Inference Rule Creating ... 53

Figure 4.5. Skill Inference Rule Understanding and SubClass. .. 54

Figure 4.6. Skill Inference Rule Analyzing and SubClass.. 54

Figure 4.7. Skill Inference Rule Appling and SubClass ... 55

Figure 4.8. Skill Inference Rule Creating and SubClass. ... 55

Figure 4.9. Skill Inference Rule SubClass and Understanding. .. 56

Figure 4.10. Skill Inference Rule SubClass and Analyzing.. 56

Figure 4.11. Skill Inference Rule SubClass and Applying ... 57

Figure 4.12. Skill Inference Rule SubClass and Creating .. 57

Figure 4.13. Skill Inference Rule Hyponym and Understanding...................................... 58

Figure 4.14. Skill Inference Rule Hyponym and Analyzing .. 58

Figure 4.15. Skill Inference Rule Hyponym and Applying. ... 59

Figure 4.16. Skill Inference Rule Hyponym and Creating. .. 59

Figure 4.17. Skill Inference Rule Understanding and Hyponym...................................... 60

Figure 4.18. Skill Inference Rule Analyzing and Hyponym. ... 60

Figure 4.19. Skill Inference Rule Applying and Hyponym. ... 60

Figure 4.20. Skill Inference Rule Creating and Hyponym. .. 61

Figure 5.1. an Example of a Small Markovian Properties Graph. 64

Figure 5.2. Example of the Nodes Connection in Markov Network. 65

Figure 5.3. A Simple Example of a Markov Network .. 67

Figure 5.4. The Fact Template .. 74

vii

Figure 5.5. The Inference Rule (IR) Template ... 74

Figure 5.6. Markov Logic Network Procedure. .. 75

Figure 5.7. The Ground Markov Network for Social Network Example. 76

Figure 5.8.Gibbs Sampling Procedure. ... 85

Figure 5.9. Skill Inference Rule (SIR) Template. ... 88

Figure 5.10. The Cognitive Skill Dependency (Apply) .. 88

Figure 5.11. MCKSN Procedure. .. 89

Figure 5.12. The Ground Markov Cognitive Knowledge State Network (MCKSN). 96

Figure 5.13. A Sub-Network MLN. .. 97

Figure 5.14. Gibbs Sampling for Node Number 1. ... 99

Figure 5.15. Gibbs Sampling for Node Number 2. ... 102

Figure 5.16. Gibbs Sampling for Node Number 3. ... 104

Figure 5.17. The Probability of the Fact at the First Iteration and Last Iteration. 105

Figure 6.1. Semantic Knowledge Map (SKM) with the Cognitive Skill Dependencies

between Concepts. ... 110

Figure 6.2. The Accurateness of the Inferred Cognitive Skill Dependencies

(Understanding). .. 126

Figure 6.3. The Accurateness of the Inferred Cognitive Skill Dependencies (Applying).

 ... 128

Figure 6.4. The Accurateness of the Inferred Cognitive Skill Dependencies (Analyzing-

Evaluating)... 129

viii

Figure 6.5. The Accurateness of the Inferred Cognitive Skill Dependencies (Creating).

 ... 130

Figure 6.6. Evaluation parameters for Cognitive Skill Dependencies (Understanding). 132

Figure 6.7. Evaluation parameters for Cognitive Skill Dependency (Applying). 133

Figure 6.8. Evaluation parameters for Cognitive Skill Dependencies (Analyzing-

Evaluating)... 134

Figure 6.9. Evaluation parameters for Cognitive Skill Dependencies (Creating). 135

Figure 6.10. The Accuracy Rate for all the inferred Cognitive Skill Dependencies. 136

ix

LIST OF TABLES

Table 3.1: Class label for Bloom’s verbs…………...………………………………...…… 39

Table 3.2: Normalized Dimensions for Bloom’s Verbs………………………………..…. 40

Table 3.3: Distance between Bloom’s Verbs……………………………………..………. 40

Table 3.4: The Classified Bloom Verbs…………………………………………..………. 40

Table 4.1. KB logical Connectives…………………………………………….…………. 47

Table 4.2. Truth Tables………………………………………………………………..…... 47

Table 4.3. Combination of the IR Understanding based with WN………………………... 50

Table 4.4. Combination of the Applying based with WN………….………………..……. 51

Table 4.5. Combination of the Analyzing based with WN………………………..……… 52

Table 4.6. Combination of the Creating based with WN………………….………...…… 53

Table 5.1 A Simple Example of Markov Network Variables with their Potential Function

Assignment……………………………………………………………………………….

68

Table 5.2 A Simple Example of Normalized and Non-normalized Random Variables…... 69

Table 5.3 All possible Ground Atoms…………………………………………………… 79

Table 5.4. The Truth Table for Atomic Formula 1……………………………………... 79

Table 5.5. The Truth Table for Atomic Formula 2…………………………………..…. 79

Table 5.6. The Truth Table for Atomic Formula 3………………………………….…. 80

Table 5.7. The Truth Table for Atomic Formula 4……………………………………..…. 80

Table 5.8. The potential Function for Atomic Formula 1 and 2……………………..……. 80

x

Table 5.9. The potential Function for Atomic Formula 3 and 4…………………..………. 80

Table 5.10 All Possible Ground Atoms for the Example…………………………..……... 92

Table 5.11. The Chosen Atomic Formulas……………………...…………………………. 93

Table 5.12. The Truth Table for Atomic Formula 1……………………………………….. 93

Table 5.13. The Truth Table for Atomic Formula 2……………………………………….. 95

Table 5.14. The Truth Table for Atomic Formula 3……………………………...………... 94

Table 5.15. The Truth Table for Atomic Formula 1,2, and 3……………………………. 94

Table 5.16. The Probability of the Fact at Each iteration………………………………….. 104

Table 6.1. Statistical Information about the Textbook…………………………………….. 111

Table 6.2. Several CS Concepts from the Algorithm Book……………………………... 114

Table 6.3. Skill Inference Rules (SIR)……………………………………………………. 112

Table 6.4. Statistical Information about the Participants………………………………....... 115

Table 6.5. Two Performance Matrixes…………………………………………………... 121

Table 6.6. Two Performance Matrixes for Cognitive Skill Dependencies (Understanding) 126

Table 6.7. Two Performance Matrixes for Cognitive Skill Dependencies (Applying)……. 127

Table 6.8. Two Performance Matrixes for Cognitive Skill Dependencies (Analyzing-

Evaluating)…………………………………………………………………………………

128

Table 6.9. Two Performance Matrixes for Cognitive Skill Dependencies (Creating)…….. 130

Table 6.10. Evaluation Parameters for Cognitive Skill Dependencies (Understanding). 132

Table 6.11. Evaluation Parameters for Cognitive Skill Dependencies (Applying)….. 133

xi

Table 6.12. Evaluation Parameters for Cognitive Skill Dependencies (Analyzing-

Evaluating)………………………………………………………………………………..

134

Table 6.13. Evaluation Parameters for Cognitive Skill Dependencies (Creating)…..... 135

Table 6.14. Margin of Error and Confidence Level for CSD’s……………………………. 139

xii

DEDICATION

This dissertation is dedicated to my always-encouraging, faithful parents, my

brilliant, loving, and supportive husband, Dr. Salem Othman, and our sweet and beautiful

kids, Ahmed, Alla, and Aya. Thank you for your love, support, and encouragement.

xiii

ACKNOWLEDGEMENTS

Thank you, GOD, for giving me the power and faith. Thank you for giving me that

knowledge to complete this dissertation. I’d like to express deepest appreciation and

gratitude to my advisor, Dr. Javed Khan, who is the reason this dissertation exists. Thank

you for your good advice, for everything you’ve taught me, and most of all for being a

steady ally throughout my Ph.D.

I’d also like to thank the professors who have served in my doctoral committee,

such as Dr. Feodor Dragan, Dr. Austin Melton, Dr. Arvind Bansal, Dr. Kambiz Ghazinour,

Dr. Katherine Rawson ,and Dr. Phillip Hamrick. I would like to individually thank every

single person who participated in the studies presented here and thank the algorithm lab at

Kent State University’s Computer Sciences department, especially Dr. Arne Leitert for his

help.

My deepest gratitude goes to my second family at the Department of Computer

Science, particularly for Marcy Curtiss for having an open heart and Janet Katila for her

kindness and wisdom. Their dedication to their job is admirable, and they always do it

without waiting for recognition or reward. They have taught me a lot.

 As graduate students we’re not supposed to have much of a social life, but luckily,

I’ve found friends who helped me directly or indirectly during my Ph.D. I wish to thank

my best friend, Dr. Amal Babour, for being a wonderful study partner. She has always been

xiv

up for an adventure, and for sharing every sense with me. My sincere thanks to my Friend

Maha Allouzi for her help and support.

I owe the greatest thanks to my patient husband, Dr. Salem Othman. His

unconditional love and support has kept me on task and is my true motivation. My God

blesses my life by making me a mom for three adorable kids, Ahmed, Alla, and Aya. They

were very patient when I was very busy. Thank GOD that I have them in my life.

I am also thankful to my mother and my father. Without their incredible love,

guidance, and emotional and financial support, I would not be where I am. Additionally, I

would like to thank all my brothers and sisters for their support and encouragement.

Fatma Nafa

November 2018, Kent, OH

xv

LIST OF ABBREVIATIONS

NOTATIONS MEANING

Ci A concept i

SKM Semantic Knowledge Map

BLk Bloom’s Taxonomy Levels k=1,2,3,4

ϕi A logical Relationship between a set of Cognitive Skill Dependencies

BT Bloom Taxonomy

RBT Revised Bloom Taxonomy

CSBT Computer Science-based Bloom Taxonomy

CSD Cognitive Skill Dependency

NLP Natural Language Processing

SVD Singular Value Decomposition

WN WordNet

VN VerbNet

KU Knowledge Unit

B(Vi) Bloom Taxonomy Verb

V(d) Variable Distance between Two Verbs

£ Fleiss' kappa

FOL First Order Logic

Si Skill Inference Rule (SIR) Strength

MN Markov Network

MB Markov Network Blanket

MLN Markov Logic Network

MCKSN Markov Cognitive Knowledge State Network

MAP Maximum a Posteriori Query

CP Conditional Probability

MCMC Markov Chain Monte Carlo

IRB Institutional Review Board

βm MCKSN Model Threshold

βh Human Model Threshold

Hb[i, s] Human Model Matrix where

i: is the Relationship Index, s: is the Human Model Index, and

b:is the Cognitive Skill Dependencies Index.

Mb MCKSN Model Estimation Result

Hb Human Model Estimation Result
𝐻𝑏

𝑚𝑚 Scaled Human Model Data using MinMax scaler
𝑀𝑏

𝑚𝑚 Scaled MCKSN Model Data using MinMax scaler

𝐻𝑏
𝐿𝐺 Scaled Human Model using Log scaler

xvi

𝑀𝑏
𝐿𝐺 Scaled MCKSN Model using Log scaler

𝐻′𝑏
𝑚𝑚 Human Model Data using MinMax scaler

𝑀′𝑏
𝑚𝑚 MCKSN Model Data using MinMax scaler

𝐻𝑏
′𝐿𝐺 Human Model using Log scaler

𝑀′𝑏
𝐿𝐺 MCKSN Model using Log scaler

Ai,j Performance Matrix using MinMax Scaled Data with ai,j Elements

Bi,j Performance Matrix using Log Scaled Data with bi,j Elements.

TP True Positives

TN True Negative

FP False Positives

FN False Negative

P Precision using the MinMax Scaling Technique
𝑃′ Precision using the Log Scaling Technique

R Recall using the MinMax Scaling Technique
𝑅′ Recall using the Log Scaling Technique

D Accuracy using the MinMax Scaling Technique
𝐷′ Accuracy using the Log Scaling Technique

F-measure Accuracy Measure using the MinMax Scaling Technique

𝐹′-measure Accuracy Measure using the Log Scaling Technique

ME Margin of Errors

CL The Confidence Level

SE The Standard Error

http://ncalculators.com/statistics/standard-error-calculator.htm

1

 INTRODUCTION

1.1 Introduction

This chapter reviews the key features of this dissertation and provides the reader

with the necessary background knowledge to grasp the potential impact and significance

of the dissertation as a whole. The contents are broadly sketched out to give a good

overview of what will be accomplished later on in this dissertation, with a particular focus

on motivation, dissertation objectives, problem description, proposed solution, assumption,

application of the proposed model and dissertation structure.

1.2 Motivation

Cognitive psychology has observed that there are two primary mechanisms of the

mental process: knowledge structure, and the process of using knowledge. The

organization of knowledge plays an essential role in both understandings the text and to

facilitate learning. Merrill in 1987 recommended “The purpose of instruction is to promote

that active cognitive processing that best enables the learner to use the most appropriate

cognitive structure in a way consistent with the desired learned performance." (Reigeluth,

2013)

Organization of knowledge matters in learning any topic. Each learning regimen is

written in a certain way to present each knowledge unit in specific order. This is done to

maximize the understanding of the knowledge contents. In fact, some textbooks unable to

2

accomplish this with high accuracy are often judged as incompetent. Although they may

contain all the needed concepts which interact the reader to pick the textbook to read, they

may not be well-written, making the concepts more difficult to comprehend. So, the

organization and the presentation of the knowledge units in the textbook are more

necessary than the concepts themselves. For example, consider a group of first graders

getting their first mathematics lesson. If the instructor chooses to start with “fractions”

without teaching the subtraction, addition, and the multiplication, the students will be

unable to understand the lesson itself. So, instructional organization is important in such a

manner to sequentially build up the knowledge base for a student for further instruction.

The text’s form is illustrated by the quality of content organization. A very well-organized

text will obviously help in understanding the concepts. One of the most apparent problems

that a typical faculty member must focus on includes which domain concepts to teach, and

how to rank each domain concept or teaching method for the level of thinking regarding

cognitive skills. An early, widely used set of categories was proposed by (Bloom,

Engelhart, Furst, Hill, & Krathwohl, 1956).

Knowledge structure refers to the interrelationships among knowledge

components. In this dissertation, the interconnections among knowledge units are

represented as a well-known cognitive theory called Bloom’s Taxonomy (BT). Proposed

by Benjamin Bloom, it is a modern concept that is used as a guideline for educators to

develop teaching regimens, organize learning goals, and create assessments (T. Thompson,

2008) and (Lister, 2000). Bloom’s Taxonomy places learning objectives into three

3

domains: cognitive, psychomotor, and effective (Bloom, 1956). The cognitive domain is

related to the knowledge and mental skills of a learner. It is the most widely used domain,

including six levels from low to high mental (processing) levels.

Bloom’s Taxonomy was modified by Anderson (Anderson et al., 2001), who made

a significant alteration to it by adding and ordering the names of each level. However, the

number of levels was kept consistent. The revised cognitive domain levels (from simplest

to most complex) are: 1) Remembering; 2) Understanding; 3) Applying; 4) Analyzing; 5)

Evaluating; and 6) Creating (as in Figure 1.1). The educationist (1993) argues the

importance of the distinctions in the cognitive levels rather than the hierarchy of the levels;

“the categories themselves are not independent but interdependent”(Crossland, 2010). As

a result, it is imperative to use the hierarchy for the learning regimen and learning

objectives.

The revised Bloom Taxonomy was modified for the domain of Computer Sciences

(Nafa & Khan, 2015). However, the number of levels had changed. The levels of Computer

Science Bloom Taxonomy (CSBT), from simplest to most complex, are: 1) Understanding

(BL1); 2) Applying (BL2); 3) Evaluating and Analyzing (BL3); and 4) Creating (BL4) (as in

Figure 1.1). CSBT provides a more flexible structure, facilitating the classification of the

knowledge domain. The main goal for creating a revised version is to provide an effective

order of BT cognitive skills for computer sciences. CSBT introduces a useful specific-

hierarchy to the existing Bloom’s Taxonomy.

4

The revised Bloom’s Taxonomy is a cognitive skills Taxonomy that has been

applied for different educational purposes in many fields of study. In the field of Computer

Science, Bloom’s Taxonomy has been used in course design, teaching methodology,

material preparation, and measuring student responses to learning (Doran & Langan, 1995)

and (Oliver & Dobele, 2007). The ACM Computer Science Curriculum specifies learning

objectives based on the revised version of Bloom’s Taxonomy (Parham, Chinn, &

Stevenson, 2009). There is a strong need to describe Computer Science knowledge units

regarding learning goals and regarding levels of mastery.

The following will therefore define concrete objectives and a clear framework in order to

bring the techniques one step further towards the application of Bloom’s theory.

Figure 1.1. The Changes from the Revised Bloom’s Taxonomy to the Version of Computer Science
Bloom Taxonomy (CSBT).

5

1.3 Dissertation Objectives

The primary objective behind this work is mainly driven by the expanding interest

and a recent increase in research based on the provided resources of using the Bloom’s

Taxonomy theory in the field of computer science. This dissertation provides a framework

for transferring the learning process from quantity to quality regarding CSBT cognitive

theory. Also included is the realization of whether a model concerning the presentation of

the learning materials of computer science can be built to assess the learner with regards to

cognitive CSBT theory, as well as how those regimens connect in a specific domain space.

In order to address this issue, several areas of investigation such as WordNet (WN),

VerbNet (VN), Singular Value Decomposition (SVD), First Order Logic (FOL), Skill

Inference Rules (SIR), Markov Logic Network (MLN), Markov Cognitive Knowledge State

Network (MCKSN), and Probability-Based Inference, were included in this research.

1.4 Key Terminology

This section defines some of the main terms that are used throughout this

dissertation.

Concept (C): The Concept is the smallest unit in knowledge representation. It captures a

knowledge domain that is eventually acquired by learning the concepts in it and their

complex interrelationships. Normally, a knowledge domain has a terminology whose

specific semantics are understood by the domain experts.

6

Knowledge Unit (KU): A Knowledge Unit is a highly interrelated set of concepts which

are dense and semantically dependent. Often the understanding of a concept in a KU is

mutually enhanced by the other concepts in that KU. It can consist of two or more concepts.

Cognitive Skill (CK): Cognitive skills are human skills of information processing. This

includes knowledge gained and understood because of thinking, experience and sensations.

Cognitive abilities involve knowledge banks, attention, memory (including working

memory), making and evaluating solutions, reasoning, estimating, problem solving,

decision making, understanding, speaking and speech understanding skills (Anderson et

al., 2001).

Cognitive Skill Taxonomy: It is a classification of cognitive skills and strategies that

develop from a complex set of life-long learning skills in cognition. The classification

system can be categorized into different types known as Bloom’s Taxonomy(BT)

(Bloom’s, 1965), Revised Bloom’s Taxonomy (RBT) (Anderson et al., 2001), and

Computer Science-based Bloom’s Taxonomy (CSBT), the latter being a modification of

the Bloom’s Taxonomy system which is more useful to computer science learners than

existing generic ones (Nafa & Khan, 2015).

WordNet Relationships (WN): It is a dependency relationship between concepts, it has

different types which are (hyponym, hypernym, meronym, and holonym).

A Semantic Knowledge Map SKM= (C, E) is defined as a graph where, C = {ci} is the

set of learning concepts ci, and a set of edges E = {eij(ci,cj,BLk)} is the Cognitive Skill

Dependencies (CSD) between the concepts ci and cj at a CSD level k (BLk) per the cognitive

file:///C:/Users/fatem/Box%20Sync/Dissrtation/Fall2016/Chapters/July-Version/August/Ref-82418/Problem%20Description-v11.docx%23_ENREF_2
file:///C:/Users/fatem/Box%20Sync/Dissrtation/Fall2016/Chapters/July-Version/August/Ref-82418/Problem%20Description-v11.docx%23_ENREF_2
file:///C:/Users/fatem/Box%20Sync/Dissrtation/Fall2016/Chapters/July-Version/August/Ref-82418/Problem%20Description-v11.docx%23_ENREF_8
file:///C:/Users/fatem/Box%20Sync/Dissrtation/Fall2016/Chapters/July-Version/August/Ref-82418/Problem%20Description-v11.docx%23_ENREF_2
file:///C:/Users/fatem/Box%20Sync/Dissrtation/Fall2016/Chapters/July-Version/August/Ref-82418/Problem%20Description-v11.docx%23_ENREF_69

7

skill taxonomy. The taxonomy identifies relationship models using different skill levels.

The classical Bloom’s Taxonomy has six levels, while the Anderson’s revised Bloom’s

Taxonomy has six types but with modified semantics. The six types of cognitive skills are

as follows: {BL1= Remembering, BL2= Understanding, BL3= Applying, BL4= Analyzing

BL5= Evaluating, BL6= Creating}, whereas the Computer Science-based Bloom’s

Taxonomy (CSBT) has four skill levels such as {BL1= Understanding, BL2=Applying, BL3=

Analyzing-Evaluating, BL4= Creating}.

Skill Inference Rules (SIR): An SIR is defined as a logical relationship between a set of

Cognitive Skill Dependencies (CSDs) di=e (ai, bi, BLi). The logical relationship between

any set of CSDs can be expressed as a First Order Logic expression. More formally, an

example of this is ϕi = ∀A,B, C {e(A, B, BLi) ∧ e(B, C, BLi) => e(C, A, BLi)}. In other words,

if concept A is needed to learn concept B, and concept C is needed to learn B, then concept

C is needed to learn concept A.

Markov Cognitive Knowledge State Network (MCKSN): An MCKSN is defined as an

undirected graph G= (F, R), where each node Fi in the node set F represents a Cognitive

Skill Dependency at a given Bloom level. R ⊆ F×F is a set of edges connecting the nodes.

Each edge ri,j represents the appearance of a Cognitive Skill Dependency in the same Skill

Inference Rule (SIR).

1.5 Problem Description

Given a Semantic Knowledge Map SKM = (C, E), a subset of known Cognitive

Skill Dependencies (CSD) is found between the concepts with their level specifications

8

BLk, and a set of Skill Inference Rules ϕi. Find out the remaining CSDs. The

graphical representation denotes the symbols; the BLk (in bold), the SIR (in double), and

the CSD (in the dot), are shown in Figure 1.2.

Consider a real example, in this scenario suppose that a learner needs to learn some

concepts from Algorithm book related to different topics such as {Graph, Graph-Traverse,

BFS, Binary-tree, Data-structure, Algorithm, Insertion-sort, and Heap-sort}. Some of the

Cognitive Skill Dependencies (CSDs) between concepts are given which are {Apply,

Analyze, and Create}in addition, a skill dependency among the given CSDs encompassed

in the SKM. Consider that the learner starts with three concept {Graph, Graph-Traverse,

BFS} which are three nodes in the SKM as in Figure 1.3. As the CSDs between concepts

shows that a concept ‘Graph’ is needed to be known to Apply concept ‘Graph-Traverse’

and concept ‘Graph-Traverse’ is needed to Create a concept ‘BFS’. The question is can we

recommended that the learner should learn a concept ‘Graph’ to Create a concept ‘BFS’.

Figure 1.2. Example of BLk, SIR, and CSD in Semantic Knowledge

9

This scenario represents a subgraph of the SKM as in Figure 1.3. Consist of some CS-

concepts with their CSDs.

1.6 Proposed Solution

To answer the question above, a human may easily estimate it either by using

common sense and their experience or by asking domain experts. However, a computer

requires an immense amount of knowledge to reason out the relationships of different

areas. To access the best answer, a computer requires algorithmic techniques that can

process the information for building the model. However, it is not trivial to build a model

that can answer the question like a human. Therefore, a major challenge is to build a model

that can assist the learner. To answer the question, Markov Cognitive Knowledge State

Network (MCKSN) model was used.

Definition: A Markov Cognitive Knowledge State Network (MCKSN) is defined

as an undirected graph G= (C, E), where each node ci in the node set C represents a

Figure 1.3. An Example of Some Cognitive Skill

Dependencies between CS-Concepts.

10

Cognitive Skill Dependency (CSD) at a given Bloom level. E ⊆ C×C is a set of edges

connecting the nodes. Each edge ei,j represents the appearance of CSD’s in the same Skill

Inference Rules (SIR) (as illustrated in Figure 1.4).

 Figure 1.5 Markov Cognitive Knowledge State Network (MCKSN).

1.7 Problem Formulation for Applying MCKSN.

Given a Markov Cognitive Knowledge State Network (MCKSN), subset of CSDs,

and set of Skill Inference Rules (SIR) and assumed to be true. Estimate the probability of

the inferred CSDs to be true.

The proposed model contains some key ingredients which are relied upon in each

part of the dissertation. The main contribution is to introduce a mental blueprint, using

these key ingredients to create a proper solution and to proof how these key ingredients can

11

be coupled together to tackle different angles of the research problem. The three keys

ingredients of the presented model are:

• Mapping the SKM into MCKSN,

• Using human knowledge to describe the Skill Inference Rules (SIR)

among the CSDs via First Order Logic (FOL), and

• Using the Probability Graphical Inference to infer CSDs.

The act of mapping SKM into MCKSN through CSDs and SIR among the cognitive

relationships, where the facts describe CSDs between two nodes in the SKM and the Skill

Inference Rules (SIR) describe CSDs among the CSDs, forms a clique in the MCKSN.

The Skill Inference Rules (SIR) among CSDs is expressed as First-Order Logic (FOL)

rules. An example of this is to suppose a subgraph from the previous case includes three

nodes (‘Graph’, ‘Graph-Traversal’, and ‘BFS’). Based on Bloom’s taxonomy of learning

theory, a learner is expected to learn those concepts at different Bloom levels. In other

words, [If a concept ‘Graph’ is needed to be known to ‘Apply’ concept ‘Graph-Traverse,’

Figure 1.4. Sub Graph of SKM Converted to MCKSN.

12

and concept ‘Graph-Traverse’ is needed to be known to ‘Create’ concept ‘BFS’ then a

concept ‘Graph’ is needed to be known to ‘Create’ a concept ‘BFS’].

There is no magic coding recipe for taking a sentence expressed in natural language

or any other form and showing it in first-order logic. However, the syntactic restrictions of

first-order logic must be obeyed. By obeying First Order Logic’s syntax, the above

sentence can be expressed as a Skill Inference Rules (SIR) as follows:

The dissertation shows how the inference of CSDs can be recast in a probabilistic

setting. The aim is to apply a probabilistic graphical model to infer CSDs between concepts

jointly.

