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  INTRODUCTION 

1.1 Introduction 

This chapter reviews the key features of this dissertation and provides the reader 

with the necessary background knowledge to grasp the potential impact and significance 

of the dissertation as a whole. The contents are broadly sketched out to give a good 

overview of what will be accomplished later on in this dissertation, with a particular focus 

on motivation, dissertation objectives, problem description, proposed solution, assumption, 

application of the proposed model and dissertation structure. 

1.2 Motivation 

Cognitive psychology has observed that there are two primary mechanisms of the 

mental process: knowledge structure, and the process of using knowledge. The 

organization of knowledge plays an essential role in both understandings the text and to 

facilitate learning. Merrill in 1987 recommended “The purpose of instruction is to promote 

that active cognitive processing that best enables the learner to use the most appropriate 

cognitive structure in a way consistent with the desired learned performance." (Reigeluth, 

2013) 

Organization of knowledge matters in learning any topic. Each learning regimen is 

written in a certain way to present each knowledge unit in specific order. This is done to 

maximize the understanding of the knowledge contents. In fact, some textbooks unable to 
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accomplish this with high accuracy are often judged as incompetent. Although they may 

contain all the needed concepts which interact the reader to pick the textbook to read, they 

may not be well-written, making the concepts more difficult to comprehend. So, the 

organization and the presentation of the knowledge units in the textbook are more 

necessary than the concepts themselves. For example, consider a group of first graders 

getting their first mathematics lesson. If the instructor chooses to start with “fractions” 

without teaching the subtraction, addition, and the multiplication, the students will be 

unable to understand the lesson itself. So, instructional organization is important in such a 

manner to sequentially build up the knowledge base for a student for further instruction. 

The text’s form is illustrated by the quality of content organization. A very well-organized 

text will obviously help in understanding the concepts. One of the most apparent problems 

that a typical faculty member must focus on includes which domain concepts to teach, and 

how to rank each domain concept or teaching method for the level of thinking regarding 

cognitive skills. An early, widely used set of categories was proposed by (Bloom, 

Engelhart, Furst, Hill, & Krathwohl, 1956). 

Knowledge structure refers to the interrelationships among knowledge 

components. In this dissertation, the interconnections among knowledge units are 

represented as a well-known cognitive theory called Bloom’s Taxonomy (BT). Proposed 

by Benjamin Bloom, it is a modern concept that is used as a guideline for educators to 

develop teaching regimens, organize learning goals, and create assessments (