These three ingredients are the general pillars of the proposed model. Each of them,

however, has a number of sub-domains which are the tunable components making the

model flexible. In Chapter Three, the first component is explained in detail, followed by a

proper discussion. In Chapter Four, the second component is described in detail. In Chapter

Five, the last component is explained and followed with an example. The experimental

studies aim to showcase how the model can contribute to the research problem. Therefore,

the proposed model grants new perspectives and brings about balance by showing the

inference of CSDs among concepts in a CS domain.

Apply (G, GT) ^ Create (GT, BFS) => Apply (G, BFS)

13

1.8 Subtasks to Support the Main Contribution

To support the dissertation, an argumentation is articulate around one central

question (linked to Chapter Five), and the sub-research questions (strictly related to

Chapter Three and Four of this dissertation), as introduced below.

Sub Questions: The sub-questions arise as challenging, due to the central question.

Also, dealing with text involves inherent semantic ambiguities in natural language, as well

as touching the cognitive skills. Questions regarding these issues include the following:

• Are there any cognitive verbs that can describe a specific domain?

• Is Bloom’s measurable verbs list indicative of the cognitive skills, and how

can the other verbs which are not on Bloom’s verbs list be identified based

on cognitive skill levels?

• From a practical point of view, how is it possible to logically design a

language to map SKM and its internal relationships with Cognitive Skill

Dependencies?

• How can the difficulties of learning a new topic be simplified by designing

a learning map through the revised Cognitive Theory?

• How can an automatic tool be designed for the management of future

ACM/IEEE CS curricular revisions (which are expected to have a continued

emphasis on Bloom’s Taxonomy)?

The necessity of inferring the Cognitive Skill Dependencies will help learners to

connect the knowledge gaps between learning objectives and the learning regimen based

14

on each learner’s specific cognitive level. This also effectively and efficiently

accomplishes the aim of improving critical thinking abilities for learners. The lecturer

would also have a congruent understanding of learning objectives and learning regimen,

teaching students how to master all new concepts in each knowledge unit. Finally, the

learner’s mental skill levels should increase as they progress from one topic to the next.

A meta learning recommended model was proposed as an application of this work.

The application developed to explore an interesting angle by looking for the intersection

between logic and probability in one dimension. The next section will describe the general

structure of this proposed application of this work which is meta learning recommended

model.

1.9 Application of MCKSN Model

In order to achieve the study’s objectives and to help to answer its research

questions, a novel meta learning recommended model was developed as an application that

relies on several components which will be introduced progressively. Figure1.6 illustrates

an overview of the proposed application. The model involves several basic linguistic

preprocessing tasks (as illustrated in Figure 1.6).

The First phase involves basic linguistic preprocessing techniques such as Text-

Preprocessing, Natural Language Processing (NLP), Domain Specific Extraction, and

Semantic Relationship Extraction. In Text-Preprocessing, the model assumes that the input

files are in the plain text format. All other formats are turned into plain text before

beginning the other steps. Next, Natural Language Processing incorporates NLP tools such

15

as splitting each sentence into a sequence of tokens (where tokens are unique concepts).

The Stanford Parser, which is used to parse each sentence to get its part-of-speech (verb,

noun, adjective, etc.) is used to extract semantic relationships between concepts (Nafa,

Khan, Othman, & Babour, 2016c).

This phase also presents the Computer Science Bloom Taxonomy (CSBT), which

is implemented using a scheme-based analysis of a revised version of Bloom’ Taxonomy.

This in turn provides specific cognitive levels for Computer Science learners inspired by

(Nafa & Khan, 2015). The model core component plays a very important role in this design.

It is the first step for preprocessing the textbook and Bloom’s Taxonomy, the final form of

which is represented as a semantic Knowledge Map (SKM) and a revised version of

cognitive levels (CSBT).

The Second Phase of this model is classifying the verbs based on their Cognitive.

Bloom’s Taxonomy provides a ready-made structure and list of action verbs. These verbs

are the key to extract the Skill Inference Rules (SIR). However, Bloom’s original list of

verbs was limited; not all verbs are included in the list. All the verbs in this list are action

verbs since the learning objectives are concerned with what the students can do at the end

of mastering a specific knowledge unit. This component proposes three techniques:

WordNet, VerbNet, and Singular Value Decomposition (SVD) (Nafa, Khan, & Othman,

2017) . The details of this phase can be found in Chapter Three.

The Third Phase answers the central question of this dissertation. This phase

investigates the application of Markov Cognitive Knowledge State Network (MCKSN)

16

technique with human evaluation of the inferred Cognitive Skill Dependencies (CSD). The

model is a probability-based inference. The details of this phase are presented in Chapter

Five followed by the results and the human evaluation in chapter Six.

The idea of this dissertation is to build a model that ascertains the Cognitive Skill

Dependencies between existing concepts in a specific domain. It can then assess the learner

in the mastery of any knowledge unit at each cognitive learning level. The idea addresses

it from an innovative angle, guided along the way by the study’s research questions.

This work’s contribution can be articulated around the central themes, giving a

complete model introduced through the chapters of this dissertation.

Figure 1.5. The Overall Architecture of the Proposed Model.

17

1.10 Assumptions

The proposed techniques used to solve the problem contain a few assumptions that

need to be addressed. They are as follows:

• Verbs typically indicate semantic relations between concepts.

• Concept is the smallest unit in knowledge-unit. It is an element of a knowledge

domain that is eventually acquired by learning the member concepts and their

complex interrelationships.

• In simple sentence, verbs typically indicate direct semantic relations between

subject and object.

• In complex sentence, concepts that nearest to the verb are semantically related.

• We only consider knowledge-units of Computer Science domain.

• The text used for extracting the relationships is structured, and in English

1.11 Dissertation Structure

This dissertation presents a meta learning recommended model foundation at the

algorithm and technical level to support the above goals. Chapter Two presents the

interpretations of the related work. The model is divided into phases (as illustrated in Figure

1.6). Tasks are offered throughout the chapters in detail. The second phase of the model,

classification methodologies for the cognitive verbs, is presented in Chapter Three, the

third task of the model shown in Chapter Four introduces the construction of Skill Inference

Rules (SIR). Chapter Five puts into practice the lessons learned from the previous Four

18

chapters. It gives particular attention to the central question of this dissertation after

answering each sub-question. It introduces a technique to infer Cognitive Skill

Dependencies (CSD), and it puts the tasks together in order to conclude exciting results

armed by the human judge for the final results.

The dissertation ends with a conclusion of the main findings and outcomes,

including tentative answers to the study’s research questions, along with a discussion of

this dissertation’s limitations. Finally, it discusses how this model could profitably be

generalized and transposed to other languages and application domains.

19

 LITERATURE REVIEW

2.1 Introduction

The work presented in this chapter is situated at the intersection of several areas of

related prior work: The Natural Language Processing (NLP), Linguistics, and Knowledge

Object and Mental Models. Each of these are discussed in turn. Figure 2.1 illustrates a

general view of the literature review work.

Figure 2.1. Three Different Area of the Literature Review

20

2.2 Natural Language Processing (NLP)

Natural Language Processing (NLP) is a branch of linguistics, artificial intelligence,

and Computer Science. Its purpose is to develop a computer program that can generate text

in natural language and speech patterns. The goal is to enable computers to communicate

with humans in the same way that humans communicate with other humans (C. D.

Manning, Manning, & Schütze, 1999). NLP has different research areas, some of which

interrelate with the component and other items in the tasks of NLP in the area of the concept

extraction, which is a part of Information Extraction. NLP has various techniques used for

concept extraction including supervised, semi-supervised, and unsupervised techniques

(Tur, Hakkani-Tür, & Schapire, 2005). One effective technique for concept extraction is a

graph, very effectively enabling exploration of the concepts. More about graph

representations of text is discussed in (Valle & Ozturk, 2011) (Walter, 2004) (Mishra,

Huan, Bleik, & Song, 2012). In a graph, representation concepts are represented by nodes,

and relations between concepts are represented by edges. A graph-based approach is used

for the extraction of concepts from the textbook because it is very accurate and efficient

for domain-specific tasks. This study focuses on textbooks since they provide a

comprehensive list of domain concepts, and extracted concepts are domain specific.

Therefore, using a graph-based approach is a promising method to meet the study’s

demands.

In the area of the relation extraction, different categories of methods as presented

in Figure 2.1. This work uses knowledge-based techniques where the relation is a

21

dependency relation among concepts, and the graph is a representation of the extracted

relationship. Research exists concerning graphical text representations such as concept

graphs and ontology (Mitra, Wiederhold, & Kersten, 2000). Concept Graph Learning is

also proposed to present relations among concepts from prerequisite relations among

courses. Using graph-based method is a promising way to answer the study’s questions and

to discover novel cognitive relationships between knowledge units.

2.3 Linguistics

Verbs are central to the syntactic structure and semantics of a sentence. Existing

computational resources and classifications developed for verbs can be classified into these

three types:

Syntactic Resources: Examples of these are complex dictionaries (Adorni & Zock,

1996) and (Kipper, Korhonen, Ryant, & Palmer, 2006) and are mostly manually developed.

An entry here has verb forms and subcategorization information.

Semantic Resources: Examples of these include FrameNet (Baker, Fillmore, &

Lowe, 1998) and (Shi & Mihalcea, 2005) and WordNet(G. Miller, 1998). FrameNet groups

words according to conceptual structures and their patterns of combinations. On the other

hand, WordNet groups words into synsets (synonym sets) and records semantic relations

between synsets. However, little syntactic information is present in these resources.

According to (Kipper, Dang, & Palmer, 2000), WordNet lacks generalization, and its level

of sense distinction is too fine-grained for a computational lexicon.

22

Syntactic Semantic Resources: Here, verbs are grouped by properties such as

shared meaning components and morpho-syntactic behavior of words in Levin’s 1993 verb

classification. Since then, VerbNet (Kipper et al., 2000) has expanded this classification

with additional verbs and classes.

Even though an extensive collection of literature exists on verb classification, none

of the presented techniques have been developed to classify the verbs based on Bloom’s

Taxonomy levels. Benjamin Bloom and his colleagues provided the verbs to help identity

which action verbs align with each Bloom level to describe the learning objectives (Starr,

Manaris, & Stalvey, 2008). Benjamin Bloom provides a sub-list; not all verbs are included.

There is a need in the computer sciences to use the domain verbs in order to keep the

description of the learning objectives measurable and clear.

2.4 Knowledge Object and Mental Models

According to this study’s research, no previous works have investigated three

different taxonomies to represent the three domains of learning: a cognitive Taxonomy

focused on intellectual learning, an effective Taxonomy concerned with the learning of

values and attitudes, and a psychomotor Taxonomy that addresses the motor skills related

to learning. One of the cognitive taxonomies is known as Bloom’s Taxonomy (Bloom’s,

1965). Bloom’s Taxonomy has been applied in the field of computer science. Specifically,

such taxonomies have been used in four different ways: 1) course design, 2) teaching

methodology, 3) the creation of learning and evaluative materials, and 4) student responses

23

to learning activity (Buck & Stucki, 2001), (Scott, 2003), and (E. Thompson, Luxton-

Reilly, Whalley, Hu, & Robbins, 2008).

This section appraises the work of many research projects that have applied

Bloom’s Taxonomy to the field of computer science. Machanick presents the idea of

ordering materials according to the required cognitive skills taught within three computer

science courses (Machanick, 2000). Bloom’s Taxonomy was used to assign grades in an

introductory programming course. Grading was based on a Bloom-level mastery of tiered

curricular components rather than grading on a curve by (Starr et al., 2008) .In a review of

their work, the Taxonomy for computer science was questioned (Johnson & Fuller, 2006).

The issue with Machanick’s method is that exams regularly fail to test the knowledge of

students for each level of mastery in Bloom’s Taxonomy (Scott, 2003). Because of this,

teachers cannot accurately assess the depth of mastery for individual students. A proposed

solution was to use Bloom’s Taxonomy to assess the cognitive difficulty of computing

courses in an IT program by formulating and calculating a Bloom Rating (Crowe, Dirks,

& Wenderoth, 2008). A Bloom level was assigned to each test question according to the

level of cognitive behavior required to properly answer it. Based on the above work, by

using a Bloom Rating, a Bloom-based course assessment tool could be constructed and

deployed in a second-level programming course (Schulte & Bennedsen, 2006). The result

is the assignment of a grade that is based on objective measurements of learning outcomes.

The paper describes the cognitive tasks required at each of the three grade tiers. Finally,

Manaris et al. (Lister & Leaney, 2003) applied BT within CS to specify learning objectives

24

of human-computer interaction courses. They presented a collection of courses for various

target audiences, including freshman non-majors, junior/senior majors, and graduate

students. For each course, they provided an outline containing learning objectives using

BT, the amount of time to be spent on each topic and related in-class activities. Closely

related research was also done by Thompson et al.; their focus was on Computer Science

assessment (E. Thompson et al., 2008). Their main goal was to use Bloom’s Taxonomy

to assist in designing introductory programming examinations. More recent research done

by Starr et al. focused on specifying assessable learning objectives in Computer Science

(Starr et al., 2008). They believed that their idea of integrating Bloom’s Taxonomy with

Computer Science curriculum created more effective faculty communication and

strengthened the department’s assessment program. Other research work completed for

specific Computer Science areas of education that used Bloom’s Taxonomy includes a

test-driven automatic grading approach for programming (Hernán-Losada, Pareja-Flores,

& Velázquez-Iturbide, 2008) , Bloom’s Taxonomy levels for three software engineer

profiles (Bourque, Buglione, Abran, & April, 2003) , and Bloom’s Taxonomy for system

analysis workshops (Khairuddin & Hashim, 2008).

2.5 Summary and Discussion

The use of existing taxonomies is not as efficient for computer science. This study

addresses a novel aspect of the problem. Based on David Kolb’s research (Kolb, 2014), it

is apparent that different people can enter the learning cycle at different points. A revised

BT is modified to show how CSBT cognitive thinking would be more applicable to

25

computer science than the existing generic ones. In “Conceptual Knowledge Space,”

written by Javed I. Khan, Yongbin Ma, and Manas Hardas (Khan & Hardas, 2007), the

authors demonstrated how courses can be composed, based on knowledge ontology. It

presented a novel methodology to evaluate the bottom-up technique for teaching

programming concepts based on the theory of constructivism from educational

psychology. Educators in teaching employed their technique; students do not employ or

are not able to employ the bottom-up to the technique of constructing concepts in learning.

Most of the previous work does not focus on building automatic models to assist in

analyzing domain concepts, where the domain concepts are identified with a cognitive link

between all the concepts. The link is a verb identifying the certain skill necessary to be

learned in the prerequisite concept and the target concept to be achieved at a certain skill.

A review of related work is presented in this Chapter. Next Chapter gives special

attention to classify Computer Sciences verbs into their cognitive levels using three

different methodologies.

26

 EXTENDING COGNITIVE SKILL CLASSIFICATION OF

COMMON VERBS IN THE DOMAIN OF COMPUTER SCIENCES

3.1 Introduction

This chapter presents an important part of the picture: a classification of the verbs

into cognitive skill levels. For this task, not all verbs are equally important; this study

particularly focuses on identifying verbs indicative of idenifying cognative skill level

linked to the domain of computer sciences.The classification of a domain-specific verb is

defined as a Cognitive Skill connection between concepts used in sentences with a given

verb. The chapter introduces three different techniques used to classify verbs, whereas

Bloom’s verb list is used as a baseline method to classify some of the CS verbs. but not all

verbs are included in Bloom’s verb list. This poses an interesting question: What about the

other verbs which are not on Bloom verbs list?

The techniques include WordNet (G. Miller, 1998), which was used to access the verb

synonym; VerbNet, used to access the verb class; and Singular Value Decomposition

(SVD), for all other verbs not included in WordNet and VerbNet. The three techniques will

be explained in greater detail in this chapter.

The techniques are based on linguistic dictionaries for verbal classification. It is ready

to use.This work made easy access by coding them and investigating the contents of those

dictionaries. This work adds a contribution by serving the cognitive area via using WordNet

and VerbNet lexical databases.

27

A running example of the verb classification is shown in Figure 3.1. The textbook is

organized into a hierarchical structure, where the organization is represented as chapters,

sections, sub-sections, paragraphs and sentences. The smallest level in the hierarchy is the

sentence. The structure of the sentences differs throughout the book, depending upon the

need for each. This study classifies sentences into four different structural types: simple

sentences, compound sentences, complex sentences, and compound-complex sentences.

The study’s approach assumes that concepts which are semantically related tend to be

“near” in a plain text. This assumption arises from the principle of coherence on linguistics

(Foltz, Kintsch, & Landauer, 1998). Based on this assumption, the study’s proposed

technique is applied to knowledge units extracted from the texts in order to discover

semantic relations between concepts. Moreover, this approach is able to find the Cognitive

Skill levels between concepts based on the verb.

The Cognative Skill levels between concepts in the sentences are captured from

different sentences structures. One such example is a specified knowledge unit about the

‘Heapsort Algorithm’ to extract the concepts and the verbs from given knowledge unit.

This study’s major goals include the following: Finding the low-level concepts and the

Figure 3.1. Sentence Structure

28

high-level concepts and showing the dependencies between the concepts based on the verb

is accomplished in the first phase of the model, where the output is represented as a

Semantic Knowledge Map (SKM). Next, high-level concepts are used to describe the

learning objectives based on the verb cognitive level, where the verb level is unknown.

However, this study’s proposed techniques are able to figure out these verb levels as sub-

tasks.

The given knowledge unit includes some concepts: Heap-Sort, heap-property, time,

priority-Queue, max-heap, producer, sorting, array}. The process of finding the Cognitive

Skill levels of the verb is done by describing the learning objectives required for mastering

this knowledge unit at different cognitive levels.

Figure 3.2. An Example of a Known and Unknown Bloom’s Verbs.

29

In Figure 3.2 (A), only five verbs are known in their cognitive levels from Bloom’s

original list; they appear as dark black lines in the graph. In Figure 3.2 (B), by using the

first methodology for verb classification (WordNet), only one verb classified into its

cognitive level; the verb appears with a double line in the graph. In Figure 3.2 (C), by using

the second methodology for verb classification (VerbNet), only two verbs classified into

its cognitive level; the verbs appear with a double line in the graph. In Figure 3.2 (D), by

using the third methodology for verb classification (SVD), the rest of the verbs are

classified into their respective cognitive levels; the verbs appear with a double line in the

graph. After all classification methods are Applied, verbs are classified into their cognitive

levels, and the concepts are edited to descibe the learning objectives for this knowledge

unit. The teacher can then ask him/herself what cognitive levels are necessary for his/her

students to master this knowledge unit.

3.2 Bloom’s Verbs and their Cognitive Skill Levels

Bloom’s Taxonomy provides a ready-made structure and list of action verbs. These

verbs are the key to writing learning objectives. However, Bloom’s original list of verbs

was limited; not all verbs are included in the list. All the verbs are action verbs since the

learning objectives are concerned with what the students can do at the end of mastering a

specific knowledge unit. As an example, a list of the active verbs used to assess a

Remembering level is shown in Figure 3.3.

30

To run the linguistic analysis for the knowledge unit in the textbook, Stanford

University’s Core NLP library is used (C. Manning et al., 2014). This step has been done

in the first phase of the study’s model, but more characteristics are added to analyze the

verbs in the knowledge units. The results of the sentence structures for the verbs have also

been analyzed. The most common modification used to get a high accuracy for the results

involves incorrect POS tags; errors are shown as stemming; and sometimes a verb can be

mistagged as a noun. These incorrect POS tags, causing incorrect parsing structures, are

modified manually. All auxiliary verbs are also removed by checking the verb with a list

of all auxiliary verbs and their derivatives. For more accurate results, the proposed

techniques are introduced and used (WordNet, VerbNet, and SVD). The three techniques

will be explained in detail respectively.

3.3 Extension Technique based on WordNet (WN)

An assumption used in this study is the following: If there is a WordNet relation between

two verbs, THEN the Bloom label is there;

Figure 3.3. Example of Bloom Action Verb List
Remembering Level.

31

If 𝑉𝑖 ↔ 𝑉𝑗 Then 𝛽(𝑉𝑖) = 𝛽(𝑉𝑗)

WordNet documents the verbs based on 14 different files (Klavans & Kan, 1998),

each file covering a semantic domain: verbs of bodily care and functions, change,

cognition, communication, competition, consumption, contact, creation, emotion, motion,

perception, possession, social interaction, and weather verbs. Each of these files has a

“unique” set of beginners which correspond to the top most verbs in that hierarchy. These

sets also denote the most basic concept in that tree, which is specialized by the remaining

verbs in that tree as an example of the WordNet verb relationship shown in Figure 3.4.

The verbs provide most of the semantic frame of sentences and are considered the

most important syntactic category. Although each syntactically correct sentence must have

a verb, they do not necessarily require a noun. This study is especially interested in the

verbal relation of synonyms. These synonym relations have more expressive power and are

better tailored for the task of the Cognitive Skill Levels. Synonymy relation is at the base

of WordNet’s structure, along with being the most important Levels found in WordNet

(which is already implicit in the notion of a synset). WordNet-like taxonomies behave in

some ways like a dictionary, and in others as an ontology. To avoid Performance, WordNet

Figure 3.4. The Verb Relationship in WordNet

32

in this research is used as a dictionary for verb synonym relations. Around 3,600 verb

senses are included in WordNet.

Figure 3.5. WordNet Technique Algorithm.

As the first technique for finding the level of domain-specific verbs based on

Cognitive Skill Dependencies, all domain-specific verbs are mapped to their verb

synonyms from the WordNet database. However, WordNet has a few limitations, one of

Def WordNet Technique ():

Input BT-Verb [], CS-Verb []

Output: BTN-Verb [], Unknown-Verb []

Def Find-Bloom-Level (CS-Verb-Synonym):

1. For Verb in CS-Verb-Synonym:

2. For Verb1 in BT-Verb:

3. If Verb in BT-Verb ():

4. BT-Verb [Verb]=Level

5. BTN-Verb [Verb]. Append (Level)

6. Else:

7. Unknown-Verb [Verb]. append (Zero)

8. BTN = GetmostFrequ (BT-Verb)

Return BTN-Verb [], Unknown-Verb []

Def Find-WordNet-Synonym (CS-Verb):

9. For pos in poses:

10. For Synset in WN. Synsets (CS-Verb, pos):

11. For lemma in synset. Lemmas ():

12. If Name! = CS-Verb and Name not in syns:

13. Syns.append(Name)

Return CS-Verb-Synonym

33

which is its limitation of not having all the classes for all verbs, classifying some of the

verbs but not the others. It also does not cover special domain words, nor does it include

forms of irregular verbs.

Figure 3.5 presents an algorithm used in WordNet technique. Input for the

algorithm includes the original Bloom verb list (B(Vi)) and the domain-specific verb list

(Vj). An algorithm starts by reading a domain-specific verb list and checks which verbs are

in Bloom’s verb list; it returns two lists-known verbs as known in Bloom’s list and as

unknown as Bloom’s list. It then starts to maintain the unknown verb list by checking verb

synonyms from the WordNet database; some new verbs have been added to known verbs

as unknown in Bloom’s list. In case the verb synonym does not return any Bloom level for

the verb, the Algorithm returns a new verb list with Bloom’s classification and another

verb list not in Bloom’s Taxonomy. Thus, new verbs synonyms have been added to the

known verbs as those in Bloom’s list. The list will be saved as unknown verbs in Bloom’s

Taxonomy. A limitation of WordNet includes gaps between verbs in the database; for that

reason, some of the verbs will not be found in the WordNet database (K. J. Miller, 1998).

Finally, for those verbs in which a classification is not found, the algorithm starts the

classification process over for verbs but uses a different methodology using the VerbNet

methodology. This will be explained in detail in the following section.

3.4 Extension Technique based on VerbNet (VN)

VerbNet (VN) is a vast online repository for the classification of English verbs

(Schuler, 2005). It includes syntactic and semantic information for classes of English verbs

34

derived from Levin’s Classification (as explained in Related Works, Chapter Two). It is an

updated version that is considered more detailed than the version included in the original

organization. VN classification considers very important properties such as the lexical

meaning of a verb and the kind of argument interchanges that can be observed in the

sentences with the verb. The classification of VerbNet is based on the senses of verbs. It

covers 5,200 verb senses. The classification is partially hierarchical, including 237 top-

level classes with only three other levels of subdivision (Schuler, 2005).

 The VerbNet database also contains information about the correspondence

between the classes of verbs and lexical entries in other resources. Each verb class in VN

includes a set of members, thematic roles for the predicate-argument structure of these

members, sectional restrictions on the arguments, and frames consisting of a syntactic

description and semantic predicates with a temporal function. New subclasses are added to

Levin’s original classes to achieve syntactic and semantic coherence among members.

 VerbNet is a rich database with verb classification, providing easy access for use

by the programming language. It has been used to help NLP applications such as semantic

role labeling (Swier & Stevenson, 2004) and word sense disambiguation (Dang, 2004).

However, it is not very helpful when it comes to processing texts in specific domains where

verb senses only partly overlap with those in general language use.

35

Figure 3.6 illustrates the algorithm used for the VN technique. As an input for the

algorithm, it starts by reading the output verb lists from WordNet. It then checks unknown

verbs in Bloom’s list to return the verb class from the VN database. After it returns the verb

class from the VN database, new verbs are added to the known verbs as part of Bloom’s

Def VerbNet Technique ():

Input NBT-Verb [], CS-Verb []

Output: BTN2-Verb [], Unknown-Verb []

Def Find-Bloom-Level (Verb-VN-Category):

1. For Verb in Verb-VN-Category:

2. For Verb in NBT-Verb:

3. If Verb in BT-Verb ():

4. BT-Verb [Verb]=Level

5. BTN2-Verb [Verb]. Append (Level)

6. Else:

7. Unknown-Verb [Verb]. Append (Zero)

8. BTN2= GetmostFrequ (NBT-Verb)

Return BTN2-Verb [], Unknown-Verb []

Def Find-VerbNet-Class (CS-Verb):

9. For Verb in CS-Verb:

10. Verb-Class=VerbNet.Classids(Verb. Strip ())

11. If Verb-Class=! =[].

12. For V in Verb-Class:

13. Verb-VN-Category. Append (V)

Return Verb-VN-Category

Figure 3.6. VerbNet Technique Algorithm.

36

list. In case the verb class returns nothing for the verb, the algorithm uses the verb member

to check the availability of having new verb members for the verb under study and checks

if the new verb is in Bloom’s list. If so, the verb level is returned.

If the verb is found with neither a class nor members in the VN database, the list is

saved as unknown verbs in Bloom’s Taxonomy. A limitation for VN includes gaps between

verbs in the database; for that reason, some of the verbs are not found in the VN database.

Finally, for those verbs whose classification is not found, the algorithm starts the

classification process over for verbs but uses a different methodology (the SVD method,

which will be explained in detail in the next section).

3.5 Singular Value Decomposition (SVD) Technique

In this section, verbs are classified based on Latent Semantic Analysis (LSA). LSA

is a theory and method for extracting and representing the usage and meaning of domain

concepts by using statistical computations (Golub & Reinsch, 1970). The process is divided

into two tasks: calculating SVD to divide matrix A into three matrixes; and finding the verb

level in Bloom’s Taxonomy by applying SVD to the matrix (A). Doing this will break down

each dimension in the matrix using Equation 3.1.

𝐴𝑣×𝑠 = 𝑈𝑣×𝑣 × 𝑆𝑠×𝑣 × 𝑉𝑇
𝑠×𝑠

(3.1)

Where:

A: v x s matrix (v verbs, s sentences)

 U: v x v matrix (v verbs, v verbs)

37

 V: s x s matrix (s sentences, s sentences)

Def Singular Value Decomposition (SVD) Technique ():

Input: A= Matrix and BTN2-Verb []

Output: U matrix // Dimension Reduction Matrix

Def Calculate ():

1. U, S, VT = SVD(A) // U, S, VT matrixes

2. UR=U [: 0:3] //The dimensional Reduction of U

3. VR=VT [0:3,] //The dimensional Reduction of VT

Def VerbClassify (VR):

4. For all V ∈ VR Do

5. Verb-Class, Unknown-Verb. ← Check-Class (V, BTN2-Verb)

6. V-Class ← ComputeNearstNighbor (V, Verb-Class, Unknown-Verb)

Return Verb-Class ()

Def Check-Class (V, BTN2-Verb):

7. If V in BTN2-Verb ():

8. BTN2-Verb [Verb]=Level

9. BTN2-Verb [Verb]. Append (Level)

10. Else:

11. Unknown-Verb [Verb]. append (Zero)

Return Verb-Class [], Unknown-Verb [].

Def Compute-Nearest-Neighbor (V, Unknown-Verb, Verb-Class):

 //Find the K nearest neighbors for Unknown Verb based on the Euclidean distance

12. For V in Unknown-Verb ():

13. For Vi in Verb-Class ():

14. D ← Compute the distance d (V, Vi)

15. Sort all D according to d (V, Vi)

14. Select the first k points from D, those are the k closest distance.

16. Select the verb and the class based on D

17. Return Verb-Class ()

38

 Figure 3.7. Singular Value Decomposition (SVD) Technique Algorithm

Figure 3.8. Singular Value Decomposition Matrixes.

As part of applying SVD (Wall, Rechtsteiner, & Rocha, 2003), dimensionality

reduction techniques are utilized in order to reduce the high dimensionality of the Verbs

matrix (U). Only 2-dimensions are considered here as illustrated in Figure 3.9. The biggest

reason SVD is used to transfer this study’s problem into a mathematical-based article is

because it finds a reduced dimensional representation of the study’s matrix that emphasizes

the strongest relationships and that removes any noise.

The algorithm in Figure 3.7. represents the Singular Value Decomposition (SVD)

technique. The algorithm uses the Checkclass function, and each verb in the verb list is

checked to see if it belongs in Bloom’s Taxonomy or not. If the verb is found in Bloom’s



























−−−−

−−−−−

−−−−

−−−−−−

−−−−

−−−

=

18.010.069.039.054.014.0

49.032.065.024.039.012.0

17.090.016.036.005.001.0

83.004.027.037.030.010.0

03.017.001.044.016.086.0

07.019.004.056.065.045.0

U



























=

55.000000

096.00000

0017.2000

00075.200

000007.70

0000054.22

S



























−−−−−−−−−−−−

−−−−−−−−−−−−

−−−−−−−−−−−−

−−−−−−−−−−−−

−−−−−−−−−−−−

−−−−−−−−−−−−

=

43.001.022.001.033.021.033.017.001.018.022.031.0

01.002.014.045.002.082.021.001.021.020.017.032.0

44.022.019.001.001.001.002.004.011.001.018.001.0

07.019.033.076.021.038.030.016.023.011.001.017.0

01.012.022.086.042.011.026.002.017.018.029.018.0

18.016.002.018.017.018.010.001.018.001.064.001.0

TV

39

list, the verb’s level (BL1, BL2, BL3, and BL4) is returned as a verb class. Otherwise, it will

return as not found (as in Table 3.1).

Next, verbs are classified by using a Nearest-Neighbor function (Jiang, Pang, Wu, &

Kuang, 2012). This is done by computing the distance between two verbs after the two

dimensions are extracted from the U matrix. Equation 3.2 is used to calculate Euclidean

distance (d) between each of the two verbs.

𝑉(𝑑) = ∑(𝑣𝑖−𝑣𝑖+1)2

𝑛

𝑖=1

(3.2)

Table 3.1: Class label of Bloom’s verbs.

Verb Returned-class Dimensions from U

matrix

Use BL1 (-0.45,0.65)

Analyze BL3 (-0.86, -0.16)

Start BL3 (-10.-30)

Give BL3 (-0.01, -0.05)

Build Not found (-0.12, -0.39)

Repeat Not found (-0.14, -0.54)

It is necessary to compute distance between each two verbs’ dimensions. These

were normalized by scaling them between 0 and 1 (as seen in Table 3.2), and by using

Equation 3.3.

𝑑′𝑖 =
𝑑𝑖 − 𝑑𝑚𝑖𝑛

𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛

(3.3)

40

The dimensions are scaled to fit into a specific range. Many types of normalization

exist; this study used Min-Max Normalization. Min-Max Normalization transforms a value

which fits in the range [0, 1] (as in Equation 3.3).

It is shown that the verb with the closest distance for Build is Use, and the verb

with the closest distance for Repeat is Give.

Finally, table 3.4 illustrates the cognitive skill class for each verb with the name code for

the cognitive skill class.

Table 3.2: Normalized Dimensions for Bloom’s Verbs.

Verb Dimensions from U matrix Normalized dimension

Use (-0.45,0.65) (1,0.8)

Analyze (-0.86, -0.16) (0.6,1)

Start (-10.-30) (1,0.9)

Give (-0.01, -0.05) (1,0.7)

Build (-0.12, -0.39) (0.8,1)

Repeat (-0.14, -0.54) (0.4,1)

Table 3.3: Distance between Bloom’s Verbs.

 Use Analyze Start Give

Build 0.09 0.30 0.14 0.77

Repeat 1.23 0.90 1.012 0.43

Table 3.4: The Classified Bloom Verbs.

41

3.6 Experiment Results and Evaluation

3.6.1 Experiment Results

This study tests the techniques using three high-quality textbooks found in

Computer Science classes as course materials in many universities. The study’s proposed

techniques are then applied to see how they perform on these textbooks. Three text corpora

are obtained for this task: “Introduction to Algorithms,” “Data Structures and Algorithms,”

and “Algorithms,” respectively. The experimental results and evaluations show that when

performing the study’s proposed task, the techniques were effective in classifying verbs

based on the Cognitive Skill Levels. Sample of the CS-Verb classification provided in

Appendix C.

This Chapter specifically focuses on classifying the extracted Computer Science

action verbs based on their Cognitive Skill Levels. The verbs are used to describe the

learning objectives.

As more details of the classification resulted (see Figure 3.10), a prominent feature

is that significantly equal percentages of the verbs fell in BL2, BL3, and BL4, while the

percentage of the verbs is highest in BL1. The results of applying this classification show

that the textbook used to describe a low Cognitive Skill levels is found in the undergrad

level; the learning objectives for this book will therefore be a prerequisite for the advanced

Verb Use Analyze Start Give Build Repeat

BT-class BL1 BL3 BL2 BL2 BL1 BL2

42

courses of the algorithm. On the other hand, there are equal opportunities for high

Cognitive Skill levels in the textbook.

100
120

37

84

341

241

121
84

0
0

50

100

150

200

250

300

350

400

CS-Verbs Bloom (Baseline) WordNet VerbNet SVD

N
u

m
b

er
 o

f
V

er
b

s

Verb Classification Techniques

Bloom Verbs CS Verbs

147

57
50 55

0

20

40

60

80

100

120

140

160

Understanding Applying Analyzing-Evaluatin CreatingN
u

m
b

er
 o

f
C

o
g

n
a

ti
v

e
V

er
b

s

Cognative Skill Verbs

Classification of CSBT Verbs

Figure 3.9. Verbs Classification based on the Cognitive Levels.

Figure 3.10. Verb Classification Based on the Three Techniques.

43

3.6.2 Evaluation Measures

As an evaluation step, the gold standard for any linguistic analysis is human

judgment. In this chapter, statistical measures were used to estimate the agreement between

the human classification of the verbs as well as the agreement between the results of verb

classification and the “gold standard.” There are different measures of the agreement; for

this, Fleiss' kappa measure was applied from the fields of inter-rater agreement (McHugh,

2012).

Fleiss' kappa (£) is a statistical measure for assessing the reliability of

agreement between a fixed numbers of raters when assigning categorical ratings to

classifying items. This measure calculates the degree of agreement in classification over

that which would be expected by chance.

In this result, humans share intuitions about the analysis. For the techniques output,

the classified verbs were given to native English speakers who are graduate students. This

is typically done by checking to see if they agree or disagree with the automatic

classification of the verbs. Apart from the cognitive validation of the analysis, the majority

agreed that the verb classification could be used as a baseline classification for Computer

Sciences to describe the learning objective.

3.7 Summary and Discussion

This chapter has described and discussed the concept of using Bloom’s Taxonomy

in the field of computer science. Automatic techniques that are used to classify the verbs

according to cognitive skill levels have been presented. The techniques are a sub-task of

https://en.wikipedia.org/wiki/Statistical_measure
https://en.wikipedia.org/wiki/Inter-rater_reliability
https://en.wikipedia.org/wiki/Inter-rater_reliability
https://en.wikipedia.org/wiki/Categorical_rating

44

previous works (Nafa, Khan, Othman, & Babour, 2016a, 2016b).Classifying verbs based

on cognitive skill levels is a novel and challenging problem.

The classification techniques make use of the cognitive domain in Computer

Sciences. Not all the verbs found in the corpuses are equally important in the process of

extracting the learning objectives; the most informative are the action verbs. These verbs

are automatically classified using proposed techniques; Bloom suggested a short verb list

to be used as a baseline. The techniques are also able to recover verbs that are relatively

infrequent or specialized and thus unlikely to be captured manually by an expert. The

results show that the classification of verbs overlaps between Cognitive Skill

Dependencies; one verb can be in more than one level based on its function as a cognitive

verb level. This adds a different nuance when describing the learning objectives. Based on

the study’s analytical result, it is possible to conclude that by using Cognitive Skill

Dependencies, a teacher can decide which verbs to use at which level to match with the

learner’s skills, thus helping in writing the learning objectives. The final form of the output

in this phase represented as a Semantic Knowledge Map (SKM) where the connection

between concepts are cognitive Skill and WordNet relationships.

The next Chapter will start using Semantic Knowledge Map (SKM) as a graphical

lexical source for building the Skill Inference Rules (SIR). It also answers a question raised

here, which is how to logically design a schema as rule templates so that Cognitive Skill

Dependencies and it is internal relationships can then be mapped to logic rules.

45

 CONSTRUCTING SKILL INFERENCE RULES (SIR)

4.1 Introduction

This chapter introduces an interesting approach that jointly models Semantic

knowledge and First Order Logic (FOL). An FOL approach is adapted for generating Skill

Inference Rules (SIR) from Semantic Knowledge Map (SKM). SIR is an interlingua that is

used to translate the structure of SKM by emphasizing Cognitive Skill and WordNet (WN)

relationships rather than the semantic relationships. Extending the SKM from a logic

perspective increases its representational power and modelling capabilities to infer

cognitive skill dependencies. Knowledge correlations in the SKM can be analyzed to infer

SIR and to predict new facts. SIR describes how relations are associated in the SKM. The

SIR involves the most complex mathematics in graph analysis, requiring intensive study to

attain full comprehension. A number of researchers introduce the extraction of FOL from

SKM (Gad-Elrab, Stepanova, Urbani, & Weikum, 2016; Guo, Wang, Wang, Wang, & Guo,

2016). However, each of them targets a very specific area, and their research has been

designed to serve only their domains. The previous chapter presented the classification of

cognitive CS verbs; this is used to identify both the internal relationship between concepts

in SKM and other types of relationship between concepts (by using WN in SKM). This

chapter makes use of those relationships (Cognitive Skill and WordNet) to generate SIR.

This chapter also walks through an introduction of the knowledge representation FOL and

goes into how to translate SKM to generate SIR’s. Subsequently, the Chapter describes in

46

detail each type of SIR. Finally, an explanation of SIR format is provided with language

and graphic descriptions.

4.2 Logic as a Knowledge Representation Formalism

The main component of logic as a knowledge representation formalism is the knowledge

base (KB) (Russell & Norvig, 2016). Each logical KB is composed by a set of rules stated

in a logical language. These rules are expressed according to the syntax of the logical

language. The main goal of logical KB is to infer new relationships from existing

knowledge. For example, fatherOf (x, y) >> sonOf (y, x), in every KB if x is father of y, it

is implied that y is also the son of x. In this example, the inference is defined as a technique

to infer a new relationship from KB; if we know that x is the father of y, then y also being

the son of x could be inferred easily. There are different proposed algorithms to infer the

relationships in KB.

To generate simple or complex rules from KB, logical connectives (see Table 4.1) can be

used. The basic representation for the KB is FOL, where the atomic formulas are predicates

that assert a relationship among certain elements. In the previous example, fatherOf (x, y)

is called an Atomic formula, where Complex formulas are computed recursively using truth

Tables (as in Figure 4.1).

Truth tables are logic tables which list all possible values of the logical variables in any

logical statement. Each logical variable can take only two values; a statement with n

variables requires a table with 2n rows. Truth tables are constructed from IR by

transforming expressions into atomic formulas.

47

More explanation in the next section, like generating SIR’s from SKM, is introduced.

4.3 Semantic Knowledge as Skill Inference Rules (SIR)

This section explains the First Order Logic (FOL) representation used to construct

SIR from SKM. Translating SKM to SIR by using If-then rules are applied to SKM. The

cognitive verb levels among concepts are extracted. Then, the lexical database is used to

extract WordNet (WN) relationship among concepts obtained. The SKM represents the

connection between concepts in form of WordNet and Cognitive relationships (Guo et al.,

2016).

Table 4.1. KB logical

Connectives

Connective Meaning

 Not

 And

 Or

 Implication

 Biconditional

Table 4.2. Truth Tables

A B A AB AB AB AB

False False True False True True True

False True True False True True False

True False False False True False False

True True False True False True True

48

4.4 Skill Inference Rules (SIR) Mining

The representation of SIR is based on using If-then rules. If-then rules are applied

to SKM to generate different templates of Skill Inference Rules. Based on the Cognitive

Skills relationships that generated in Chapter Two SIR derived from it. The structure of

SIR’s used the formal structure of the First Order Logic (FOL). The FOL defines different

types of symbols (Lyons, 1968):

Constant: It represents the domain objects.

Logic Variable: It stands for any one object in the domain (e.g. x, y, z) that is used to write

the rules.

Predicate: It describes the relationships between two concepts. There are four

relationships: Understanding, Appling, Analyzing-Evaluating, and Creating. It is important

to note that each predicate has a value of either True or False. In the generated rules, it is

necessary to decide whether the rules are True of False. This study makes the assumption

that all of the generated rules are True.

This Chapter focuses primarily on mining SIR over predication. Cognitive

relationships between each two concepts translates into multiple atoms. The conversion is

applied to the graph so that it consists of a diverse collection of atoms. Four different rules

are generated: Skill Inference Rules based on Cognitive predication, Skill Inference Rules

based on Hypernym predication, Skill Inference Rules based on Hypernym and Cognitive

predication, Skill Inference Rules based on Hyponym predication, and Skill Inference

49

Rules based on Hyponym and Cognitive predication. The next sections describe those rules

in detail.

4.5 Skill Inference Rules (SIR) Based on Cognitive Prediction

These are rules of inferring the relationship between two nodes in SKM where there

is no direct edge in between by using the directly connected relationships. For example,

consider three nodes A, B, and C. If node A is connected to node B and node B connected

to node C, then there is a heightened probability that node A will also be connected to node

C. In the language of social network, the friend of your friend is also likely to be your

friend. In terms of graph topology, transitivity means the presence of a heightened number

of triangles in the graph. The Skill Inference Rules, with respect to cognitive connection

are divided into four kinds: Skill Inference Rule (Understanding), Skill Inference Rule

(Analyzing), Skill Inference Rule (Appling), and Skill Inference Rule (Creating). As shown

in Figure.5.1, the Figure illustrates three formats A, B, and C, where A is the language

description of each SIR, B is the graphic illustration, and C is the SIR template that is used

in the next chapter to infer Cognitive Skill Dependencies (CSD) between concepts.

Skill Inference Rules (Understanding) is a connection between two concepts that

uses the Understanding cognitive relationship as a pivotal part of the rule. Different

combinations of the Skill Inference Understanding based with WN relationships also exist

(as illustrated in Table 5.3).

50

Figure 4.1. Skill Inference Rule Understanding.

Skill Inference Rule (Applying) is a Skill Inference Rule that uses Applying

relationships as a pivotal part of the rule. Different combinations of the Skill Inference

Applying based rule exist (as illustrated in Table 5.3).

Table 4.3. Combination of the Skill Inference Rule Understanding

with WN.

Rule Name IF (A and B) THEN(C)

Understanding. Understanding BL1. BL1 BL1

Understanding. Applying BL1. BL2 BL1|BL2

Understanding. Analyzing BL1. BL3 BL1|BL3

Understanding. Creating BL1. BL4 BL1|BL4

Understanding. Superclass BL1. W1 BL1|W1

Understanding. Subclass BL1. W2 BL1|W2

Understanding. Super part BL1. W3 BL1|W3

Understanding. Subpart BL1. W4 BL1|W4

51

Figure 4.2. Skill Inference Rule Applying.

Skill Inference Rule (Analyzing) is cognitive level that uses analyzing relationships

as a pivotal part of the rule. Different combinations of the Skill Inference Analyzing rule

also exist (as illustrated in Table 5.5).

Table 4.4. Combination of the Skill Inference Rule Applying

with WND Rules.

Rule Name IF (A and B) THEN(C)

Applying. Applying BL2. BL2 BL2

Applying. Understanding BL2. BL1 BL2|BL1

Applying. Analyzing BL2. BL3 BL2|BL3

Applying. Creating BL2. BL4 BL2|BL4

Applying. Superclass BL2. W1 BL2|W1

Applying. Subclass BL2. W2 BL2|W2

Applying. Super part BL2. W3 BL2|W3

Applying. Subpart BL2. W4 BL2|W4

52

Figure 4.3. Skill Inference Rule Analyzing.

Table 4.5. Combination of the Skill Inference Rule Analyzing

with WND Rules.

Rule Name IF (A and B) THEN(C)

Analyzing. Analyzing BL3. BL3 B3

Analyzing. Understanding BL3. B1 BL3|BL1

Analyzing. Applying BL3. BL2 BL3|BL2

Analyzing. Creating BL3. BL4 BL3|BL4

Analyzing. Superclass BL3. W1 BL3|W1

Analyzing. Subclass BL3. W2 BL3|W2

Analyzing. Super part BL3. W3 BL3|W3

Analyzing. Subpart BL3. W4 BL3|W4

Skill Inference Rule (Creating) is a cognitive level that uses Creating cognitive

relationships as a pivotal part of the rule (as illustrated in Figure 4.4). Different

combinations of the Skill Inference Creating (as illustrated in Table 4.6).

53

Figure 4.4. Skill Inference Rule Creating

Table 4.6. Combination of the Skill Inference Creating with

WND.

Rule Name IF (A and B) THEN(C)

Creating. Creating BL4. BL4 BL4

Creating. Understanding BL4. BL1 BL4|B1

Creating. Applying BL4. BL2 BL4|B2

Creating. Analyzing BL4. BL3 BL4|B3

Creating. Superclass BL4. W1 BL4|W1

Creating. Subclass BL4. W2 BL4|W2

Creating. Super part BL4. W3 BL4|W3

Creating. Subpart BL4. W4 BL4|W4

4.6 Skill Inference Rules (SIR) Based on Hypernym Prediction

This type of rule is a rule of inferring the cognitive relationship using identified

hypernym relationships among concepts. A hypernym is a particular semantic WN

relationship represented as hierarchical relationships among concepts. A concept is

considered a hypernym of another if its meaning lists the second concept as an example of

its own meaning, for example, consider two nodes A and B and A has children Ai. If node

A is connected to node B as a hypernym relationship, then there is a heightened probability

54

that children of node A will also be connected to node B as a cognitive relationship. The

Transitive relationship with respect to cognitive skill levels is divided into four kinds:

Understanding, Analyzing, Appling, and Creating (As shown in Figure.4.5, Figure.4.6,

Figure.4.7, and Figure.4.8, respectively).

Figure 4.5. Skill Inference Rule Understanding and SubClass.

Figure 4.6. Skill Inference Rule Analyzing and SubClass

55

Figure 4.7. Skill Inference Rule Appling and SubClass

Figure 4.8. Skill Inference Rule Creating and SubClass.

4.7 Skill Inference Rules (SIR) Based on Hypernym and Cognitive Predication

It is a rule of inferring the Hypernym WordNet relationship using identified

Cognitive relationships among concepts. For example, consider two nodes A and B and A

has children Ai. If the children of concept A are connected to concept B in a Cognitive

relationship, then there is a heightened probability that A will also be connected to node B

as a Hypernym relations. B is then a hypernym of A if every A is a kind of B. In the language

56

of social network, the friend of your friend is also likely to be your friend. In terms of graph

topology, transitivity means the presence of a heightened number of triangles in the graph.

This rule with respect to cognitive skill levels is divided into four kinds:

Understanding, Analyzing, Appling, and Creating (as shown in Figure.4.9, Figure.4.10,

Figure.4.11, and Figure.4. 12, respectively).

Figure 4.9. Skill Inference Rule SubClass and Understanding.

Figure 4.10. Skill Inference Rule SubClass and Analyzing.

57

Figure 4.11. Skill Inference Rule SubClass and Applying

Figure 4.12. Skill Inference Rule SubClass and Creating

4.8 Skill Inference Rules (SIR) Based on Hyponym Predication

The opposite relationship for a hypernym in WN is a hyponym. This rule that

concludes the cognitive relationship uses identified Hyponym relationships among

concepts. For example, if two concepts A and B and A has children Ai, if node A is

connected to node B as a Hyponym relationship, then there is a heightened probability that

the children of node A will also be connected to node B as a CSBT relationship. R is then

58

Transitive if for all A, B, and C. In terms of graph topology, transitivity means the presence

of a heightened number of triangles in the graph.

Figure 4.13. Skill Inference Rule Hyponym and Understanding

Figure 4.14. Skill Inference Rule Hyponym and Analyzing

59

Figure 4.15. Skill Inference Rule Hyponym and Applying.

Figure 4.16. Skill Inference Rule Hyponym and Creating.

4.9 Skill Inference Rules (SIR) Based on Hyponym and Cognitive Predication

This rule infers the Hyponym relationship by using identified cognitive

relationships among concepts. For example, if two nodes A and B, and A has children Ai if

the children of concept A are connected to concept B as a cognitive relationship, then there

is a heightened probability that A will also be connected to node B as a Hyponym

relationship. B is a Hyponym of A if every A is a kind of B.

60

Figure 4.17. Skill Inference Rule Understanding and Hyponym.

Figure 4.18. Skill Inference Rule Analyzing and Hyponym.

Figure 4.19. Skill Inference Rule Applying and Hyponym.

61

Figure 4.20. Skill Inference Rule Creating and Hyponym.

4.10 Summary and Discussion

This chapter implies FOL to facilitate the representation of SKM formalism to

extract the SIR’s. A novel and interesting logic foundation is used to produce a variety of

SIR’s templates from Cognitive Dependencies and WordNet Dependencies.

The Skill Inference Rules (SIR) were generated in this Chapter. The generated SIR’s

are simple because if the SIR is too complex, it is possible for it to be neither valid nor not-

valid. In other words, there would be a chance of generating a not-valid SIR. The SIR’s in

this experiment are generated by a group of Ph.D. students in the research phase with

expertise in the Algorithm area.

These templates are then used to infer Cognitive Skill Dependencies in the Chapter

Six. Developing a straightforward and easy-to-implement methodology for transforming a

SKM into the corresponding SIR’s breaks many limitations and obstacles in the extraction

of Cognitive Skill Dependencies.

62

The chapter demonstrates a background about knowledge representation and FOL.

It also explains translating SKM to SIR and how to generate Cognitive Dependencies and

WordNet Dependencies templates. The construction of the rules introduced by details via

language and graphical description are different categories of templates that are proposed

and constructed.

The next chapter introduces the proposed model to infer the Cognitive Skill

Dependencies (CSD). It uses a probability-based inference. It will be described in greater

detail in Chapter Five.

63

 THE APPLICATION OF MCKSN MODEL

5.1 Introduction

This final chapter builds upon the material discussed in the previous chapters. It

explores the Markov Cognitive Logic State Network (MCKSN), a probability-based model

that is used for inferring Cognitive Skill Dependencies attached with a degree of

probability. In this chapter, the main concepts used in the MCKSN model are presented.

First, the Markov Network is introduced as an essential concept for this study, followed by

an explanation of Markov Logic Network (MLN), finally, a description of applying

MCKSN model to infer Cognitive Skill Dependencies is presented.

5.2 Markov Network (MN)

The theory of the Markov Network (MN) provides suitable framework to model the

dependencies between objects in a domain such as the dependencies between pixels in

image processing tasks, identifying Twitter spammers based on their dependencies, and the

analysis of social network structure and other interesting application. In this context, MN

is used as a framework to model the dependencies between Cognitive Skill in graph form

with respect to the node neighbors (set of cliques)

A Markov Network is defined as an undirected graph MN= (V, E), where each node

vi in the node set V represents a random variable. E ⊆ V×V is a set of edges connecting

the nodes. Each edge ei,j represents conditional dependence relationships between the

random variables vi and vj. Two random variables are conditionally dependent on each

64

other if they have an edge (direct link)(Getoor & Taskar, 2007; Wasserman & Pattison,

1996) .According to (Clifford, 1990; Kemeny, Snell, & Knapp, 2012; Li, 2009; Winkler,

2012) nodes in an MN represent random variables and Markovian properties described as

the following:

• A node is conditionally independent of all other nodes, given its neighbors

(as in Figure 5.1).

A ⊥ 𝑟𝑒𝑠𝑡| 𝐵, 𝐶,D

• Any two non-adjacent nodes are conditionally independent of each other,

given all other nodes (as in Figure 5.1).

A ⊥ 𝐺| 𝑟𝑒𝑠𝑡

• Any two subsets of nodes are conditionally independent, given a separating

subset where every path from a node going in the first subset to a node in

other subset passes through the rest of the nodes (as in Figure 5.1).

A, B ⊥ 𝐹, 𝐺| C, D, E

Figure 5.1. an Example of a Small Markovian Properties Graph.

The edges represent a direct probabilistic dependency between the random

variables. If there is a direct edge between any two random variables, then there is a

C

F

B
D

E

A

G

65

dependency connection between them. In MN, if two random variables don’t have a

dependency, they should not have a path. However, it is possible for there to be an indirect

path, or for the variables to be indirectly dependent on each other.

The dependency connection between random variables could be a direct or indirect

connection. Those types of connections are illustrated in Figure 5.2 (a) and5.2 (b).

Figure 5.2. Example of the Nodes Connection in Markov Network.

Consider four nodes A, B, C and D. From a graphical point of view, the connection

between nodes expresses the type of relationships between them if it is direct (Figure 5.2.a)

or indirect (Figure 5.2.b). Suppose that the conditional probability represents the

connection between nodes.

In Figure, 5.2.a the nodes A and C are independent of each other, but they are

conditionally dependent given B. While Figure 5.2.b represents both situations incorrectly;

the nodes A and C are dependent by transitivity but are conditionally independent given B

(Sutton & McCallum, 2006).

This can be expressed in a slightly different way by considering the joint

distribution of A and B, given C, which can be written as follows:

66

𝑃(𝑎, 𝑏|𝑐) = 𝑝(𝑎|𝑐)𝑝(𝑏|𝑐)

Figure 6.2.c shows a cyclic dependence structure represented as a directed graph

where nodes are conditionally independent given their neighbors. While Figure 5.2.d

captures the conditional independence of A and C given B and D, also, B and D are

conditionally dependent given C. The modeling the conditional probability between

random variables depends on the graph structure and direction (Friedman, 2004). The next

part explains the input and output for the MN with a practical example.

5.2.1 Markov Blanket

The Markov Blanket of a random variable (Target) consists of all other random

variables that make this target conditionally independent of all the other random variables.

In other words, the node is independent of the rest of the nodes in the graph given its first

level neighbors (Margaritis & Thrun, 2000).

Markov Network can answer many questions. One of the interesting question MN

can answer is to estimate the probability of a given outcome of the random variable given

the outcome of certain other random variables. The following section presented an example

of using MN to estimate the hidden dependencies of the transmission of bad habitats

between friends given some evidence in small social network.

67

5.2.2 Example of Markov Network

Assume that four random variables A, B, C, D (as in Figure 5.3) correspond with

four students Alice, Bob, Charles, Debbie studying together in a group (Ivanova, 2017;

Koller & Friedman, 2009).

Figure 5.3. A Simple Example of a Markov Network

The potential function in this example indicates whether the students had a

misconception due to the potentially confusing material (as given in Table 5.1). In this

example, assuming that the query is the probability of Bob (B) having a misconception,

given the evidence that Charles (C) does not have the misunderstanding, the probability

is written as:

𝑝(𝑏1|𝑐0)

As in Table 5.1, the numbers in each table indicate the local agreement of each

variable takes a joint assignment. The intuition in this example says that if two friends (A

and B) study together, then they will influence each other somewhat. As for this influence

concerning misconceptions, they are represented in the formula as follows: a0=has

misconception a1=no misconception b0=has misconception, and b1=no misconception.

This indicates that if A and B are friends and study together then an edge between them

68

indicates that if one of them has a misunderstanding, the other one is also likely to have the

same misconception, denoted as (a0,b0), which is 30 in Table 5.1 Likewise, if one of them

has no misconception, the others are also likely to have no misconception, denoted as

(a1,b1) which is equal to 10 in Table 5.1. Finally, the other two numbers in the middle mean

that their disagreement is very low. The table also shows the similar notions of happiness

for the other pairs in the graph, given as ∅(B,C), ∅(C,D), and ∅(D,A). Given the

information from the graph, it is clear that B and C really seem to agree with each other.

It's very difficult for them to have opposing opinions. This doesn't fit neatly into a directed

graph, and because the influence flows in both directions, utilizing the Markov Network is

proposed. On the other hand, C and D like to argue with each other all the time. For

example, if one of them says that it's going to rain today, the other one is going to say that

it's sunny today. Therefore, the preferred assignments for their local opinion would be the

one in which they disagree with one another.

Table 5.1 A Simple Example of Markov Network Variables with their Potential Function

Assignment.

Random

Variables

∅(𝑨, 𝑩) Random

Variables

∅(𝑩, 𝑪) Random

Variables

∅(𝑪, 𝑫) Random

Variables

∅(𝑫, 𝑨)

a0 b0 30 b0 c0 100 c0 d0 1 d0 a0 100

a0 b1 5 b0 c1 1 c0 d1 100 d0 a1 1

a1 b0 1 b1 c0 1 c1 d0 100 d1 a0 1

a1 b1 10 b1 c1 100 c1 d1 1 d1 a1 100

69

Mathematically speaking, to define a joint probability distribution, the notion of the

product of factors are used (Pearl, 2014). They can then be multiplied together using the

formula as follows:

𝑝(𝑥) =
1

𝑍
(∏ ∅𝑖(𝑋)𝑖=1) (5.1)

Where:

X ∈ {A, B, C, D}

x1: student has the misconception

x0: Student does not have a misconception.

Z: is a Partition Function.

Applying Equation 5.1 to these factors resulted in the outcome illustrated in Table

5.2.

Table 5.2 A Simple Example of Normalized and Non-normalized Random Variables.

Random Variables

A B C D Nonnormalized Normalized

a0 b0 c0 d0 300000 0.04

a0 b0 c0 d1 300000 0.04

a0 b0 c1 d0 300000 0.04

a0 b0 c1 d1 30 0.0000041

a0 b1 c0 d0 500 0.000069

a0 b1 c0 d1 500 0.000069

a0 b1 c1 d0 5000000 0.69

a0 b1 c1 d1 500 0.000069

a1 b0 c0 d0 100 0.000014

𝑍 = ∑ ∅𝑖(𝑥)

𝑋

(5.1.1)

70

a1 b0 c0 d1 1000000 0.14

a1 b0 c1 d0 100 0.000014

a1 b0 c1 d1 100 0.000014

a1 b1 c0 d0 10 0.0000014

a1 b1 c0 d1 100000 0.014

a1 b1 c1 d0 100000 0.014

a1 b1 c1 d1 100000 0.014

Total 7,201,840

To normalize those factors, a partition function (Pearl, 2014) was used. This

function can be seen as a normalizing constant that sums up all these entries, resulting in

the value Z (as in Table 5.2), where Z = 7,201,840. By dividing all the entries by Z, the

probability distribution is normalized (as in Table 5.2). Any desired probability can be

obtained from the joint distribution as usual. This example attempts to compute the

following:

𝑝(𝑏1|𝑐0) =
𝑝(𝑏1 ∩ 𝑐0)

𝑝(𝑐0)

(5.2)

𝑝(𝑏1|𝑐0) =

0.000069 + 0.000069 + 0.0000014 + 0.014

0.04 + 0.04 + 0.000069 + 0.000069 + 0.000014 + 0.14 + 0.0000014 + 0.014

(5.2.1)

𝑝(𝑏1|𝑐0) =
0.014

0.234
 = 0.06 (5.2.3)

Based on the results of this, it can then be concluded that if Charles does not have

a misconception, Bob is only 6% likely to have one as well.

71

5.3 Markov Logic Network (MLN)

Markov Logic Network (MLN) provide a powerful probabilistic modeling

framework based on first-order logic and probability inference to infer the hidden

relationships between objects. MLN can be used in different application such extracting

many kinds of syntactic and semantic information, Drug event extraction, and Concept

extraction in ontology learning. There is different type of probability-based techniques that

has been used in the previous studies for extracting the semantic relations from the text.

But MLN add a new flavor in terms of using a descriptive language such as First Order

Logic(FOL) to build rules that can guide the inference of the relationships.

The simplest way to understand Markov Logic as introduced by (Richardson &

Domingos, 2006) is to combine FOL and MN. The main idea behind Markov Logic is that,

by attaching strengths to a Rules template, these IR’s can be used to infer fact between

objects. The formal definition is mentioned in (Richardson & Domingos, 2006). MLN is

formally defined as:

Definition: A Markov Logic Network is defined by MLN as an undirected graph

G= (V, E), where V is a set of facts, each node of which represents a fact. E ⊆ V×V is a set

of edges connecting the facts and representing the correlations between the facts.

The nodes in an MLN represent facts, where the facts are equivalent to the random

variables in MN. The fact describes relations between two logic variables which is the

constants in the domain- Friends (‘Anna’, ‘Bob’). This type of fact is called a ground fact

if it maps to specific individual objects in the domain. The set of ground facts define the

72

structure of the Markov Logic Network (Mario&Matr, 2014). The facts in the real world

is true or false in most domains it is challenging to come up with a fact that is always true,

hence the reason for modeling random variables to facts. It is important to note that each

fact has a value of either True or False. In the generated facts, it is necessary to decide

whether the IR’s are True or False.

The facts in an MLN should have the same assumptions as those in an MN. More

than one fact can represent an IR. The IR’s are expressed according to the syntax of the

logical language. The primary goal of IR’s is to infer new facts from existing ones. One

example is fatherOf (x, y) >> sonOf (y, x); in every IR, if x is the father of y, it is implied

that y is also the son of x. In this example, the inference is defined as a technique to infer a

new fact from the IR. If we know that x is the father of y, then y also being the son of x

could be readily inferred. For definitions and illustrative examples of the logic theories, the

reader is invited to consult a textbook like (Fitting, 2012; Makkai & Reyes, 2006;

Smullyan, 2012; Sowa, 2000). Two facts are connected by an edge if both facts appear in

the same IR where the edge represents the dependency relationship between them. If the

IR combines the relationship between a few facts, one may influence the other’s

dependence.

Input:

1. Constants: are fixed objects in the domain.

73

2. Hypothesis Facts: are an atomic formula consisting of a predicate with a suitable

number of arguments. Each fact maps term to term where the terms is an expression

representing an object in the domain.

3. Hypothesis Inference Rule (IR): are FOL, IR’s consisting of one fact or more

connected using logical connectives. In the following example, facts are given

about friendship relations and smoking habits.

4. The Potential Function is a composed of simple values for the IR, expressed with

integers {0, 1}. For each IR, this function assumes a value of 1 for a state of the

clique if the truth values of the nodes make the IR true, while considering a value

of 0 for a state of the clique if the truth values of the nodes make the IR false.

5. User Query: estimates the probability of a given outcome of a fact given the

outcome of certain other ground facts.

Output:

MLN can estimate the probability of a given outcome of a fact given the outcome

of certain other ground facts.

5.4 Example of Markov Logic Network (MLN)

The motivating example is used to explain the procedure of applying MLN. This

example will model the smoking habits between friends in a social network (Mario&Matr,

2014; Richardson & Domingos, 2006). In other words, people with friends who smoke

would also smoke, and that people who smoke would then have cancer.

74

Based on several studies done between 1971-2000 about the smoking habits of a

social network, the study showed that some people who don’t smoke but who have friends

that smoke became smokers after several years. Also, people don’t stop smoking at random

but stop smoking in clumps. If a friend of a person stops smoking, that means that the

person will be more likely to quit smoking themselves, and if the friend doesn’t stop, the

person would have a harder time to stop smoking by themselves. Using MLN, this problem

can be modeled by using a few facts and IR’s. To introduce the input for the MLN model

by using the example above, suppose that the IR’s in Figure 5.4 and Figure 5.5 are given.

The IR in Figure 5.4 means that smoking causes cancer. Also, the SIR in Figure 5.5 implies

that IF x and y are friends and x is a smoker that means that y will be a smoker too due to

influences from each other. The input for the MLN procedure is as follows:

• Constant: assume that there is a very simple social network which includes two

people (‘Anna’ and ‘Bob’).

• Two facts

Figure 5.4. The Fact Template

Figure 5.5. The Inference Rule (IR) Template

• A fact about this social network (Smokes(‘Bob’)).

• The potential function is defined as:

f(x) = {
1 if 𝐼𝑅 is true(Has value = 1 in the truth table)
0 otherwise

Smokes (x) => Cancer (x)

Friends (x, y) => (smokes (x) <=> smokes (y))

75

• The query is that if there is the fact that Bob smokes and he is Anna’s friend

and Anna does not smoke, what is the probability that Anna will become a

smoker, and that both Anna and Bob will develop cancer.

Figure 5.6. Markov Logic Network Procedure.

Figure 5.6 represents the MLN Procedure as follows: The input of the MLN is a set of The

Inference Rules (IR) (as in Figure 5.4 and Figure 5.5), a fact [Smokes (Bob)], and two

constants (Anna and Bob), where the output is an estimation of the maximum probability

of all possible smoking and cancer fact being True.

Figure 5.7 was created where A stands for Anna, and B stands for Bob. The predicate

that had a True value (which is the truth grounding) became a clique (according to Table

5.8 and Table 5.9).

Procedure 1: Markov Logic Network

Input: The Inference Rule (IR), a fact, and two constants (Anna and Bob)

Output: Estimation of the Maximum Probability of Smokes (Anna), Cancer (Bob),

and Cancer (Anna) of being True.

// The Procedure steps

1. Estimate the strength of the IR.

1.1. Create all possible worlds based on the given constants (Anna and Bob) and

the predicate (ground atoms)

1.2. Create Truth Table and find the line (Cases) in the Truth Table where the

target predicate is True

1.3. Consider the predicates which have a value equal to True to be a clique.

2. Estimation the maximum probability of the smoking and cancer facts between

friends in a social network based on the given fact which is Bob(B) smokes.

Return: Maximum Probability of each fact.

76

Figure 5.7. The Ground Markov Network for Social Network Example.

The explanation of the MLN procedure is as follows:

Step 1: Estimate the Strength of the Inference Rule (IR).

In this step, Markov Logic adds strength to each IR to indicate the confidence of

the knowledge. In other words, the strength reflects how strong the IR is. For example, the

strength of the generated IR’s in this example is 1.5 and 1.1, respectively

1.5 Smokes (x) => Cancer (x)

The mathematical explanation of the used method begins by estimating the strength

of the IR. In this example, the strengths are estimated by maximizing the pseudo-log-

likelihood of the entire set of ground atoms, as the probability distribution over the possible

worlds x for the Markov Logic Network based on (Richardson & Domingos, 2006) are

given by:

Ps(x)=
exp(∑ Sifi(x)n

i=1

Z

 where:

(5.3)

1.1 Friends (x, y) => (smokes (x) <=> smokes (y)

77

Z= ∑ Sifi
X

(x)
 (5.3.1)

Where:

𝒇𝒊(𝒙): is the number of true groundings (cliques) of the Inference Rule (IR), and

𝑺𝒊: is the IR strength that needs to be estimated from the given data.

The log-likelihood concerning a particular strength Si is given by Equation 5.3. By taking

a log for Equation, 5.3 (Lowd & Domingos, 2007).

log Ps(X=x) = Log {
exp(∑ sifi(x)i=1)

Z
 }

 (5.3.2)

log Ps(X=x) = ∑ Sifi(x)

i

- log Z
 (5.3.3)

A derivative of the log-likelihood of a IR with respect to its strength:

∂

∂sj

log Ps(X=x)=
∂

∂sj

∑ Sifi(x)

i

-
∂

∂sj

log Z
 (5.3.4)

= f
i
(x)-

1

Z

∂

∂sj

Z
 (5.3.5)

= f
i
(x)-

1

Z
∑ x'

∂

∂sj

exp (∑ Sifi(x
'
)

i

)
 (5.3.6)

= f
i
(x)-

1

Z
∑ x'

∂

∂sj

exp (∑ Sifi(x
'
)

i

) si(x')
 (5.3.7)

Derivative of sifi(x) with respect to Si is zero for i != j

f
i
(x)-

1

Z
∑ x'

∂

∂si

exp (∑ Sifix
'

i

) f
i
(x') = 0

 (5.3.8)

78

Then the update IR with gradient ascent for Si is:

f
i
(x)-

1

Z
∑ x'

∂

∂si

exp (∑ Sifix
'

i

) f
i
(x') = 0

 (5.3.9)

Applying the steps above for this example, the goal is to estimate of the strength of the IR’s

in Figure 5.4 and Figure 5.5 by using Equation 5.3.2.

S Smokes (x) => Cancer (x)

1.5 Smokes (x) => Cancer (x)

S Friends (x, y) => (smokes (x) <=> smokes (y))

1.1 Friends (x, y) => (smokes (x) <=> smokes (y)

As shown above, the strength of the IR is 1.5 and 1.1 respectively. The steps can then be

shown to estimate the strength of each IR.

Step 1.1: Create all outcomes (atomic formulas) based on the given constants and

facts. Consider that constants (Anna and Bob), one fact [smokes (Bob)] and two IR’s

[Friends (x, y) => (smokes (x) <=> smokes (y)] and [Smokes (x) => Cancer (x)] are given

to create all possible outcomes as in Table 5.3. There are 2 entities (Constants): (Anna and

Bob).

The IR has three facts (Friends, smokes, Cancer), all of which are binary relations

from propositional logic(Cheng, Wan, Buckles, & Huang, 2014; Mario&Matr, 2014;

Urbanek & Theus, 2008). The number of possible ground atoms for each relation = nr.,

where n: is a number of constants, and r: is the number of relations. Then, the number of

possible ground atoms for each relation = 23 = 8.

79

Table 5.3 All Possible Ground Atoms.

Friends

Friends (Ana, Ana)

Friends (Ana, Bob)

Friends (Bob, Bob)

Friends (Bob, Ana)

Cancer

Cancer (Ana)

Cancer (Bob)

Smokes

Smokes (Ana)

Smokes (Bob)

Step 1.2: Create a Truth Table for each atomic formula and find the line (Cases) in

the Truth Table where the target predicate is True.

In Step 1.1, all possible atomic formulas were generated; in this step, the truth table

was created for each atomic formula. The truth table for all atomic formulas are in Table

5.4, Table 5.5, Table 5.6, and Table 5.7

Table 5.4. The Truth Table for Atomic Formula 1

Smokes (Anna) Cancer (Anna) IR

(If-Then)

Potential Function f(x)

0 0 1 1

0 1 1 1

1 0 0 0

1 1 1 1

Table 5.5. The Truth Table for Atomic Formula 2

Smokes (Bob) Cancer (Bob) IR

(If-Then)

Potential Function f(x)

0 0 1 1

0 1 1 1

1 0 0 0

1 1 1 1

80

Finding the line (Cases) in the Truth Table where the target predicate is True for

the IR’s in Figure 5.4 and Figure 5.5 are illustrated in Table 5.8 and Table 5.9.

Table 5.6. The Truth Table for Atomic Formula 3

Friends (Anna, Bob) Smokes (Anna) Smokes (Bob) IR Potential Function f(x)

1 1 0 0 0 0

1 1 1 1 1 1

1 0 0 1 1 1

1 0 1 0 0 0

0 1 0 0 1 1

0 1 1 1 1 1

0 0 0 1 1 1

0 0 1 0 1 1

Table 5.7. The Truth Table for Atomic Formula 4

Friends (Bob, Anna) Smokes (Anna) Smokes (Bob) IR Potential Function f(x)

1 1 0 0 0 0

1 1 1 1 1 1

1 0 0 1 1 1

1 0 1 0 0 0

0 1 0 0 1 1

0 1 1 1 1 1

0 0 0 1 1 1

0 0 1 0 1 1

Table 5.8. The potential Function for Atomic Formula 1 and 2.

Potential Function

Atomic Formula 1

Potential Function

Atomic Formula 2

fi(x) 𝑒𝑓𝑖(𝑥)∗𝑠𝑖

1 1 2 e2s

1 1 2 e2s

0 0 0 1

1 1 2 e2s

Table 5.9. The potential Function for Atomic Formula 3 and 4.

Potential Function

Atomic Formula 3

Potential Function

Atomic Formula 4

fi(x) 𝑒𝑓𝑖(𝑥)∗𝑠𝑖

0 0 0 1

1 1 2 e2s

1 1 2 e2s

0 0 0 1

1 1 2 e2s

1 1 2 e2s

1 1 2 e2s

1 1 2 e2s

81

Let us start calculating the strength for the IR in Figure 5.4 as follows:

As seen in Equation 5.3.14 the Equation cannot be computed in closed form, but it

can be found using an optimization gradient descent method known as the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm (Biegler, 2010; Hasdorff, 1976;

Jahn, 2007). A Python scikit package was also used to calculate it (Pedregosa et al., 2011).

The ground formulae created from the same IR shared their strengths.

Quasi-Newton methods are well-known methods in solving optimization problems.

Ps(x)=
exp(∑ Sifi(X)n

i=1

Z

where:

Z= ∑ Sifi
X

(x)

First, let us calculate the Numerator in the above Equation

Ps(x)=
exp(2s+2s+1+2s)

Z

(5.3.10)

Ps(x)=
(e

2s
.e2s.1.e2s)

Z

(5.3.11)

Ps(x)=
(e

2s
.e2s.1.e2s)

Z
=

(e
2s

)

Z

3

=
(e

6s
)

Z

(5.3.12)

Second let us calculate the Denominator in Equation 5.3.

Since Z= ∑ SifiX (x)

Then:

Z = 3 e2s + 1 (5.3.13)

By substituting in Equation 5.3:

Ps(x)=
e6s

3 e
2s + 1

(5.3.14)

82

These methods, which use the updating formulas for approximation of the Hessian,

were introduced by Davidon in 1959, and later popularized by Fletcher and Powell in 1963

to give the Davidon-Fletcher-Powel (DFP) method. In 1970 Broyden, Fletcher, Goldfarb

and Shanno developed the idea of a new updating formula, known as BFGS, which has

become widely used in many researches. In this dissertation the BFGS method was used to

estimate the strength of the IR, which is equal to 1.5. By applying the same steps for the

SIR in Figure 5.5.

1.5 Smokes (x) => Cancer (x)

As seen in Equation 5.3.19 the Equation cannot be computed in closed form, but

by using the BFGS method the strength of the IR is equal to 1.1

Ps(x)=
exp(∑ Sifi(X)n

i=1

Z

where:

Z= ∑ Sifi
X

(x)

First, let us calculate the numerator in the above Equation

Ps(x)=
exp(1+2s+2s+1+2s+2s+2s+2s)

Z

(5.3.15)

Ps(x)=
(1.e

2s
.e2s.1.e2s.e2s.e2s.e2s)

Z

(5.3.16)

Ps(x)=
(1.e

2s
.e2s.1.e2s.e2s.e2s.e2s)

Z
=

(e
2s

)

Z

6

=
(e

12s
)

Z

(5.3.17)

Second let us calculate the denominator in Equation 5.3.

83

1.1 Friends (x, y) => (smokes (x) <=> smokes (y)

Step 1.3: Consider the predicates which require a value equal to be True in order to be a

clique.

In the second step, the possible world for each atomic formula was created by using

truth tables. The result of that process is called an observation. After the ground predicates

are identified, it should be transformed to a graph where nodes are the facts, and edges

between them are added if two ground facts appear in the same IR. In this case, the

groundings of the predicates were {Smokes (Bob), Smokes (Anna), Cancer (Bob), Cancer

(Anna), friends (Bob, Anna), friends (Anna, Bob), friends (Bob, Bob), friends (Anna,

Anna)}. According to the atomic formulas in Table 5.3, the ground Markov Network in

Step 2: Estimate the maximum probability of the smoking and cancer facts between

friends in a social network based on the given fact which is Bob(B) smokes.

What the estimate means in this context was the act of querying the Markov Logic

Network. Since the MLN could represent the full joint probability distribution over the set

Since Z= ∑ SifiX (x) then:

Z = 3 e2s + 1 (5.3.18)

By substituting in Equation 5.3

𝑃𝑠(𝑥) =
𝑒12𝑠

6 𝑒2𝑠 + 2

(5.3.19)

84

of random variables, it could then be used to answer any probabilistic query about the world

(de Oliveira, 2009; Getoor & Taskar, 2007). There are two common types of queries used

for different purposes:

• The Conditional Probability Query in the form p(Y|E=e), where Y is the query

variable and E is the evidence. That is, the posterior probability distribution over

the values y of Y is conditioned on the fact that E = e. For example, P (Beach |

Sunny=true, Hot=true) gives two probabilities distributions: one when Beach=true

and another when Beach=false;

• The Maximum a Posteriori Query (MAP) is a query in the form argmaxy(y|e).

This type is used when calculating not only the probability of a set of variables Y,

given the evidence E=e is needed, but for which that probability is maximal as well.

For example, a MAP query of Beach, given {Sunny=true, Hot=true} provides the

most likely assignment to the variable Beach (de Oliveira, 2009).

In the inference of the MLN, the Maximum A Posteriori (MAP) is used. This type

of reasoning is called an approximate inference. Different types of algorithms are utilized

to perform this type of reasoning (Koller & Friedman), one of the simplest of which is a

Markov Chain Monte Carlo (MCMC) (Metropolis, Rosenbluth, Rosenbluth, Teller, &

Teller, 1953).

A Markov Chain Monte Carlo (MCMC) algorithm is used to obtain a sequence of

observations which are approximated from a specified probability distribution when direct

sampling is difficult. This sequence can be used to approximate the conditional probability.

85

One of the algorithms MCMC uses for sampling is the Gibbs Sampling Algorithm. The

Gibbs Sampler was first formally introduced by (Casella & George, 1992; Geman &

Geman, 1984; Robert, 2014) to the field of image processing. The Gibbs Sampling

Algorithm is simple: it continuously samples a variable from its posterior distribution with

all other variables temporally fixed. After a long while, the samples are guaranteed to be

unbiased. To accomplish this goal, Markov chains are used as a fundamental method

(Hastings, 1970). Generating a Markov chain makes sense of using the previous sample

values to randomly generate the next sample value. It can be seen as a transition probability

between sample values. The steps of the Gibbs Sampling procedure are explained in Figure

5.8. There are two essential components of a Markov chain: the states, and the transition

probability.

Procedure 2 Gibbs Sampling

1. Start with an initial random assignment to nodes

2. One node at a time, sample node given its Markov blanket

3. Repeat

4. Use samples to compute P(X)

5. Apply to the ground network
Figure 5.8.Gibbs Sampling Procedure.

The Gibbs Sampling Algorithm can begin to be applied to the Markov Logic

Network (as in Figure 5.7) since it is a simple graph that is used to estimate the maximum

probability of each fact of being True. By using the inference task, the proximate result for

our query of the smoking habit and having cancer in our small social network which is

Anna and Bob will be as follows: The probability that Anna will have cancer is 51%, and

86

the probability that Bob will have cancer is 52%, and Anna will be a smoker is 52% with

our evidence that Bob smokes.

5.5 A Markov Cognitive Knowledge State Network (MCKSN)

Definition: A Markov Cognitive Knowledge State Network (MCKSN): is defined

as an undirected graph G= (F, R), where each node Fi in the node set F represents a

Cognitive Skill Dependency at a given Bloom level. R ⊆ F×F is a set of edges connecting

the nodes. Each edge ri,j represents the appearance of Cognitive Skill Dependency in the

same Skill Inference Rule(SIR).

The nodes in an MSKSN represent the Cognitive Skill Dependency, where the

Cognitive Skill Dependency are equivalent to the random variables in MN. In most

domains, it is challenging to come up with a Cognitive Skill Dependency that is always

true that is the reason for modeling random variables to Cognitive Skill Dependencies. An

edge connects two Cognitive Skill Dependencies if both of them appear in the same Skill

Inference Rule (SIR) where the edge represents the dependency relationship between them.

If the SIR combines the connection between a few Cognitive Skill Dependencies, one could

influence the other dependently.

The Cognitive Skill Dependencies in an MSKS should have the same assumptions

as those in an MN. More than one Cognitive Skill Dependency can represent an SIR. The

SIR’s are expressed according to the syntax of the logical language. The primary goal of

SIR is to infer new Cognitive Skill Dependencies from existing ones. One example is

fatherOf (x, y) >> sonOf (y, x); in every SIR, if x is the father of y, it is implied that y is also

87

the son of x. In this example, the inference is defined as a technique to infer a new fact

from the SIR. If it is known that x is the father of y, then y also being the son of x could be

easily inferred.

Input:

1. Constants CS concept space where the concepts constructed from Textbooks.

2. Cognitive Skill Dependencies: is a logical fact generated by mapping the concepts

from a set of terms in a sentence to the set of nodes using verb-based mapping.

3. Skill Inference Rules (SIR): is defines as a logical relationship between a set of

Cognitive Skill Dependencies (CSDs) di=e (ai, bi, BLi). The logical relationship

between any set of CSDs can be expressed as a first order logic expression. More

formally an example of that ϕi = ∀A,B,C {e(A, B, BLi) ∧ e(B, C, BLi) => e(C, A, BLi)}.

In other words, if concept A is needed to learn concept B, and concept C is needed

to learn B, then concept C is needed to learn concept A.

4. The potential function in this example is composed of simple truth tables for the

SIR, expressed with integers {0, 1}. For each SIR, this function assumes a value of

1 for a state of the clique if the truth values of the nodes make the SIR true, while

considering a value of 0 for a state of the clique if the truth values of the nodes

make the SIR false.

5. User Query: Find out the remaining Cognitive Skill Dependencies (CSD) between

concepts.

Output:

88

MSKSN can estimate the maximum probability of the Cognitive Skill

Dependencies (CSD) between concepts.

5.5.1 Example of Markov Cognitive Knowledge State Network (MCKSN)

The motivating example is used to explain the procedure of applying MLN. Suppose

the SIR in Figure 5.9 is one of the ISR’s generated in Chapter Four. The SIR means that IF

the concept z is essential to be learned to Create Concept x, AND if it is also important to

be learned to Apply concept y, then concept x is important to be learned to Create y, where

two different cognitive Skill Dependencies(CSD) are given. Consider that three CS

concepts (x, y, and z) are given (the number of concepts is limited to three to simplify the

calculation so that it can be easy to follow) and consider that three concepts from CS

knowledge space are used: Graph, Graph-Traverse, and Depth First Search (BFS). Also

suppose that a SIR extracted from SKM (as mentioned in Chapter Four), as well as one CSD

as evidence is given (as in Figure 5.10). The ‘Graph’ as a concept would then be important

to be learned in order to apply ‘Graph-Traversal’.

Figure 5.9. Skill Inference Rule (SIR) Template.

Figure 5.10. The Cognitive Skill Dependency (Apply)

The question is how to estimate the probability of knowing one of the given

concepts to Apply and Create the other concept based on the given CSD that to apply the

Apply (‘Graph’, ‘BFS’)

Create (z, x) ^ Apply (z, y) => Create (x, y)

89

Breadth-first Search (BFS) concept, one must know the Graph concept as well. The

proposed solution is to use a Markov Cognitive Knowledge State Network (MCKSN),

Model. The main steps of the proposed MLN model are illustrated in Figure 5.11.

Procedure 3: Markov Cognitive Knowledge State Network (MCKSN)

Input: subset of CSD’s, a set of SIR, and three CS-concepts (‘Graph,’ ‘Graph-Traverse,’

and ‘Depth First Search’)

Output: Estimation of the Maximum Probability of each CSD of being True

// The Procedure steps

1. Estimate the strength of the SIR.

1.1. Create all possible worlds based on the given constants (CS-concepts) and the

predicate (ground atoms)

1.2. Create Truth Table and find the line (Cases) in the Truth Table where the target

predicate is True

1.3. Consider the predicates which have a value equal to True to be a clique.

2. Estimate the maximum probability of the knowing state of a given CSD at a

particular bloom level given the states of few other concepts at a specific Bloom

level (SIR).

Return: Maximum Probability of each Bloom Fact.

Figure 5.11. MCKSN Procedure.

The algorithm in Figure 5.11 represents the MCKSN procedure as follows: The

input of the algorithm is a SIR (as in Figure 5.9), a CSD (as in Figure 5.10), and three CS-

concepts (Graph, Graph-Traverse, and Depth First Search), where the output is an

estimation of the maximum Probability of all possible CSD’s being True. The explanation

of the MCKSN procedure is as follows:

Step 1: Estimate the strength of the SIR.

In this step, MCKSN adds strength to each SIR to indicate the confidence of the

knowledge. In other words, the strength reflects how strong the SIR is. For example, the

strength of the given SIR in the following example is 12.69.

90

The mathematical explanation of the used method begins by estimating the strength

of the SIR. In this dissertation, the strengths are evaluated by maximizing the pseudo-log-

likelihood of the entire set of ground atoms, as the probability distribution over the possible

worlds x for the MCKSN are given by:

Ps(x)=
exp(∑ Sifi(X)n

i=1

Z

Where:

(5.3)

Z= ∑ Sifi
X

(x)
 (5.3.1)

Where:

𝒇𝒊(𝒙): is the number of true groundings (cliques) of the SIR, and

𝑺𝒊: is the strength of SIR that needs to be estimated.

The log-likelihood with respect to a particular strength Si is given by Equation 5.3.

By taking a log for Equation, 5.3. Assuming the following SIR as an example, the goal is

to estimate the strength of the SIR in Figure 5.9 by using Equation 5.3.

S (CREATE (x, y) ^ APPLY (y, z)) => CREATE (x, z)

12.69 (CREATE (x, y) ^ APPLY (y, z)) => CREATE (x, z)

As shown above, the strength of the SIR is 12.69. The steps can then be shown to

estimate the strength of the SIR.

12.69 Create (x, y) ^ Apply (y, z) => Create (x, z)

91

Step 1.1: Create all possible outcomes (atomic formulas) based on the given constants and

CSD. Consider that three concepts (Graph, Graph-Traversal, and BFS), one CSD [Apply

(Graph, BFS)] and a SIR [Create (z, x) ^ Apply (z, y) => Create (x, y)] are given to create

all possible outcomes. There are three entities (Constants): Graph, Graph Traversal, and

BFS.

• The SIR has two relations (Create, Apply), both of which are binary relations

from propositional logic.

• The number of possible ground atoms for each relation = nr., where n: is a

number of constants, and r: is the number of relations.

• Then, the number of possible ground atoms for each relation = 32 = 9.

• The total number of ground atoms = 93 =27 ground atoms.

92

For formatting purposes, the concepts and the relations are abbreviated to letters such as:

Graph-Traversal = GT, Breadth-First Search = BFS, create =CR, and Apply= AP.

Table 5.10 All Possible Ground Atoms for the Example.

Créate (X,Y) ^Apply (Y,Z) => Create (X,Z)

Z X Y

Graph Graph Graph
1. CR (Graph, Graph) ^AP(Graph, Graph)) => CR (Graph,

Graph)

Graph BFS

2. CR (Graph, Graph) ^AP (Graph, BFS) => CR (Graph,

BFS)

Graph Graph Traverse 3. CR (Graph, Graph) ^AP (Graph, GT) => CR (Graph, GT)

BFS BFS 4. CR (Graph, BFS) ^AP(Graph, BFS) => CR (BFS, BFS)

BFS Graph 5. CR (Graph, BFS) ^AP(Graph, GT) => CR (BFS, GT)

BFS Graph Traverse

6. CR(Graph, Graph)^AP(Graph, Graph)) => CR (Graph,

Graph)

GT Graph Traverse 7. CR(Graph, GT)^AP(Graph, GT)) => CR (GT,GT)

GT BFS 8. CR(Graph, GT)^AP(Graph, BFS)) => CR (GT, BFS)

GT Graph 9. CR(Graph, GT)^AP(Graph, Graph)) => CR (GT, Graph)

BFS BFS BFS 10. CR(BFS, BFS)^AP(BFS, BFS)) => CR (BFS, BFS)

 BFS Graph 11. CR(BFS, BFS)^AP(BFS, Graph))) => CR (BFS, Graph)

 BFS Graph Traverse 12. CR(BFS, BFS)^AP(BFS, GT) => CR (BFS, GT)

 Graph BFS 13. CR(BFS, Graph)^AP(BFS, BFS)) => CR (Graph, BFS)

Graph Graph

14. CR(BFS, Graph)^AP(BFS, Graph)) => CR (Graph,

Graph)

 Graph Graph Traverse 15. CR(BFS, Graph)^AP(BFS, GT)) => CR (Graph,GT)

 GT Graph Traverse 16. CR(BFS, GT)^AP(BFS, GT)) => CR (GT,GT)

 GT BFS 17. CR(BFS, GT)^AP(BFS, BFS)) => CR (GT, BFS)

 GT Graph 18. CR(BFS, GT)^AP(BFS, Graph)) => CR (GT,Graph)

Graph

Traverse
GT Graph Traverse 19. CR (GT, GT)^AP(GT, GT) => CR (GT, GT)

 GT BFS 20. CR(GT, GT)^AP(GT, BFS) => CR (GT, BFS)

 GT Graph 21. CR (GT, GT)^AP(GT, Graph) => CR (Graph, GT)

 BFS BFS 22. CR(GT, BFS)^AP(GT, BFS) => CR (BFS, BFS)

 BFS Graph 23. CR (GT, BFS) ^AP (GT, Graph) => CR (BFS, Graph)

 BFS Graph Traverse 24. CR (GT, BFS)^AP(GT, GT) => CR (BFS,GT)

 Graph BFS 25. CR (GT, Graph) ^AP (GT, BFS)) => CR (Graph, BFS)

 Graph Graph 26. CR(GT, Graph)^AP(GT,Graph)) => CR (Graph, Graph)

 Graph Graph Traverse 27. CR (GT, Graph) ^AP (GT, GT) => CR (Graph, GT)

93

Step 1.2: Create a Truth Table and find the line (Cases) in the Truth Table where the target

predicate is True.

 In Step 1.1, all possible atomic formulas were generated; in this step, the truth table was

created for each atomic formula. Truth tables are constructed from SIR’s by transforming

expressions into atomic formulas. To follow the next steps more easily, only three atomic

formulas were used. These three atomic formulas were three rows in the third column, each

of which is highlighted by different colors (as in Table 5.10). Table 5.11 shows the chosen

atomic formulas. Tables 5.12, Table 5.13, and Table 5.14 illustrate the truth tables for the

three atomic formulas with their respective coded colors.

Table 5.11. The Chosen Atomic Formulas.

Atomic Formulas

1. CR (Graph, BFS) ^AP (Graph, GT) => CR (BFS, GT)

2. CR (Graph, GT) ^AP (Graph, BFS) => CR (GT, BFS)

3. CR (BFS, GT) ^AP (Graph, BFS) => CR (GT, Graph)

Table 5.12. The Truth Table for Atomic Formula 1.

CR (Graph, BFS) AP (Graph, GT) CR (BFS, GT) CR (Graph, BFS) ^AP (Graph, GT) SIR

(If-Then)

Potential

Function

f(x)

1 1 1 1 1 1

1 1 0 1 0 0

1 0 1 0 1 1

1 0 0 0 0 0

0 1 1 0 1 1

0 1 0 0 0 0

0 0 1 0 1 1

0 0 0 0 0 0

94

Where the potential function is defined as:

f(x) = {
1 if SIR is true(Has value=1 in the truth table)

0 otherwise

Finding the line (Cases) in the Truth Table where the target predicate is True for

the SIR in Table 5.12, Table 5.13 and Table 5.14 illustrated in Table 5.15. This is achieved

by applying the Equation 5.3 for the three atomics formulas used (as in Table 5.15).

Table 5.13. The Truth Table for Atomic Formula 2.

CR (Graph, GT) AP (Graph, BFS) CR (GT, BFS) CR (Graph, GT) ^AP (Graph, BFS) SIR

(If-Then)

Potential

Function

f(x)

1 1 1 1 1 1

1 1 0 1 0 0

1 0 1 0 1 1

1 0 0 0 0 0

0 1 1 0 1 1

0 1 0 0 0 0

0 0 1 0 1 1

0 0 0 0 0 0

Table 5.14. The Truth Table for Atomic Formula 3.

CR (BFS, Graph) AP (Graph, BFS) CR (GT, Graph) CR (BFS, GT) ^AP (Graph, BFS) SIR

(If-Then)

Potential

Function

f(x)

1 1 1 1 1 1

1 1 0 1 0 0

1 0 1 0 1 1

1 0 0 0 0 0

0 1 1 0 1 1

0 1 0 0 0 0

0 0 1 0 1 1

0 0 0 0 0 0

95

It is started by calculating the strength for the SIR in Figure 5.9 as follows:

As seen in Equation 5.3.23 the Equation cannot be computed in closed form, but

using BFGS method the strength of the SIR is equal to 12.69

Table 5.15. The Truth Table for Atomic Formula 1,2, and 3.

Potential Function

Atomic Formula 1

Potential Function

Atomic Formula 2

Potential Function

Atomic Formula 3

fi(x) 𝑒𝑓𝑖(𝑥)∗𝑠𝑖

1 1 1 3 e3s

0 0 0 0 1

1 1 1 3 e3s

0 0 0 0 1

1 1 1 3 e3s

0 0 0 0 1

1 1 1 3 e3s

0 0 0 0 1

Ps(x)=
exp(∑ Sifi(X)n

i=1

Z

 where:

Z= ∑ Sifi

X

(x)

First, calculate the Numerator in the above Equation

Ps(x)=
exp(3s+1+3s+1+3s+1+3s+1)

Z
 (5.3.19)

Ps(x)=
(e

3s
.1.e3s.1.e3s.1.e3s.1)

Z
 (5.3.20)

Ps(x)=
(e

3s
.1.e3s.1.e3s.1.e3s.1)

Z
=(e3s)

4
= 𝑒12𝑠 (5.3.21)

Second calculate the Denominator in Equation 5.3.

Since Z= ∑ SifiX (x)

Then:

Z = 4 e3s + 4 (5.3.22)

By substituting in Equation 5.3

𝑃𝑠(𝑥) =
e12s

4 e3s + 4
 (5.3.23)

96

12.69 (Create (z, x) ^ Apply (z, y)) => Create (x, y)

Step 1.3: Consider the predicates which require a value equal to True to be a clique.

In the second step, the possible outcomes for each atomic formula were created by using

truth tables. After the ground predicates are identified, it should be transformed to a graph

where nodes are the ground predicates, and edges between them are added if two ground

atoms appear in the same SIR. In this case, the groundings of the predicates were {CR

(Graph, BFS), AP (Graph, GT), CR (BFS, GT), CR (Graph, GT), AP (Graph, BFS), CR

(GT, BFS), CR (GT, Graph)}. The ground Markov Network in Figure 5.12 was created.

The predicate that had a True value (which is the truth grounding) became a clique.

Figure 5.12. The Ground Markov Cognitive Knowledge State Network (MCKSN).

Step Two: Estimate the maximum probability of the known state of a given concept

at a particular Bloom level, given the states of a few other concepts at a particular Bloom

level. In the inference of the MCKSN, the Maximum A Posteriori (MAP) is used. This type

of reasoning is called an approximate inference. Different types of algorithms are utilized

97

to perform this type of inference (Koller & Friedman), one of the simplest of which is a

Markov Chain Monte Carlo (MCMC) (Stuart Russell and Norvig 2002).

A Markov Chain Monte Carlo (MCMC) algorithm is introduced in section 5.3. The

steps of the Gibbs Sampling Algorithm are explained in Figure 5.8. The Gibbs Sampling

Algorithm can begin to be applied to the MCKSN (as in Figure 5.12) since it is a Sub-

network that is used to estimate the maximum probability of each cognitive fact of being

True.

Figure 5.13. A Sub-Network MLN.

The estimation of the Maximum Probability is done iteratively, and each CSD in

the graph is also updated iteratively (according to the probability of each CSD, given its

Markov blanket). When the first iteration is finished over all the nodes, then one cycle is

completed. In this example, the starting node was node Number 1, the ground atom CR

(Graph, BFS). The ground atom holds the cognitive relationship Create (CR) between two

98

concepts Graph and BFS. So, estimating the maximum probability value of this Bloom fact

to be true needs to be computed. The Red node AP (Graph, BFS) is given as a fact in this

example. Considering that each node corresponds to a random variable, the probability

with which each node is sampled can be calculated based only on its Markov blanket. The

likelihood of any ground atom x when its Markov blanket MB(x) is estimated can be shown

by using Equation 5.4:

Figure 5.14 requires estimating the probability value for the green node. Based on

Equation 5.4, the maximum probability could be used for the conditional green node in its

Markov blanket, the observations of which are in the attached truth table in Figure 5.14.

Since the green node was node number 1, it had two neighbors in the same clique. Sampling

node number 1 from its posterior distribution with all other variables temporally fixed with

the same value was done by applying Equation 5.4.

P(x|MB(x))=
exp(∑ sii f

i
(x))

exp(∑ sii f
i
(x=0))+exp(∑ sii f

i
(x=1))

(5.4)

Where fi is the set of ground formulas that x appears in, the MB(x) Markov blanket of

node x, and fi(x=1) and fi(x=0) are the values (0 or 1) of the feature corresponding to

the ith ground formula.

99

Figure 5.14. Gibbs Sampling for Node Number 1.

A calculation of P (CR (Graph, BFS) using Equation 5.4 goes as follows:

P(x|MB(x))=
exp(∑ sii f

i
(x))

exp(∑ sii f
i
(x=0))+exp(∑ sii f

i
(x=1))

First, calculate the Numerator in Equation 5.4

 𝑒𝑥𝑝(∑ 𝑠𝑖𝑓𝑖(𝑥)𝑖) counts all the assignments where CR (Graph, BFS) is True.

This is based on the generated sampling using Gibbs sampling. Sample P (CR (Graph, BFS))

given its Markov blanket, and repeat. Count the number of times that P (CR (Graph, BFS)) is

true and false in the samples. As illustrated in Figure 5.14, the sampling is generated randomly,

where

AP (Graph, GT) is equal to:

exp(∑ sifi(x)i) = (3*e12S) = 3e12S

100

It is clear that this Equation had multiple solutions, meaning that the Equation was

not in a closed form. Therefore, iterative techniques to compute the maximum values

should have been used. One of the most straightforward iterative methods is the gradient

ascent (as introduced in Section 5.3.1.3):

3e12

5+3e12
=0.235004

Then the probability of the fact’s validity that (node number1) is equal to 0.235004

(as mentioned in the Gibbs sampling) was not the final value. In this case, the sampling

was repeated iteratively until the best value was reached.

The next node is node number 2, which is AP (Graph, GT) (as in Figure 5.15). The

same steps were repeated to estimate the maximum degree of credibility that learning a

concept graph is necessary to know in order to reach the applying cognitive level where

the GT concept can be applied. Figure 5.10 explains the method for computing the

The denominator in Equation 5.4, is exp(∑ sifi(x=0)i)+ 𝑒xp(∑ sifi(x=1)i)

In Equation 5.4 exp(∑ sifi(x=0)i) represents the cases where CR (Graph, BFS) is False

conditional of its MB (their first level neighbor), which is also is False. That means

P (CR (Graph, BFS) =0 | AP (Graph, GT) =0, CR (BFS, GT) =0) = 5.

In Equation 5.4 exp(∑ sifi(x=1)i) represents the cases where CR (Graph, BFS) is a True

conditional of its MB, which is also a True. That means

P (CR (Graph, BFS) =1 | AP (Graph, GT) =1, CR (BFS, GT) =1) = 3*e12S = 3e12S

Then, by substituting in Equation 5.4:

P (CR (Graph, BFS) =
e12S

5+ 3 e
3s (5.3.11)

101

estimation probability for the green node. As seen in Figure 5.10, the node only had two

neighbors in the same clique, so the sampling started by sampling this node where all other

variables were temporally fixed with the same value. A calculation of P (AP (Graph, GT))

using Equation 5.4 goes as follows:

P(x|MB(x))=
exp(∑ sii f

i
(x))

exp(∑ sii f
i
(x=0))+exp(∑ sii f

i
(x=1))

First, the numerator in Equation 5.4 is calculated as exp(∑ Sifi(x)i) , which counts

all the assignments where P (AP (Graph, GT)) is True.

This is based on the generated sampling using Gibbs sampling. Sample P (AP (Graph, GT)) is

given its Markov blanket, and the process is repeated for each assignment. Count the number

of times that P (AP (Graph, GT)) is true and false in the samples. As illustrated in Figure 5.9,

the sampling is generated randomly, where AP (Graph, GT) is equal to:

exp(∑ Sifi(x)i) = (5*e12S) = 5e12S

The denominator in Equation 5.4. is exp(∑ sifi(x=0)i) + exp(∑ sifi(x=1)i)

In Equation 5.4, 𝑒𝑥𝑝(∑ 𝑠𝑖𝑓𝑖(𝑥 = 0)𝑖) represents the cases where P (AP (Graph, GT)) is False,

conditional of its MB (their first level neighbor) being False too. That means

P (AP (Graph, GT) = 0|CR (BFS, GT) = 0, CR (Graph, BFS) = 3.

In Equation 5.4, exp(∑ sifi(x=1)i) represents the cases where P (AP (Graph, GT)) is True,

conditional of its MB being True too. That means

P (AP (Graph, GT) = 1 |CR (BFS, GT) = 1, CR (Graph, BFS) = 1 = 5*e12S = 5e12S

102

Figure 5.15. Gibbs Sampling for Node Number 2.

Next, for node number 3, CR (BFS, GT) (as in Figure 5.11), the same steps were

repeated to estimate the maximum degree of probability of the fact’s validity that learning

a BFS concept is necessary to know in order to reach the creation cognitive level to Create

a Graph Traverse.

Figure 5.16 illustrates the estimation probability that is needed to be computed for

the green node. The Markov blanket of this node consists of node1, node2, node 5, and

node7 (the observations of which are illustrated in Figure 5.16). As seen in Figure 5.16,

the node had neighbors in different cliques, so the sampling began with node number 3,

where all other variables were temporally fixed with the same value. It is clear that node 7

Then, by substituting in Equation 5.4, the maximum probability of the fact of learning Graph to

apply GT is the following:

P (AP (Graph, GT) =
5e12S

3+ 5 e
12s (5.3.11)

103

is evidence that the value of this node is always true no matter which neighbor it has. By

applying Equation 5.4:

P(x|MB(x))=
exp(∑ sii f

i
(x))

exp(∑ sii f
i
(x=0))+exp(∑ sii f

i
(x=1))

First, the Numerator in Equation 5.4 was calculated, and

 𝑒𝑥𝑝(∑ 𝑠𝑖𝑓𝑖(𝑥)𝑖) counts all the assignments where CR (BFS, GT) is True. This is based on

the generated sampling using Gibbs sampling. Sample CR (BFS, GT) given its Markov

blanket, and repeat. Count the number of times that CR (BFS, GT) is true and false in the

samples. As illustrated in Figure 5.16, the sampling is generated randomly, where CR (BFS,

GT) is equal to:

exp(∑ sifi(x)i) = (5*e12S) = 5e12S

The Denominator in Equation 5.4. is exp(∑ sifi(x=0)i) + exp(∑ sifi(x=1)i)

In Equation 5.4 exp(∑ sifi(x=0)i) represents the cases where CR (BFS, GT) is False,

conditional of its MB (their first level neighbor) being False too. That means

P (CR (BFS, GT) = 0 |CR (Graph, GT) = 0, AP (Graph, GT) = 0, AP (Graph, BFS) = 0, CR

(GT, Graph) = 0)).

In Equation 5.4, exp(∑ wifi(x=1)i) represents the cases where CR (BFS, GT) is True,

conditional of its MB being True too. That means

P (CR (BFS, GT) =1 |CR (Graph, GT) =1, AP (Graph, GT) =1, AP (Graph, BFS) =1, CR

(GT, Graph) =1))

= 5*e12S = 5e12S

104

Figure 5.16. Gibbs Sampling for Node Number 3.

The sampling procedure iteratively drew samples from the full conditional

distributions for the rest of nodes in the graph (node 4, node 6, and node 7) except for the

evidence node, which is the red node in Figure 5.16. After finishing the iteration over all

the nodes, one cycle was completed. Then, the new sampling cycle started. The Gibbs

sampling procedure was performed until convergence was reached.

Then, by substituting in Equation 5.4, the maximum probability of the fact of learning Graph

to apply GT is the following:

P (AP (Graph, GT) =
6e

12

2+6e12 (5.3.11)

Table 5.16. The Probability of the Fact at each Iteration.

Inferred Facts Iteration-1 Iteration-2 Iteration-3 Iteration-4 Iteration-10

CREATE (Graph, BFS) 0.497000 0.535000 0.502941 0.504444 0.500476

APPLY (Graph, GT) 0.483333 0.500000 0.506667 0.501176 0.514167

CREATE (BFS, GT) 0.502407 0.502482 0.5902482 0.692411 0.7976

105

 Ten iterations were used in this example, as Table 5.17 illustrates the values of the

fact in each iteration. Through this example, it is clear that the value of the evidence, the

raw number six, was equal to one in all iterations, meaning that they were fixed.

Meanwhile, the other values for each fact depended on their values in the previous iteration;

however, the sampling procedure was known to converge on the desired posterior

distribution.

Figure 5.17. The Probability of the Fact at the First Iteration and Last Iteration.

CREATE (Graph, GT) 0.499009 0.497163 0.497163 0.4956 0.560000

APPLY (Graph, BFS) 1 1 1 1 1

CREATE (GT, BFS) 0.483333 0.482222 0.484167 0.490000 0.501154

CREATE (GT, Graph) 0.520000 0.520000 0.528333 0.502067 0.502067

106

5.6 Summary and Discussion

This chapter outlined and discussed the main concepts of the proposed

methodology, a Markov Network (MN), a Markov Logic Network (MLN), and a Markov

Cognitive Knowledge State Network (MCKSN). MN introduced the central concepts to

understand both MLN and MCKSN.

MLN built a framework of combining the logic with the Markov Network. MCKSN

used a framework to tackle the cognitive problem into a new context. The chapter also

introduced the Markov Network with a practical example, as well as showing the

intersection point of the Markov Network and Markov Logic Network which was

generating the potential function based on the logic. Additionally, MCKSN introduced a

methodology that showed promising results where the task of knowing concepts at a

particular cognitive level was the focus. The MCKSN technique makes use of the cognitive

domain in Computer Sciences.

The next chapter will discuss the experiment step and the evaluation of the Markov

Cognitive Knowledge State Network (MCKSN).

107

 EXPERIMENT RESULTS AND EVALUATION

6.1 Introduction

This chapter presents an experimental validation on the MCKSN model’s

performance in identifying the hidden Cognitive Skill Dependencies (CSD) when

compared to the results done by human identification. The chapter then illustrates the

details of the used dataset, along with the design of the human model to assess the

efficiency of the MCKSN model. Finally, it presents the comparison between the human

model and the MCKSN model, as well as proof that the proposed model acts like humans

when inferring the hidden Cognitive Skill Dependencies.

6.2 Test Dataset

This section discusses the bench mark dataset used in the experiments. An

experiment was conducted on Introduction to Algorithms, a highly adapted textbook used

in Computer Science classes at many universities. Table 6.1 provides a breakdown of the

information about the chosen textbook.

Table 6.1. Statistical Information about the Textbook.

 Algorithm Textbook Statistical Information

Table of Content depth 4

Number of Sentences 11077

Number of Paragraphs 5959

Number of concepts (Nouns and Verbs) 207356

Number of Noun Concepts 2384

Number of Verb Concepts 354

Number of Extracted Relationships (Verb) 3886

Number of Extracted CSBT Relationships 615

108

Number of Extracted CSWN Relationships 680

Twenty-Two CS concepts were used in this experiment (see Table 6.2). The

concepts were used as an input for both the human model and the MCKSN model. The

experiment was only done for a subset of concepts, as the manual process of evaluating

Cognitive Skill Dependencies is time consuming. The discussion led to the researcher

choosing the concepts included in the course learning objectives.

Table 6.2. Several CS Concepts from the Algorithm Textbook.

CS- Concepts
1. ALGORITHM

2. DATA-STRUCTURE

3. BINARY-SEARCH-TREES

4. FLOYD-WARSHALL-ALGORITHM

5. GREEDY-ALGORITHM

6. RED-BLACK-TREES

7. LONGEST-COMMON-SUBSEQUENCE

8. SORTING-IN-LINEAR-TIME

9. BREADTH-FIRST-SEARCH

10. GRAPH-ALGORITHM

11. COUNTING-SORT

12. PRIM-ALGORITHM

13. LISTS

14. STACKS

15. RUNNING-TIME

16. WORST-CASE

17. HEAP-SORT-ALGORITHM

109

18. SORTING-ALGORITHM

19. QUICK-SORT-ALGORITHM

20. MST

21. TOPOLOGICAL-SORT

22. STRONGLY CONNECTED COMPONENT

Figure 6.1 illustrates a Semantic Knowledge Map (SKM) view of a fully connected

graph for the twenty-two concepts. In the context of this experiment, initially the

assumption is that there are Cognitive Skill Dependencies between any two concepts

(nodes). In other words, the Semantic Knowledge Map (SKM) is a fully connected graph.

Each two nodes in the graph have four types of dependencies. In reality, some of the nodes

are not connected, while others are strongly connected based on their Cognitive Skill

Dependencies. A fully connected graph was given to both the MCKSN model and the

human model. Both models were then used to attempt to label the Cognitive Skill

Dependencies between concepts in the graph.

110

6.3 Skill Inference Rules (SIR) Extraction

The Skill Inference Rules (SIR) were generated in this experiment (Table 6.3

illustrates the generated SIR). The SIR’s were used as input to guide the MCKSN model to

infer the Cognitive Skill Dependencies. The generated SIR’s are deliberately meant to be

simple because if the SIR is too complex, it is possible for it to be neither valid nor not-

valid. In other words, there would be a chance of generating a not-valid SIR. The SIR’s in

this experiment are generated by a group of Ph.D. students in the research phase with

expertise in the Algorithm area. After many meetings and discussions, the SIR’s were

generated and evaluated. The group introduced their best efforts in this, taking into account

the SIR format of the First Order Logic.

There is no universal method to determine whether a Skill Inference Rules (SIR) in

First Order Logic is logically valid or not-valid, but the structure satisfies the validity of

Figure 6.1. Semantic Knowledge Map (SKM) with the Cognitive Skill
Dependencies between Concepts.

111

the SIR. In general, it's up to the cleverness and creativity of the experts to make a valid

determination.

Table 6.3. Skill Inference Rules (SIR)

//Cognitive Skill Dependencies (Understanding) Rules

Understanding (z, x) ^ Understanding (z, y) => Understanding (x, y)

Understanding (z, x) ^ Applying (z, y) => Understanding (x, y)

Understanding (z, x) ^ Applying (z, y) => Applying (x, y)

Understanding (z, x) ^ Analyzing (z, y) => Understanding (x, y)

Understanding (z, x) ^ Analyzing (z, y) => Analyzing (x, y)

Understanding (z, x) ^ Creating (z, y) => Understanding (x, y)

Understanding (z, x) ^ Creating (z, y) => Creating (x, y)

//Cognitive Skill Dependencies (Applying) Rules

Applying (z, x) ^ Applying (z, y) => Applying (x, y)

Applying (z, x) ^ Understanding (z, y) => Applying (x, y)

Applying (z, x) ^ Understanding (z, y) => Understanding (x, y)

Applying (z, x) ^ Analyzing (z, y) => Applying (x, y)

Applying (z, x) ^ Analyzing (z, y) => Analyzing (x, y)

Applying (z, x) ^ Creating (z, y) => Applying (x, y)

Applying (z, x) ^ Creating (z, y) => Creating (x, y)

//Cognitive Skill Dependencies (Analyze) Rules

Analyze (z, x) ^ Analyze (z, y) => Analyze (x, y)

Analyze (z, x) ^ Understanding (z, y) => Analyze (x, y)

Analyze (z, x) ^ Understanding (z, y) => Understanding (x, y)

Analyze (z, x) ^ Applying (z, y) => Analyze (x, y)

Analyze (z, x) ^ Applying (z, y) => Applying (x, y)

Analyze (z, x) ^ Creating (z, y) => Analyze (x, y)

Analyze (z, x) ^ Creating (z, y) => Creating (x, y)

//Cognitive Skill Dependencies (Creating) Rules

Creating (z, x) ^ Creating (z, y) => Creating (x, y)

Creating (z, x) ^ Understanding (z, y) => Creating (x, y)

Creating (z, x) ^ Understanding (z, y)) => Understanding (x, y)

Creating (z, x) ^ Analyzing (z, y) => Creating (x, y)

Creating (z, x) ^ Analyzing (z, y) => Analyzing (x, y)

Creating (z, x) ^ Applying (z, y) => Creating (x, y)

Creating (z, x) ^ Applying (z, y) => Applying (x, y)

6.4 Human Evaluation Model Experiment

The purpose of the human evaluation was to measure the performance reliability of

the MCKSN model. The ground truth was provided by two group of students since they

have intuitive understanding about the Cognitive Skill Dependencies. The students were

112

only asked to label the Cognitive Skill Dependencies between concepts for the final

answer. Human judgment, the most widely accepted form of judgment, was used in order

to best evaluate the proposed model. The human model experiment will be explained in

detail in Section 6.3 in this chapter.

6.4.1 Evaluation Procedure

Procedures for selecting the participants and collecting the data are described in

this section. The first thing to describe here is The Data Collection. Data was collected on

November 26th during the Fall 2016 Semester. The collecting of the data is intentionally

done at the end of the semester because the learning of the chosen concepts has already

been completed by then. This study employed one mode of data collection: a student

survey. The survey was used to label the Cognitive Skill Dependencies between concepts.

The survey contained multiple-choice questions. There are four types of Cognitive Skill

Dependencies between concepts: Understanding, Analyzing, Applying-Evaluating, and

Creating (which are denoted as {BL1, BL2, BL3, BL4} respectively)(Nafa & Khan, 2015).

During the study, the researcher allocated the final 10 minutes of the class period

to explain the survey procedure to the participants. The survey was a take home survey. A

description of Bloom’s Taxonomy levels was given to participants with a simple example

to explain the difference between each of the cognitive levels. Participants were told that

the survey would not be graded and that their responses would not be shown to their

instructor. The survey was given to participants, asking them questions based on their

understanding and knowledge. Participants were also free to use external references to

113

classify the Cognitive Skill Dependencies between each of the two concepts, where more

than one type could be possible between two concepts.

Secondly, there were The Participants. The evaluation of the MCKSN model

performance reliability focused on data purposefully obtained from a group of students.

The students were deemed to be accurate learners to identify Cognitive Skill Dependencies

because they had already learned the concepts used in this experiment prior to the

experiment taking place. The study utilized two groups of co-ed students whose ages

ranged from 23 to 55. The first group was composed of students enrolled in the “Design

and Analysis of Algorithms” course offered by the Computer Science department at Kent

State University. The second group consisted of Computer Science students at the masters

and PhD levels who had already taken this course.

The class had 80 students, seventy of whom responded to participate in the study.

Of the 80 students who responded to participate, ten students either subsequently declined

to participate, or revealed that they were absent. As such, they were removed from

consideration for this study. Consequently, the second sample consisted of 50 participants:

Masters and PhD students who had taken this course previously.

The total participants for this study were 120 learners. Participants were orally

informed that they could choose not to participate in the study. The class instructor was not

present while the survey was administered so that students would not feel intimidated

regarding their participation. As a group, these 120 study participants had the following

characteristics: Seventy-five percent of the study’s participants were male, and twenty-five

114

percent were female. Ninety-two percent of the participants were CS majors, while eight

percent were non-CS majors. The GPA for study participants varied in four different

groups, where thirty percent had A’s, thirty-eight percent had B’s, twelve percent had C’s

and seventeen percent had D’s. Table 6.4 illustrates the statistical information about the

participants.

Table 6.4. Statistical Information about the Participants.

Gender Major GPA

Female Male CS Non-CS A B C D

25% 75% 92% 8% 30% 38% 12% 17%

Finally, there was the Institutional Review Board (IRB) Processing. This was the

necessary approval given to conduct this study by Kent State University’s Institutional

Review Board (IRB). A reproduction of the e-mail message for the study’s approval is

provided in Appendix B. Rather than include a picture of the email printout, the e-mail

message was typed out to preserve the anonymity of the institution at which this study was

conducted. Once potential participants had been identified, instructions were given to them,

along with the Informed Consent Form. It included a description of the research study,

research procedures, risks and benefits of participation in the study, participant’s rights,

and protection of confidentiality. Students who signed the consent form became

participants in the study. Before handing out the survey, the researcher asked participants

if they had read and understood the consent form. Participants then received details about

the process and procedures, along with a copy of the survey questions.

115

6.4.2 Human Model Result

The final data of the Human model were tabulated in eight tables, namely H1, H2,

H3, and H4, respectively (as given in Appendix C). The Human model (Hb) tables contain

Cognitive Skill Dependencies estimated by a human. For the evaluation, 460 Cognitive

Skill Dependencies between 22 concepts were picked. Thus, in each table, there are 460

rows and 120 columns, where the rows denote the Cognitive Skill Dependencies between

each two concepts and the columns represent human answers. The Human model was

represented as a matrix Hb, where rows represent the ith Cognitive Skill Dependencies

identified by the sth human subject (columns) for each Cognitive Skill Dependency, and

where cell values are human agreement counts for Cognitive Skill Dependencies. The

Human model matrix Hb can be defined as follows:

𝐻𝑏[𝑖, 𝑠]

Where:

i: is the Cognitive Skill Dependencies index 1 ≤ i ≤ 460, s: is the human subject index 1 ≤

s ≤ 120, and b: is the Cognitive Skill Dependency index 1 ≤ b ≤ 4. Then the Human-

Evaluation matrix 𝐻𝑏[𝑖, 𝑠] was converted to a vector of elements 𝐻𝑏[𝑖].

6.5 A Markov Cognitive Knowledge State Network (MCKSN) Model Experiment

This section handles the experiments of applying the MCKSN model with a

different set of SIR’s as explained in section 6.2 in this chapter. The implementation of the

MCKSN model is based on using pracMLN, an MLN python package for statistical

relational learning and reasoning (Ankan & Panda, 2015). An input for this model (as

116

mentioned in Chapter 5) consists of a Semantic Knowledge Map (SKM), a set of logic

Inferential Algebra, facts, and CS Concepts. The MCKSN model is queried for four

different Cognitive Skill Dependencies (BL1, BL2, BL3, and BL4), which are Understanding,

Applying, Evaluating-Analyzing and Creating, respectively.

As a final result of the MCKSN model, four databases were created (BL1, BL2, BL3,

and BL4, respectively). Each column in the database represents a percentage of the

probability of the Cognitive Skill Dependencies between the concepts. The MCKSN model

results are called (Mb). There are also expanded graphs in (Appendix A) of the dissertation.

These present the Cognitive Skill Dependencies between the concepts based on their

degree probability where the graphs are plotted according to a specific threshold (βm). In

these experiments, βm had four different values (0.50, 0.65, 0.75, and 0.85, respectively)

for each Bloom level (BL1, BL2, BL3, and BL4).

6.6 Comparing MCKSN Model and Human Model of inferring Cognitive Skill

Dependencies.

The results of the MCKSN model were tabulated in eight tables, namely BL1, BL2,

BL3, and BL4 respectively. The BL1, BL2, BL3, BL4 tables include Cognitive Skill

Dependencies estimated by an MCKSN model (Mb). For the evaluation, 460 relationships

between 22 concepts were picked. Thus, in each table, there are 460 rows and one column.

The MCKSN model Mb can be defined as a vector of elements as follows:

𝑀𝑏[𝑖]

Where:

117

i: is the Cognitive Skill Dependencies index 1 ≤ i ≤ 460 and b: is the Bloom level index 1

≤ b ≤ 4.

6.6.1 Data Preprocessing

The preprocessing step is used as an essential step of the compression procedure.

In this study, the preprocessing steps are scaling, matching and mismatching, and

performance matrix.

6.6.1.1 Scaling

Scaling is needed as a preprocessing step for computing the accuracy of the MCKSN

model results Mb[i] to better compare those with the Human-Evaluation Hb[i] of

discovering the Cognitive Skill Dependencies between concepts. In this context, scaling

entails mapping all values to the same range. There is primary reason for doing this. Having

all data in the same range eliminates the possibility of data with greater values dominating

in the result and thus having a larger influence during the process of discovering the

Cognitive Skill Dependencies. There are different techniques to scale the data (Muller &

Guido, 2017; Müller & Guido, 2016). This section introduces the most widely used scaling

techniques: Minmax and Log scaling techniques. The main reason for choosing them was

to keep the dimensions of the data simple and convenient, thus matching the units.

Minmax Scaler, The Minmax Scaler is the most widely-used scaler, especially

when dealing with the issue of classification. In the Minmax Scaler algorithm, the scaling

was applied for both 𝐻𝑏[𝑖] and 𝑀𝑏[𝑖]. The Minimax Scaler algorithm maps each contain

118

an element in both 𝐻𝑏[𝑖] and 𝑀𝑏[𝑖] to new scaled elements, 𝐻𝑏
𝑚𝑚[𝑖] 𝑎𝑛𝑑 𝑀𝑏

𝑚𝑚[𝑖]

respectively, by using the following Formulas 6.2 and 6.3:

Where:

Hb[i] is the Human-Evaluation data and Hb
mm[i] is the scaled data, max(Hb[i]) is the

maximum value in 𝐻𝑏[𝑖] and min(𝐻𝑏[𝑖]) is the minimum value in Hb[i].

Where:

𝑀𝑏[𝑖] is the data estimated by MCKSN model, 𝑀𝑏
𝑚𝑚[𝑖] is the scaled data; 𝑚𝑎𝑥(𝑀𝑏[𝑖])

is the maximum value in 𝑀𝑏[𝑖] and min(𝑀𝑏[𝑖]) is the minimum value in Mb[i].

Log Scaling, the log (LG) scaling takes the log of each data point, where each data

point is replaced by its natural log. The log can be valuable both for making patterns in the

data more interpretable and for helping to meet the assumptions of the used threshold. The

scaling is applied for both 𝐻𝑏[𝑖] and 𝑀𝑏[𝑖]. It can be calculated by using the following

formulas 6.4 and 6.5:

Where:

𝐻𝑏[𝑖] is the Human-Evaluation data and 𝐻𝑏
𝐿𝐺[𝑖] is the scaled data; and

Hb
mm[i]=

Hb[i]-min(Hb[i])

max(Hb[i]) -min(Hb[i])

 (6.2)

Mb
mm[i]=

Mb[i]-min(Mb[i])

max(Mb[i]) -min(Mb[i])

 (6.3)

Hb
LG[i]=Log(Hb[i]) (6.5)

Mb
LG[i]=Log(Mb[i]) (6.4)

119

Where:

 𝑀𝑏[𝑖] is the data estimated by MCKSN model and 𝑀𝑏
𝐿𝐺[𝑖] is the scaled data.

6.6.1.2 Matching and Mismatching

Each Human Evaluation 𝐻𝑏[𝑖] element should match with the MCKSN model

𝑀𝑏[𝑖] elements for each Cognitive Skill Dependency i. That means:

𝑀𝑏
𝑚𝑚[𝑖] ≈ 𝐻𝑏

𝑚𝑚[𝑖] and 𝑀𝑏
𝐿𝐺[𝑖] ≈ 𝐻𝑏

𝐿𝐺[𝑖]

The matching indicates how likely it would be for the results estimated by the

MCKSN model 𝑀𝑏[𝑖] to match with those of the Human-Evaluation 𝐻𝑏[𝑖]. In this study,

the matching value was different from Cognitive Skill Dependency to another to restrict

the result to only those cognitive Skill Dependency believed to be highly likely to be

correct, driving confidence up to meet the human match rate. It can be said that 𝑀𝑏
𝑚𝑚[𝑖]

matches with 𝐻𝑏
𝑚𝑚[𝑖] , and vice versa, and that 𝑀𝑏

𝐿𝐺[𝑖] matches with 𝐻𝑏
𝐿𝐺[𝑖] , and vice

versa. The matching decision is described as follows:

 H'1
mm[i]= {

1 if H1
mm[i] ≥ 0.60

0 if H1
mm[i] < 0.60

 and 𝑀′1
𝑚𝑚[𝑖] = {

1 𝑖𝑓 𝑀1
𝑚𝑚 ≥ 0.61

 0 𝑖𝑓 𝑀1
𝑚𝑚[𝑖] < 0.61

 H'1
LG[i]= {

1 if H1
LG[i] ≥ 4.0

0 if H1
LG[i] < 4.0

 and 𝑀′1
𝐿𝐺[𝑖] = {

1 𝑖𝑓 𝑀1
𝐿𝐺 ≥ 4.1

 0 𝑖𝑓 𝑀1
𝐿𝐺[𝑖] < 4.1

Where 𝑀′1
𝑚𝑚[𝑖] and 𝑀′1

𝐿𝐺[𝑖] are the scaled data estimated by an MCKSN model,

and 𝐻′1
𝑚𝑚[𝑖] and 𝐻1

′𝐿𝐺[𝑖] are the scaled data estimated by the Human for Cognitive Skill

Dependency (Understanding). In this formula the 𝐻1
𝑚𝑚[𝑖] should be greater than or equal

to 0.60; if this is true, it can then be said that Cognitive Skill Dependency (Understanding)

exists between two concepts. If 𝐻1
𝑚𝑚[𝑖] is less than 0.60, it can be said that no Cognitive

120

Skill Dependency (Understanding) can be found between the two concepts. This works in

a similar way for other formulas as well.

 𝐻′2
𝑚𝑚[𝑖] = {

1 𝑖𝑓 𝐻2
𝑚𝑚[𝑖] ≥ 0.50

0 𝑖𝑓 𝐻2
𝑚𝑚[𝑖] < 0.50

 and 𝑀′2
𝑚𝑚[𝑖] = {

1 𝑖𝑓 𝑀2
𝑚𝑚 ≥ 0.56

0 𝑖𝑓 𝑀2
𝑚𝑚[𝑖] < 0.56

 𝐻′2
𝐿𝐺[𝑖] = {

1 𝑖𝑓 𝐻2
𝐿𝐺[𝑖] ≥ 4.0

0 𝑖𝑓 𝐻2
𝐿𝐺[𝑖] < 4.0

 and 𝑀′2
𝐿𝐺[𝑖] = {

1 𝑖𝑓 𝑀2
𝐿𝐺 ≥ 4.0

0 𝑖𝑓 𝑀2
𝐿𝐺[𝑖] < 4.0

Where 𝑀′2
𝑚𝑚[𝑖] and 𝑀′2

𝐿𝐺[𝑖] are the scaled data estimated by MCKSN and 𝐻′2
𝑚𝑚[𝑖] and

 𝐻2
′𝐿𝐺[𝑖] are the scaled data evaluated by the Human subject for Cognitive Skill

Dependency (Applying).

 H'3
mm[i]= {

1 if H3
mm[i] ≥ 0.60

0 if H3
mm[i] < 0.60

 and M'3
mm[i]= {

1 if M3
mm ≥ 0.61

 0 if M3
mm[i] < 0.61

 H'3
LG[i]= {

1 if H3
LG[i] ≥ 4.0

0 if H3
LG[i]< 4.0

 and M'3
LG[i]= {

1 if M3
LG ≥ 4.1

 0 if M3
LG[i] < 4.1

Where 𝑀′3
𝑚𝑚[𝑖] and 𝑀′3

𝐿𝐺[𝑖] are the scaled data estimated by MCKSN and 𝐻′3
𝑚𝑚[𝑖] and

 𝐻3
′𝐿𝐺[𝑖] are the scaled data evaluated by the Human subject for Cognitive Skill

Dependency (Analyzing).

 H'4
mm[i]= {

1 if H4
mm[i] ≥ 0.60

0 if H4
mm[i]< 0.60

 and M'4
mm[i]= {

1 if M4
mm≥0.62

 0 if M4
mm[i]<0.62

 H'4
LG[i]= {

1 if H3
LG[i] ≥ 4.0

0 if H3
LG[i] < 4.0

 and 𝑀′4
𝐿𝐺[𝑖] = {

1 𝑖𝑓 𝑀4
𝐿𝐺 ≥ 4.1

0 𝑖𝑓 𝑀4
𝐿𝐺[𝑖] < 4.1

Where 𝑀′4
𝑚𝑚[𝑖] and 𝑀′4

𝐿𝐺[𝑖] are the scaled data estimated by MCKSN

and 𝐻′4
𝑚𝑚[𝑖] and 𝐻4

′𝐿𝐺[𝑖] are the scaled data evaluated by the Human subject for Cognitive

121

Skill Dependency (Creating). The following section introduces the Performance matrix

used to identify the evaluation parameters and the types of errors found in the MCKSN

model.

6.6.2 Performance Evaluation

The performance evaluation matrix is a tabulation of the performance of the

MCKSN model of inferring Cognitive Skill Dependencies. Table 6.4 defines the most

common performance evaluation matrix-based evaluation measures used in the literature

(Davis & Goadrich, 2006; Fawcett, 2006). It relates the human evaluation number of the

Cognitive Skill Dependency per class (as its rows) to the MCKSN number of Cognitive

Skill Dependency per class (as its columns). The numeric values of the matrix generated

during the comparison of human model and MCKSN model. Since there are two different

scaling techniques, two different Performance matrixes were defined. The first

performance matrix used was Ai,j, which contains the elements of 𝐻′𝑏
𝑚𝑚[𝑖] and with

 𝑀′𝑏
𝑚𝑚[𝑖] as an entry. The second performance matrix is Bi,j, which contains the elements

of 𝐻′𝑏
𝐿𝐺[𝑖] , with 𝑀′𝑏

𝐿𝐺[𝑖] as an entry (as seen in Table 6.5.)

Table 6.5. Two Performance Matrixes.

Aij M′b
mm[i] Bij M′b

LG[i]

HE′b
mm[i] Yes No HE′b

LG[i] Yes No

Yes a11 a12 Yes b11 b12

No a21 a22 No b21 b22

122

Before going further, several important terms for both Performance matrixes

explained in Table 6.5 need to be defined, and they are as follows:

True Positives: in the Aij matrix, the true positive case is the cell (a11) representing

the total number cases that are correctly estimated by the MCKSN model as Cognitive Skill

Dependencies. In other words, these are the total matches between the MCKSN model and

human model that were positive (𝐻′𝑏
𝑚𝑚[𝑖] = 𝑀𝑏

′𝑚𝑚[𝑖] = 1). Mathematically, it can be

calculated by using Equation 6.6:

In the Bij matrix, the true positive case is the cell b11 and the decision (in this case between

𝑀′𝑏
𝐿𝐺[𝑖] 𝑎𝑛𝑑 𝐻′𝑏

𝐿𝐺[𝑖], where (H'b
LG[i]=M'b

LG[i]=1). It can be calculated by using Equation

6.7:

False Negative: in the Aij matrix, the false negative case is the cell (a12)

representing the total number of cases that are incorrectly estimated by the MCKSN model

as non-Cognitive Skill Dependency. In other words, it was the sum of the mismatches

between both models, where the mismatches were positive (𝐻′𝑏
𝑚𝑚[𝑖] = 1 𝑎𝑛𝑑 𝑀′𝑏

𝑚𝑚[𝑖] =

0). Mathematically, it can be calculated by using Equation 6.8:

𝑎11 = ∑ 𝐻′𝑏
𝑚𝑚[𝑖]

𝑆

𝑖=1
∗ 𝑀′𝑏

𝑚𝑚[𝑖]
(6.6)

b11= ∑ (H'
b

LG[i]
S

i=1

*M'b
LG[i])

 (6.7)

𝑎12 = ∑ [𝐻′𝑏
𝑚𝑚[𝑖] − (𝐻′𝑏

𝑚𝑚[𝑖] ∗ 𝑀′𝑏
𝑚𝑚[𝑖])]

𝑆

𝑖=1

(6.8)

123

In the Bij matrix, the false negative case is the cell b12 representing the decision (in this case

between 𝑀𝑏
𝐿𝐺[𝑖] 𝑎𝑛𝑑 𝐻′𝑏

𝐿𝐺[𝑖] where 𝐻′𝑏
𝐿𝐺[𝑖] = 1 𝑎𝑛𝑑 𝑀𝑏

′𝐿𝐺[𝑖] = 0). It can be calculated

by using Equation 6.9:

False Positive: in the Aij matrix, the false negative case is the cell (a21) representing

the total number of cases that are incorrectly estimated by the MCKSN model as Cognitive

Skill Dependency (Also known as a "Type II error"). In other words, it was the sum of the

mismatches between both models, where the mismatches were negative (H′b
𝐿𝐺[i] =

0 and Mb
′LG[i] = 1). Mathematically, it can be calculated by using Equation 6.10:

In the Bij matrix, the false positive case is the cell b21, and the decision in this case is

between Mb
LG[i] and H′b

LG[i], where (𝐻′𝑏
𝐿𝐺[𝑖] = 0 𝑎𝑛𝑑 𝑀′𝑏

𝐿𝐺 = 1). It can be calculated by

using Equation 6.11:

True Negative: in the Aij matrix, the false negative case is the cell (a22) representing

the total number of cases that are correctly estimated by the MCKSN model as non-

Cognitive Skill Dependency. In other words, it was the sum of the matches between both

models where the matches were negative (𝑀′𝑏
𝑚𝑚[𝑖] = 𝐻′𝑏

𝑚𝑚[𝑖] = 0). Mathematically, it

can be calculated by using Equation 6.12:

𝑏12 = ∑ [𝐻′𝑏
𝐿𝐺[𝑖] − (𝐻′𝑏

𝐿𝐺[𝑖] ∗ 𝑀′𝑏
𝐿𝐺[𝑖])]

𝑆

𝑖=1

 (6.9)

a21= ∑ [M'b
mm[i]-(H'b

mm[i]*M'b
mm[i])]

S

i=1

 (6.10)

b21= ∑ [M'b
LG[i]-(H'b

LG[i]*M'b
LG[i])]

S

i=1

 (6.11)

124

In the Bij matrix, the true negative case is the cell b22, and the decision in this case is

between 𝑀′𝑏
𝐿𝐺[𝑖] 𝑎𝑛𝑑 𝐻′𝑏

𝐿𝐺[𝑖], where 𝑀′𝑏
𝐿𝐺[𝑖] = 𝐻′𝑏

𝐿𝐺[𝑖] = 0. It can be calculated by

using Equation 6.13:

Precision: this is a factor to measure how much of the MCKSN model’s guess was

correct (Grishman & Sundheim, 1996). Based on the first scaling technique, precision was

calculated as follows in Equation 6.14:

Based on the second scaling technique, precision was calculated as follows in Equation

6.15:

Recall: this is used as a performance metric when the MCKSN model predicts yes,

and it is actually correct (Grishman & Sundheim, 1996). Based on the first scaling

technique, the formula for calculating recall is given in Equation 6.16:

Based on the second scaling technique, recall is calculated as follows in Equation 6.18:

a22=N- ∑ [(H'b
mm[i]+M'b

mm[i])-(H'b
mm[i]*M'b

mm[i])]
S

i=1

 (6.12)

b22= S- ∑ [(H'b
LG[i]+M'b

LG[i])-(H'b
LG[i]*M'b

LG[i])]
s

i=1

 (6.13)

P =
a11

∑ ai1
2
i=1

 (6.14)

P' =
b11

∑ bi1
2
i=1

 (6.15)

R =
a1,1

∑ a1,j
2
j=1

 (6.16)

125

Accuracy: it is most commonly defined over all the classification errors that are

made (Powers, 2011); therefore, based on the first scaling technique denoted as D, it is

calculated as follows in Equation 6.19:

Based on the second scaling technique, an accuracy D' is calculated as follows in Equation

6.20:

F-measure: this is a measure that uses both the precision and recall when testing

accuracy. The calculation considers both P and R (Lewis, 1995). The F-measure score is

at its highest point when it equals 1, and at its lowest when it equals 0. Initially introduced

by van Rijsbergen(Van Rijsbergen, 1974), F-measures work as an evaluation criterion as

follows:

Based on the second scaling technique, the F'-measure is calculated as follows in Equation

6.22:

𝑅'=
b11

∑ b1j
2
j=1

 (6.18)

𝐷=
a11+a22

∑ ∑ aij
2
j=1

2
i=1

(6.19)

𝐷′ =
𝑏11 + 𝑏22

∑ ∑ 𝑏𝑖𝑗
2
𝑗=1

2
𝑖=1

(6.20)

F∙ Measure =
2

1
R

+
1
P

=2.
P.R

P+R

(6.21)

126

As a result of calculating the Performance matrix for Cognitive Skill Dependency

(Understanding) using both scaling techniques illustrated in table 6.6.

Table 6.6. Two Performance Matrixes for Cognitive Skill Dependency (Understanding).

Aij M′1
mm[i] Bij M′1

LG[i]

HE′1
mm[i] Yes No HE′1

LG[i] Yes No

Yes 261 64 Yes 336 2

No 8 127 No 68 119

Table 6.6 presents the eight instance values calculated from performance matrix of

the four entries that are presented in the table for both scaling techniques (MinMax scaling

and Log scaling) for the cognitive skill dependency (Understanding).

F'∙ Measure =
2

1
R'

+
1
P'

=2.
P'.R'

P'+R'

(6.22)

0

100

200

300

400

True Positives False Negative False Positive True Negative

N
u

m
b

er
 o

f
A

cc
u

ra
te

n
es

s

p
a

ra
m

et
er

s
fo

r
C

o
g

n
it

iv
e

S
k

il
l

D
ep

en
d

en
ci

es

(U
n

d
er

st
a

n
d

in
g

).

Accurateness Parameters

The Accurateness of the Inferred Cognitive Skill Dependency

(Understanding) with βm =0.61 and βH =0.60

MinMax Scaling Log Scaling

Figure 6.2. The Accurateness of the Inferred Cognitive Skill Dependencies (Understanding).

127

Figure 6.2 has been shown that the True Positive (TP) rate measures the fraction of

positive Cognitive Skill Dependencies that are correctly labeled as positive. The True

Negative (TN) rate measures the fraction of positive Cognitive Skill Dependencies that are

correctly labeled as negative. In the other hand, False Positive (FP) and False Negative

(FN) measures the fraction of cases that are misclassified of Cognitive Skill Dependencies.

It is clear that, TP and FN in both scaling techniques shows the highest values in the Figure.

It means that the MCKSN model is suitable for the research problem and makes well

behavior to estimate the Cognitive Skill Dependency (Understanding). Meanwhile, the

pattern of the misclassification rates in the False Positive (FP) and False Negative (FN)

were low. Overall, the higher the number of the accurateness parameters (TP and TN), the

more correct the estimation of Cognitive Skill Dependencies; the reverse occurred with

respect to incorrect classification.

Table 6.7. Two Performance Matrixes for Cognitive Skill Dependency (Applying).

Aij 𝑀′2
𝑚𝑚[𝑖] Bij 𝑀′2

𝐿𝐺[𝑖]

𝐻𝐸′2
𝑚𝑚[𝑖] Yes No 𝐻𝐸′2

𝐿𝐺[𝑖] Yes No

Yes 324 49 Yes 301 23

No 52 36 No 76 60

Table 6.7 presents the eight instance values calculated from the performance matrix

of the four entries presented in the table for both scaling techniques (MinMax scaling and

Log scaling) for the cognitive skill dependencies (Applying).

128

Figure 6.3. The Accurateness of the Inferred Cognitive Skill Dependencies (Applying).

Figure 6.3 has been shown the accurateness parameters used to gauge the

performance of the MCKSN model for Cognitive Skill Dependencies (Applying). The

Figure illustrated that True Positive (TP) and True Negative (TN) rates in both scaling

techniques shows the pick values in the Figure. while keeping the False Positive (FP) and

False Negative (FN) rates at an acceptable level. Clearly, the MCKSN model generates only

a small number of FP. The MCKSN model provides a meaningful estimation of the

Cognitive Skill Dependency (Applying).

Table 6.8. Two Performance Matrixes for Cognitive Skill Dependency (Analyzing-Evaluating).

Aij 𝑀′3
𝑚𝑚[𝑖] Bij 𝑀′3

𝐿𝐺[𝑖]

𝐻𝐸′3
𝑚𝑚[𝑖] Yes No 𝐻𝐸′3

𝐿𝐺[𝑖] Yes No

Yes 322 37 Yes 314 17

No 42 59 No 50 79

0

100

200

300

400

True Positives False Negative False Positive True Negative

N
u

m
b

er
 o

f
A

cc
u

ra
te

n
es

s

p
a

ra
m

et
er

s
fo

r
C

o
g

n
it

iv
e

S
k

il
l

D
ep

en
d

en
cy

 (
A

p
p

ly
in

g
).

Accurateness Parameters

The Accurateness of the Inferred Cognitive Skill Dependency (Applying)

with βm =0.50 and βH =0.56

MinMax Scaling Log Scaling

129

Table 6.8 presents the eight instance values calculated from the Performance matrix

of the four entries presented in the table for both scaling techniques (MinMax scaling and

Log scaling) for the cognitive skill dependencies (Analyzing-Evaluating).

Figure 6.4. The Accurateness of the Inferred Cognitive Skill Dependencies (Analyzing-Evaluating).

Figure 6.4 has been illustrated that the True Positive (TP) and True Negative (TN)

rates in both scaling techniques displays the highest values in the Figure. It means that the

MCKSN model is suitable for the proposed problem and makes well behavior to estimate

the Cognitive Skill Dependencies compared with a human subject. Meanwhile, the pattern

of the misclassification rates in the False Positive (FP) and False Negative (FN) were low.

Overall, the higher the number of the accurateness parameters (TP and TN), the more

correct the estimation of Cognitive Skill Dependency; the reverse occurred with respect to

incorrect classification.

0

100

200

300

400

True Positives False Negative False Positive True Negative

N
u

m
b

er
 o

f
A

cc
u

ra
te

n
es

s

p
a

ra
m

et
er

s
fo

r
C

o
g

n
it

iv
e

S
k

il
l

D
ep

e
n

d
en

cy
 (

A
n

a
ly

zi
n

g
 a

n
d

E
v

a
lu

a
ti

n
g

).

Accurateness Parameters

The Accurateness of the Inferred Cognitive Skill Dependency

(Analyzing and Evaluating) with βm =0.61 and βH =0.60

MinMax Scaling Log Scaling

130

Table 6.9. Two Performance Matrixes for Cognitive Skill Dependencies (Applying).

Aij 𝑀′2
𝑚𝑚[𝑖] Bij 𝑀′2

𝐿𝐺[𝑖]

HE′2
mm[i] Yes No HE′2

LG[i] Yes No

Yes 324 49 Yes 301 23

No 52 36 No 76 60

Table 6.9 presents the eight instance values calculated from the Performance matrix

of the four entries presented in the table for both scaling techniques (MinMax scaling and

Log scaling) for the cognitive skill dependencies (Applying).

Figure 6.5. The Accurateness of the Inferred Cognitive Skill Dependencies (Creating).

In Figure 6.5, it is clear that the True Negative (TN) rate is a significantly higher

than those of the other parameters, where the TP, FN, and FP are the lowest values.

Overall, the result shows different performances for Inferred Cognitive Skill Dependencies

0

100

200

300

400

True Positives False Negative False Positive True Negative

N
u

m
b

er
 o

f
A

cc
u

ra
te

n
es

s

p
a

ra
m

et
er

s
fo

r
C

o
g

n
it

iv
e

S
k

il
l

D
ep

en
d

en
cy

 (
C

re
a

ti
n

g
).

Accurateness Parameters

The Accurateness of the Inferred Cognitive Skill Dependency

(Creating) with βm =0.62 and βH =0.60

MinMax Scaling Log Scaling

131

(Creating). This skill level is the highest Bloom skill, so it is rigid to estimate the Cognitive

Skill Dependencies with high accuracy.

Overall, it is clear that the results show mostly similar behaviors for the TP, TN,

FP, and FN estimated by the MCKSN model. From the obtained results, it is important to

notice that the model behavior slightly differs from the inferring of Cognitive Skill

Dependency (Creating). This is affected in a different way by the sample size, which is

small compared to the others found in other Cognitive Skill Dependencies. To summarize,

the MCKSN model can be used to obtain an optimal inference of the Cognitive Skill

Dependencies, finding that the behavior of the model was very good. The analysis is

supported by experimental results, showing the potential and practical use of the MCKSN

model. There are other important properties and experiments to consider, making it

interesting to further study the proposed model.

It is important to decide the usefulness of the MCKSN model. It has been shown

that the task of assessing model performance is not trivial, and that there are many available

evaluation measures to do so. Many of the performance measures are in some way derived

from the Performance matrix, which enumerates the correct and incorrect predictions

produced by the model.

Table 6.10 shows the performance of the Cognitive Skill Dependencies

(Understanding), where all the measured values were obtained by the MCKSN model by

using two different scaling techniques. The MCKSN model was successful in obtaining a

Precision(P) of 97%, a Recall(R) of 66%, an accuracy (D)of 84%, and an F-measure of

132

78% for the MinMax scaling technique; and a Precision (P') of 84%, a Recall(R') of 84%,

an accuracy(D') of 81%, and an F'-measure of 84% for the Log scaling technique.

As can be seen in Figure 6.13, the overall performance of the MCKSN model for

Cognitive Skill Dependencies (Understanding) with respect to the evaluation parameters

displayed high accuracy using both scaling techniques.

Figure 6.6. Evaluation parameters for Cognitive Skill Dependencies (Understanding).

Table 6.6 shows the performance of the Cognitive Skill Dependencies (Applying),

where all the measured values were obtained by the MCKSN model using two different

scaling techniques. The MCKSN model was successful in obtaining a Precision(P) of 81%,

0

0.5

1

1.5

D D' P P' R R' F F'

E
v

a
lu

a
ti

o
n

P
a

ra
m

et
er

s
fo

r

C
o

g
n

it
iv

e
S

k
il

l
D

ep
en

d
en

cy

(U
n

d
er

st
a

n
d

in
g

)

Evaluation Parameters

Evaluation of Inferred Cognitive Skill Dependency

(Understanding)

MinMax Scaling Log Scaling

Table 6.10. Evaluation Parameters for Cognitive Skill Dependency

(Understanding)

Evaluation Parameters

P P' R R' D D' F. Measure F'. Measure

0.97 0.84

0.66 0.84 0.84 0.81 0.78 0.84

133

a Recall(R) of 100%, an accuracy(D) of 81%, and an F-measure of 86% for the MinMax

scaling technique; and a Precision (P') of 95%, a Recall(R') of 100%, an accuracy(D') of

95%, and an F'-measure of 97% for the Log scaling technique.

As can be seen in Figure 6.7, the overall performance of the MCKSN model for

Cognitive Skill Dependencies (Applying) with respect to performance evaluation

parameters showed a high rate accuracy using both scaling technique.

Figure 6.7. Evaluation parameters for Cognitive Skill Dependency (Applying).

Table 6.12 shows the performance of Cognitive Skill Dependencies (Analyzing-

Evaluating), where all the measured values were obtained by the MCKSN model using two

different scaling techniques. The MCKSN model was successful in obtaining a Precision(P)

0.7

0.75

0.8

0.85

0.9

0.95

D D' P P' R R' F F'

E
v

a
lu

a
ti

o
n

P
a

ra
m

et
er

s
fo

r

C
o

g
n

it
iv

e
S

k
il

l
D

ep
en

d
en

cy

(A
p

p
ly

in
g

)

Evaluation Parameters

Evaluation of Inferred Cognitive Skill Dependency

(Applying)

MinMax Scaling Log Scaling

Table 6.11. Evaluation Parameters for Cognitive Skill Dependency (Applying)

Evaluation Parameters

P P' R R' D D' F. Measure F'. Measure

0.81 0.95 1.0 1.0 0.81 0.95

0.86 0.97

134

of 88%, a Recall (R) of 88%, an accuracy(D) of 83%, and an F-measure of 89% for the

MinMax scaling technique; and a Precision(P') of 95%, a Recall(R') of 95%, an

accuracy(D') of 85%, and an F-measure of 95% for the Log scaling technique.

As can be seen in Figure 6.8, the overall performance of the MCKSN model for

Cognitive Skill Dependency (Analyzing-Evaluating) with respect to performance

evaluation parameters improved with the Log scaling technique.

Figure 6.8. Evaluation parameters for Cognitive Skill Dependencies (Analyzing-Evaluating).

Table 6.13 shows the performance of the Cognitive Skill Dependencies

(Analyzing-Evaluating). where all the measured values were obtained by the MCKSN

model using two different scaling techniques. The MCKSN model was successful in

0.75

0.8

0.85

0.9

0.95

1

D D' P P' R R' F F'

E
v

a
lu

a
ti

o
n

P
a

ra
m

et
er

s
fo

r

C
o

g
n

it
iv

e
S

k
il

l
D

ep
en

d
en

cy

(A
n

a
ly

zi
n

g
 a

n
d

 E
v

a
lu

a
ti

n
g

)

Evaluation Parameters

Evaluation of Inferred Cognitive Skill Dependency

(Analyzing-Evaluating)

MinMax Scaling Log Scaling

Table 6.12. Evaluation Parameters for Cognitive Skill Dependency (Analyzing-

Evaluating)

Evaluation Parameters

P P' R R' D D' F. Measure F'. Measure

0.88 0.95 0.88 0.95 0.83 0.85

0.89 0.95

135

obtaining a Precision(P) of 1%, a Recall(R) of 44%, an accuracy(D) of 88%, and F-

measure of 17% for the MinMax scaling technique; and Precision (P') of 34%, Recall (R')

of 34%, an accuracy(D') of 81%, and F'-measure of 34% for the Log scaling technique.

As can be seen in Figure 6.9, the overall performance of the MCKSN model for

inferring Cognitive Skill Dependency (Creating) with respect to performance evaluation

parameters

Figure 6.9. Evaluation parameters for Cognitive Skill Dependencies (Creating).

As illustrated in Figure 6.10, the accuracy rate for all the inferred Cognitive Skill

Dependencies were promising - 84% ,78%,83%, and 88% for Understanding, Applying,

Analyzing-Evaluating, and Creating, respectively.

0

0.2

0.4

0.6

0.8

1

D D' P P' R R' F F'

E
v

a
lu

a
ti

o
n

P
a

ra
m

et
er

s
fo

r

C
o

g
n

it
iv

e
S

k
il

l
D

ep
en

d
en

cy

(C
re

a
ti

n
g

)

Evaluation Parameters

Evaluation of Inferred Cognitive Skill Dependency

(Creating)

MinMax Scaling Log Scaling

Table 6.13. Evaluation Parameters for Cognitive Skill Dependency (Creating)

Evaluation Parameters

P P' R R' D D' F. Measure F'. Measure

0. 1 0.34 0.44 0.34 0.88 0.81 0.17 0.34

136

Figure 6.10. The Accuracy Rate for all the Inferred Cognitive Skill Dependencies.

6.7 Margin of Errors

Throughout this dissertation, the probability that the results of MCKSN model are

significant means that the obtained results were accurate. Showing a high confidence level

means that a very small probability of the MCKSN results happened by chance. The

confidence level ranged from 0% to 100%. If the confidence level of the obtained results

is zero, it means that there is no faith at all in getting the same results if the human

experiments were to be repeated. If the confidence levels are less than 100, it means that

there is no doubt at all that if the experiment were repeated that it would get the same

results. The confidence level value (CL) is called the Wilson score interval (Gilbert,

1987)The values of the CL are provided from statistics, and common values used are:

(90%, 95%, 98%, and 99%).

0.72
0.74
0.76
0.78

0.8
0.82
0.84
0.86
0.88

D D' D D' D D' D D'

N
u
m

b
er

 o
f

th
e

A
cc

u
ra

cy
 R

at
e

The Accuacy

Thhe Accuracy Rate for All Inferred Cognitive Skill

Dependencies

MinMax Scaling Log Scaling

https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval#Wilson_score_interval

137

In MCKSN model experiments, the confidence level used to calculate the margin

of errors was 95%. The Margin of Errors (ME) is the probability of any type of errors in

the MCKSN model results. Knowing the margin of error for the result helps to estimate

how close the MCKSN results are to the truth, based on the Human Evaluation.

The formula to calculate ME used in this dissertation was Z times the Standard Error

as in 6.23.

Where:

Z: z-score is the value that meets the CL = 95% (1.96 in the z-table). The z-table is

a statistical table allowing to interpret the results marked in that table. It can tell what

percentage is under the curve at any particular point (Brownlee, 1965)..

SE: is the standard error calculation that can be done by the mathematical formula

6.24:

Where:

N: is the sample size, and 𝑀𝑏
𝑚𝑚[𝑖]𝑒 is an MCKSN error. It is calculated as in

Equation 6.25.

ME=Z x SE (6.23)

𝑆𝐸 = √
𝑀′𝑏

𝑚𝑚[𝑖]𝑒(𝑀′𝑏
𝑚𝑚[𝑖]𝑒 − 1)

𝑁

 (6.24)

𝑀𝑏
𝑚𝑚[𝑖]𝑒 =

𝑎22

𝑁
 (6.25)

http://ncalculators.com/statistics/standard-error-calculator.htm

138

Where:

a22: is an incorrect prediction in both the MCKSN model 𝑀𝑏
′𝑚𝑚[𝑖] and the human results

H′b
mm[i]. and N: is the total number of all the inferred Cognitive Skill Dependencies(CSD).

By applying the formula in 6.23, the ME for each CSD level is as follows:

For Cognitive Skill Dependency (Understanding), ME was equal to

0.0356290588537. By turning it to a percentage, the margin of error was 3.58%, with a

confidence level of 95%. This means that there is a 95% chance that the MCKSN result for

Cognitive Skill Dependency (Understanding), did NOT happen by accident. It can also

mean that there is a probability of 3.5% that the Cognitive Skill Dependency

(Understanding), using the MCKSN model were incorrect.

For Cognitive Skill Dependency (Applying), ME was equal to 0.0357876652214.

By turning it to a percentage, the margin of error was 3.56%, with a confidence level of

95%. This means that there is a 95% chance that the MCKSN result for Cognitive Skill

Dependency (Applying) did NOT happen by accident. It can also mean there is a

probability of 3.58% that the Cognitive Skill Dependency (Applying) using the MCKSN

model were misinterpreted.

For Cognitive Skill Dependency (Analyzing-Evaluating), ME was equal to

0.037829206789. By turning it to a percentage, the margin of error was 3.78%, with a

confidence level of 95%. This means that there is a 95% chance that the MCKSN result for

a22 = N − ∑ [(H′b
mm[i] + M′b

mm[i]) − (H′b
mm[i] ∗ M′b

mm[i])]
N

i=1

139

Cognitive Skill Dependency (Analyzing-Evaluating) did NOT happen by accident. It can

also mean there is a probability of 3.78% that the Cognitive Skill Dependency (Analyzing-

Evaluating) using the MCKSN model were misinterpreted.

For Cognitive Skill Dependency (Creating), ME was equal to 0.0433301771194.

By turning it to a percentage, the margin of error was 4.33%, with a confidence level of

95%. This means that there is a 95% chance that the MCKSN result for Cognitive Skill

Dependency (Creating) did NOT happen by accident. It can also mean there is a probability

of 4.33% that the Cognitive Skill Dependency (Creating)using the MCKSN model were

misinterpreted.

Table 6.14. Margin of Error and Confidence Level for CSD’s .

Cognitive Skill Dependencies Margin of Errors Confidence Level

Understanding 3.56% 95%

Applying 3.58% 95%

Analyzing-Evaluating 3.78% 95%

Creating 4.33% 95%

6.8 Summary and Discussion

In this chapter, we came full circle by presenting the results of the proposed model.

The material introduced gradually in the previous chapters was here summarized in a

meaningful way, producing a clear picture of the critical experiments of this dissertation.

The obtained results of the model were presented in detail. In order to measure the

reliability of the proposed model the results were compared with human evaluation using

a survey. Step by step explanation of the human subject procedure was presented.

140

Additionally, an evaluation measures that were used to evaluate the efficiency of the

presented model. The model measured the quantitative inference and probability

estimation of the inferred Cognitive Skill Dependencies facts. Finally, the analysis of the

experiment was displayed.

141

 CONCLUSION AND FUTURE WORK

7.1 Conclusion

In computer sciences curriculum instructors usually focuses on which concepts to

teach and when, not on how. An interesting angle to rank the learning materials by level of

difficulty in terms of inferring the Cognitive Skill Dependencies. This chapter recapitulate

what has come out of our work. The dissertation developed a novel meta learning

recommended model to classify the domain specific concepts based on their Cognitive

Skill Dependencies. The engine of the model is the third phase, which is inferring

Cognitive Skill Dependencies in the learning region. The problem of inferring Cognitive

Skill Dependencies was explored, and a sophisticated technique was implemented to access

high accuracy and efficiency. Additionally, many of the sub tasks have been solved to reach

the optimal result of inferring Cognitive Skill Dependencies.

We recommended to use the initial version of our model to introduce varity of

options starting from measuring the knowledge in a textbook, which is affect both the

quality of the knowledge acquired and the time needed to learn this knowledge.

Furthermore, using FOL as a fundamental to construct the SIR, which are used for inferring

Cognitive Skill Dependencies using MCKSN model. Based on the results and the human

evaluation our model introduced accurate result where the topic is still open research. Some

interesting questions will be addressed as a future work.

142

The result of this dissertation added a novel parameter, which is using Cognitive

Skill Dependencies to improve knowledge quality for the learner’s by maximizing the

learning benefits with minimum efforts for the learner.

7.2 MCKSN Model Application

The model will serve the following application:

• Extracting teaching plan for instructors based on Cognitive Skill

Dependencies between concepts.

• Inferring the learning objectives of a course based on Cognitive Skill

Dependencies.

• Introducing a learning map for CS learners.

• Generating a summary template from the learning materials based on the

most discussion topics in the textbook.

7.3 Limitations of the MCKSN Model

Here the limitations of the current model are presented. These limitations are not

fundamental to context sensitive moralization; The extensions addressed as future work

• The experiment setup should be created by domain experts (a large group

of professors). The access for the domain experts was not available in the

current work.

• The participants in this experiment had various grade averages (A, B, C, and

D). In other words, all grade levels were included b in this experiment

143

because of the IRB limitation of the sample size used in the human model.

Also, if the sample size were smaller, then the possibility that participants

could more easily be identified would also increase.

• In these experiments simple Skill Inference Rules (SIR) were used. The SIR

set can extend to include more complex patterns.

• The automatic model needed to be presented as an online tool in website to

serve the learner and instructors.

• More learning sources needed to be tested to see the behavior of our model.

• The domain space only CS domain space hopefully other domains be tested

as well.

• Only English Language is used in the model.

7.4 Future work

There are several interesting and promising directions in which this work could be

extended.

• Do a human experiment which is included only students with high level

grade with specific GPA level.

• Do an experiment created by a large expert in Algorithm area.

• More complex Skill Inference Rules (SIR) should be generated to be tested

by the proposed model.

• Using the proposed model to build an online Computer Science Courses.

144

• Using the proposed model to create exam questions based on the Cognitive

Skill Dependencies levels.

• Using the model to investigate different domain for example analyzing

health-records or analyzing social network.

• Even though there exist many applications in which a Singular Value

Decomposition (SVD) is useful, there are a few drawbacks to using the SVD.

For example, the choice for the number of dimensions k to use can be a

crucial aspect. In the dissertation, two dimensions were used. Using too

many dimensions will add unnecessary noise to the result. The

dimensionality reduction needs deeper analysis.

• It is interesting if it were possible to modify the singular value

decomposition SVD.

• The model could be used to mimic human learning using psychomotor

Bloom domain by building a reliable picture of a student’s relevant

cognitive states during learning.

145

APPENDIX A

This appendix shows the experiment result for MCKSN for the inferred Cognitive Skill

Dependencies with different threshold βm values.

Figure A. 2. a Biredview of the inferred Cognitive Skill Dependencies (Understanding) using MCKSN

probability Model at threshold βm =65%.

Figure A. 1. a Biredview of the inferred Cognitive Skill Dependencies (Understanding)
using MCKSN probability Model at threshold βm =50%.

146

Figure A. 3. a Biredview of the inferred Cognitive Skill Dependencies (Understanding) using MCKSN

probability Model at threshold βm =75%.

Figure A. 4. a Biredview of the inferred Cognitive Skill Dependencies (Understanding) using MCKSN
probability Model at threshold βm =85%.

147

Figure A. 6. a Biredview of the inferred Cognitive Skill Dependencies (Analyzing) using MCKSN
probability Model at threshold βm =65%.

Figure A. 5. a Biredview of the inferred Cognitive Skill Dependencies (Analyzing) using
MCKSN probability Model at threshold βm =50%.

148

Figure A. 7. a Biredview of the inferred Cognitive Skill Dependencies (Analyzing) using MCKSN

probability Model at threshold βm =75%.

Figure A. 8. a Biredview of the inferred Cognitive Skill Dependencies (Analyzing) using MCKSN
probability Model at threshold βm =85%.

149

Figure A. 9. a Biredview of the inferred Cognitive Skill Dependencies (Applying) using MCKSN probability
Model at threshold βm =50%.

Figure A. 10. a Biredview of the inferred Cognitive Skill Dependencies (Applying) using MCKSN
probability Model at threshold βm =65%.

150

Figure A. 11. a Biredview of the inferred Cognitive Skill Dependencies (Applying) using MCKSN
probability Model at threshold βm =75%.

Figure A. 12. a Biredview of the inferred Cognitive Skill Dependencies (Applying) using MCKSN

probability Model at threshold βm =85%.

151

Figure A. 13. a Biredview of the inferred Cognitive Skill Dependencies (Creating) using MCKSN
probability Model at threshold βm =50%.

Figure A. 14. a Biredview of the inferred Cognitive Skill Dependencies (Creating) using MCKSN
probability Model at threshold βm =65%.

152

Figure A. 15. . a Biredview of the inferred Cognitive Skill Dependencies (Creating) using MCKSN
probability Model at threshold βm =75%.

Figure A. 16. a Biredview of the inferred Cognitive Skill Dependencies (Creating) using MCKSN

probability Model at threshold βm =85%.

153

APPENDIX B

AUTHORIZATION OF STUDY BY INSTITUTIONAL REVIEW BOARD

Date: This application was approved on October 31, 2016.

Subject: IRB Study Approved

The Kent State University Institutional Review Board has reviewed and approved your

Application for Approval to Use Human Research Participants as Level I/Exempt from

Annual review research. Your research project involves minimal risk to human subjects

and meets the criteria for the following category of exemption under federal regulations.

154

APPENDIX C

This appendix shows the Cognitive Class for some of the CS-Verbs.

CS-Verb Cognitive Class

Demonstrate BL1, BL2

Analyze BL1, BL2

Show BL1, BL2

Translate BL1, BL2

Identify BL1, BL2, BL3

Illustrate BL1, BL2, BL3

Select BL1, BL2, BL3, BL4

Develop BL1, BL2, BL4

Characterize BL1, BL3

List BL1, BL3

Compare BL1, BL3, BL4

Estimate BL1, BL3, BL4

Interpret BL1, BL3, BL4

Discuss BL1, BL4

Summarize BL1, BL4

Determinant BL2, BL3

Discover BL2, BL3

Examine BL2, BL3

Investigate BL2, BL3

Choose BL2, BL3, BL4

Relate BL2, BL3, BL4

Build BL2, BL4

Change BL2, BL4

Construct BL2, BL4

Organize BL2, BL4

Produce BL2, BL4

Solve BL2, BL4

Evaluate BL3, BL4

Measure BL3, BL4

155

APPENDIX D

13 research papers have been published on the above discussed contributions,

where 8 of them are specific to the proposed model in this dissertation. The conferences

are peer reviewed, and the papers are as follows:

1. Conceptualize the Domain Knowledge Space in the Light of Cognitive Skills. F. Nafa, J.I

Khan. Proceedings of the 7th International Conference on Computer Supported Education

(CSEDU) 2015.

2. An Iterative Method for Enhancing Text Comprehension by Automatic Reading of

References. Babour, F. Nafa, and J. I. Khan. Fourth International Conference on Intelligent

Systems and Applications (INTELLI), 2015

3. Connecting the Dots in a Concept Space by Iterative Reading of FreeText References with

Wordnet. Babour, F. Nafa, and J. I. Khan. IEEE/WIC/ACM International Conference on

Web Intelligence (WI) 2015

4. Automatic Concepts’ Classification Based on Bloom’s Taxonomy Using Text Analysis

and the Naïve Bayes Classifier Method. F. Nafa., S. Othman, and J.I. Khan. International

Conference on Computer Supported Education (CSEDU) 2016

5. Mining Cognitive Skills Levels of Knowledge Units in Text Using Graph Triangularity

Mining. F. Nafa, S. Othman, J.I. Khan, and A. Babour. IEEE/WIC/ACM International

Conference on Web Intelligence (WI) 2016

6. Discovering Bloom Taxonomic Relationships between Knowledge Units Using Semantic

Graph Triangularity Mining. F. Nafa, J.I. Khan, S. Othman, and A. Babour. International

Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery

(CyberC) 2016

7. Semantic Graph Transitivity for Discovering Bloom Taxonomic Relationships between

Knowledge Units in a Text. F. Nafa, S. Othman, J.I., Khan, and A. Babour. Proceedings

156

of the Fifth International Conference on Intelligent Systems and Applications (INTELLI)

2016

8. Extending Cognitive Skill Classification of Common Verbs in the Domain of Computer

Science Algorithms Knowledge Units. F. Nafa, S. Othman, and J.I. Khan. Proceedings of

the 9th International Conference on Computer Supported Education (CSEDU) 2017.

157

REFERENCES

Adorni, G., & Zock, M. (1996). Trends in Natural Language Generation-An Artificial Intelligence

Perspective: Fourth European Workshop, EWNLG'93, Pisa, Italy, April 28-30, 1993

Selected Papers (Vol. 1036): Springer Science & Business Media.

Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P.

R., . . . Wittrock, M. C. (2001). A taxonomy for learning, teaching, and assessing: A

revision of Bloom’s taxonomy of educational objectives, abridged edition. White Plains,

NY: Longman.

Ankan, A., & Panda, A. (2015). pgmpy: Probabilistic graphical models using python. Paper

presented at the Proceedings of the 14th Python in Science Conference (SCIPY 2015).

Baker, C. F., Fillmore, C. J., & Lowe, J. B. (1998). The berkeley framenet project. Paper presented

at the Proceedings of the 17th international conference on Computational linguistics-

Volume 1.

Biegler, L. T. (2010). Nonlinear programming: concepts, algorithms, and applications to chemical

processes (Vol. 10): Siam.

Bloom, B. S. (1956). Taxonomy of educational objectives. Vol. 1: Cognitive domain. New York:

McKay, 20-24.

Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1956). Taxonomy of

educational objetives: the classification of educational goals: handbook I: cognitive

domain. Retrieved from

BLOOM’S, T. M. E. (1965). Bloom’s taxonomy of educational objectives: Longman.

Bourque, P., Buglione, L., Abran, A., & April, A. (2003). Bloom? s Taxonomy Levels for Three

Software Engineer Profiles. Paper presented at the null.

158

Brownlee, K. A. (1965). Statistical theory and methodology in science and engineering (Vol. 150):

Wiley New York.

Buck, D., & Stucki, D. J. (2001). JKarelRobot: a case study in supporting levels of cognitive

development in the computer science curriculum. ACM SIGCSE Bulletin, 33(1), 16-20.

Casella, G., & George, E. I. (1992). Explaining the Gibbs sampler. The American Statistician,

46(3), 167-174.

Cheng, G., Wan, Y., Buckles, B. P., & Huang, Y. (2014). An introduction to Markov logic networks

and application in video activity analysis. Paper presented at the Computing,

Communication and Networking Technologies (ICCCNT), 2014 International Conference

on.

Clifford, P. (1990). Markov random fields in statistics. Disorder in physical systems: A volume in

honour of John M. Hammersley, 19.

Crossland, Z. (2010). Materiality and embodiment The Oxford Handbook of Material Culture

Studies.

Crowe, A., Dirks, C., & Wenderoth, M. P. (2008). Biology in bloom: implementing Bloom's

taxonomy to enhance student learning in biology. CBE—Life Sciences Education, 7(4),

368-381.

Dang, H. T. (2004). Investigations into the role of lexical semantics in word sense disambiguation.

Davis, J., & Goadrich, M. (2006). The relationship between Precision-Recall and ROC curves.

Paper presented at the Proceedings of the 23rd international conference on Machine

learning.

de Oliveira, P. C. (2009). Probabilistic reasoning in the semantic web using markov logic. Master's

Thesis, University of Coimbra.

159

Doran, M. V., & Langan, D. D. (1995). A cognitive-based approach to introductory computer

science courses: lesson learned. Paper presented at the ACM SIGCSE Bulletin.

Dowty, D. R. (2012). Word meaning and Montague grammar: The semantics of verbs and times in

generative semantics and in Montague's PTQ (Vol. 7): Springer Science & Business

Media.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861-874.

Fitting, M. (2012). First-order logic and automated theorem proving: Springer Science & Business

Media.

Foltz, P. W., Kintsch, W., & Landauer, T. K. (1998). The measurement of textual coherence with

latent semantic analysis. Discourse processes, 25(2-3), 285-307.

Friedman, N. (2004). Inferring cellular networks using probabilistic graphical models. Science,

303(5659), 799-805.

Gad-Elrab, M. H., Stepanova, D., Urbani, J., & Weikum, G. (2016). Exception-enriched rule

learning from knowledge graphs. Paper presented at the International Semantic Web

Conference.

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian

restoration of images. IEEE Transactions on pattern analysis and machine intelligence(6),

721-741.

Getoor, L., & Taskar, B. (2007). Introduction to statistical relational learning (Vol. 1): MIT press

Cambridge.

Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring: John Wiley &

Sons.

Golub, G. H., & Reinsch, C. (1970). Singular value decomposition and least squares solutions.

Numerische mathematik, 14(5), 403-420.

160

Grishman, R., & Sundheim, B. (1996). Message understanding conference-6: A brief history. Paper

presented at the COLING 1996 Volume 1: The 16th International Conference on

Computational Linguistics.

Guo, S., Wang, Q., Wang, L., Wang, B., & Guo, L. (2016). Jointly embedding knowledge graphs

and logical rules. Paper presented at the Proceedings of the 2016 Conference on Empirical

Methods in Natural Language Processing.

Hasdorff, L. (1976). Gradient optimization and nonlinear control.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their

applications.

Hernán-Losada, I., Pareja-Flores, C., & Velázquez-Iturbide, J. Á. (2008). Testing-Based Automatic

Grading: a proposal from Bloom's taxonomy. Paper presented at the Advanced Learning

Technologies, 2008. ICALT'08. Eighth IEEE International Conference on.

Ivanova, O. (2017). Applied Concepts of Probabilistic Programming. Prozesse, Technologie,

Anwendungen, Systeme und Management, 161.

Jahn, J. (2007). Introduction to the theory of nonlinear optimization: Springer Science & Business

Media.

Jiang, S., Pang, G., Wu, M., & Kuang, L. (2012). An improved K-nearest-neighbor algorithm for

text categorization. Expert Systems with Applications, 39(1), 1503-1509.

Johnson, C. G., & Fuller, U. (2006). Is Bloom's taxonomy appropriate for computer science? Paper

presented at the Proceedings of the 6th Baltic Sea conference on Computing education

research: Koli Calling 2006.

Kemeny, J. G., Snell, J. L., & Knapp, A. W. (2012). Denumerable Markov chains: with a chapter

of Markov random fields by David Griffeath (Vol. 40): Springer Science & Business

Media.

161

Khairuddin, N. N., & Hashim, K. (2008). Application of Bloom’s taxonomy in software engineering

assessments. Paper presented at the Proceedings of the 8th WSEAS International

Conference on Applied Computer Science.

Khan, J., & Hardas, M. (2007). A technique for representing course knowledge using ontologies

and assessing test problems Advances in Intelligent Web Mastering (pp. 174-179):

Springer.

Kipper, K., Dang, H. T., & Palmer, M. (2000). Class-based construction of a verb lexicon.

AAAI/IAAI, 691, 696.

Kipper, K., Korhonen, A., Ryant, N., & Palmer, M. (2006). Extending VerbNet with novel verb

classes. Paper presented at the Proceedings of LREC.

Klavans, J., & Kan, M.-Y. (1998). Role of verbs in document analysis. Paper presented at the

Proceedings of the 17th international conference on Computational linguistics-Volume 1.

Kolb, D. A. (2014). Experiential learning: Experience as the source of learning and development:

FT press.

Koller, D., & Friedman, N. (2009). Probabilistic graphical models: principles and techniques: MIT

press.

Lewis, D. D. (1995). Evaluating and optimizing autonomous text classification systems. Paper

presented at the Proceedings of the 18th annual international ACM SIGIR conference on

Research and development in information retrieval.

Li, S. Z. (2009). Markov random field modeling in image analysis: Springer Science & Business

Media.

Lister, R. (2000). On blooming first year programming, and its blooming assessment. Paper

presented at the Proceedings of the Australasian conference on Computing education.

162

Lister, R., & Leaney, J. (2003). Introductory programming, criterion-referencing, and bloom. ACM

SIGCSE Bulletin, 35(1), 143-147.

Lowd, D., & Domingos, P. (2007). Efficient weight learning for Markov logic networks. Paper

presented at the European Conference on Principles of Data Mining and Knowledge

Discovery.

Lyons, J. (1968). Introduction to theoretical linguistics: Cambridge university press.

Lyons, J. (1995). Linguistic semantics: An introduction: Cambridge University Press.

Machanick, P. (2000). Experience of applying Bloom’s Taxonomy in three courses. Paper presented

at the Proc. Southern African Computer Lecturers’ Association Conference.

Makkai, M., & Reyes, G. E. (2006). First order categorical logic: model-theoretical methods in

the theory of topoi and related categories (Vol. 611): Springer.

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., & McClosky, D. (2014). The Stanford

CoreNLP natural language processing toolkit. Paper presented at the Proceedings of 52nd

annual meeting of the association for computational linguistics: system demonstrations.

Manning, C. D., Manning, C. D., & Schütze, H. (1999). Foundations of statistical natural language

processing: MIT press.

Margaritis, D., & Thrun, S. (2000). Bayesian network induction via local neighborhoods. Paper

presented at the Advances in neural information processing systems.

Mario&Matr. (2014). Introduction to Markov Random Fields and Markov Logic Networks.

McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica: Biochemia

medica, 22(3), 276-282.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation

of state calculations by fast computing machines. J. Chem. Phys, 21(6), 1087-1092.

163

Miller, G. (1998). WordNet: An electronic lexical database: MIT press.

Miller, K. J. (1998). Modifiers in wordnet. WordNet: an electronic lexical database, 47-67.

Mishra, M., Huan, J., Bleik, S., & Song, M. (2012). Biomedical text categorization with concept

graph representations using a controlled vocabulary. Paper presented at the Proceedings

of the 11th International Workshop on Data Mining in Bioinformatics.

Mitra, P., Wiederhold, G., & Kersten, M. (2000). A graph-oriented model for articulation of

ontology interdependencies. Paper presented at the International Conference on Extending

Database Technology.

Muller, A. C., & Guido, S. (2017). Introduction to machine learning with Python: a guide for data

scientists: O'Reilly Media.

Müller, A. C., & Guido, S. (2016). Introduction to machine learning with Python: a guide for data

scientists: " O'Reilly Media, Inc.".

Nafa, F., & Khan, J. (2015). Conceptualize the Domain Knowledge Space in the Light of Cognitive

Skills. Paper presented at the Proceedings of the 7th International Conference on Computer

Supported Education-Volume 1.

Nafa, F., Khan, J. I., & Othman, S. (2017). Extending Cognitive Skill Classification of Common

Verbs in the Domain of Computer Science for Algorithms Knowledge Units. Paper

presented at the CSEDU (1).

Nafa, F., Khan, J. I., Othman, S., & Babour, A. (2016a). Discovering Bloom Taxonomic

Relationships between Knowledge Units Using Semantic Graph Triangularity Mining.

Paper presented at the 2016 International Conference on Cyber-Enabled Distributed

Computing and Knowledge Discovery (CyberC).

Nafa, F., Khan, J. I., Othman, S., & Babour, A. (2016b). Mining Cognitive Skills Levels of

Knowledge Units in Text Using Graph Tringluarity Mining. Paper presented at the Web

Intelligence Workshops (WIW), IEEE/WIC/ACM International Conference on.

164

Nafa, F., Khan, J. I., Othman, S., & Babour, A. (2016c). Semantic Graph Transitivity for

Discovering Bloom Taxonomic Relationships between Knowledge Units in a Text.

INTELLI 2016, 134.

Nevid, J. S., & McClelland, N. (2013). Using Action Verbs as Learning Outcomes: Applying

Bloom's Taxonomy in Measuring Instructional Objectives in Introductory Psychology.

Journal of Education and Training Studies, 1(2), 19-24.

Oliver, D., & Dobele, T. (2007). First year courses in IT: A bloom rating. Journal of Information

Technology Education: Research, 6, 347-360.

Parham, J., Chinn, D., & Stevenson, D. (2009). Using Bloom's taxonomy to code verbal protocols

of students solving a data structure problem. Paper presented at the Proceedings of the 47th

Annual Southeast Regional Conference.

Pearl, J. (2014). Probabilistic reasoning in intelligent systems: networks of plausible inference:

Elsevier.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Dubourg, V.

(2011). Scikit-learn: Machine learning in Python. Journal of machine learning research,

12(Oct), 2825-2830.

Powers, D. M. (2011). Evaluation: from precision, recall and F-measure to ROC, informedness,

markedness and correlation.

Reigeluth, C. M. (2013). Instructional design theories and models: An overview of their current

status: Routledge.

Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine learning, 62(1-2), 107-

136.

Robert, C. (2014). Machine learning, a probabilistic perspective: Taylor & Francis.

165

Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach: Malaysia; Pearson

Education Limited.

Schuler, K. K. (2005). VerbNet: A broad-coverage, comprehensive verb lexicon.

Schulte, C., & Bennedsen, J. (2006). What do teachers teach in introductory programming? Paper

presented at the Proceedings of the second international workshop on Computing education

research.

Scott, T. (2003). Bloom's taxonomy applied to testing in computer science classes. Journal of

Computing Sciences in Colleges, 19(1), 267-274.

Shi, L., & Mihalcea, R. (2005). Putting pieces together: Combining FrameNet, VerbNet and

WordNet for robust semantic parsing. Paper presented at the International conference on

intelligent text processing and computational linguistics.

Smullyan, R. R. (2012). First-order logic (Vol. 43): Springer Science & Business Media.

Sowa, J. F. (2000). Knowledge representation: logical, philosophical, and computational

foundations (Vol. 13): Brooks/Cole Pacific Grove, CA.

Starr, C. W., Manaris, B., & Stalvey, R. H. (2008). Bloom's taxonomy revisited: specifying

assessable learning objectives in computer science. Paper presented at the ACM SIGCSE

Bulletin.

Sutton, C., & McCallum, A. (2006). An introduction to conditional random fields for relational

learning (Vol. 2): Introduction to statistical relational learning. MIT Press.

Swier, R. S., & Stevenson, S. (2004). Unsupervised Semantic Role Labellin. Paper presented at the

Proceedings of the 2004 Conference on Empirical Methods in Natural Language

Processing.

166

Thompson, E., Luxton-Reilly, A., Whalley, J. L., Hu, M., & Robbins, P. (2008). Bloom's taxonomy

for CS assessment. Paper presented at the Proceedings of the tenth conference on

Australasian computing education-Volume 78.

Thompson, T. (2008). Mathematics teachers’ interpretation of higher-order thinking in Bloom’s

taxonomy. International electronic journal of mathematics education, 3(2), 96-109.

Tur, G., Hakkani-Tür, D., & Schapire, R. E. (2005). Combining active and semi-supervised

learning for spoken language understanding. Speech Communication, 45(2), 171-186.

Urbanek, S., & Theus, M. (2008). Interactive graphics for data analysis: principles and examples:

Chapman and Hall/CRC.

Valle, K., & Ozturk, P. (2011). Graph-based representations for text classification. Paper presented

at the India-Norway Workshop on Web Concepts and Technologies, Trondheim, Norway.

Van Rijsbergen, C. J. (1974). Foundation of evaluation. Journal of Documentation, 30(4), 365-373.

Wall, M. E., Rechtsteiner, A., & Rocha, L. M. (2003). Singular value decomposition and principal

component analysis A practical approach to microarray data analysis (pp. 91-109):

Springer.

Walter, C. (2004). Transfer of reading comprehension skills to L2 is linked to mental

representations of text and to L2 working memory. Applied Linguistics, 25(3), 315-339.

Wasserman, S., & Pattison, P. (1996). Logit models and logistic regressions for social networks: I.

An introduction to Markov graphs andp. Psychometrika, 61(3), 401-425.

Winkler, G. (2012). Image analysis, random fields and Markov chain Monte Carlo methods: a

mathematical introduction (Vol. 27): Springer Science & Business Media.

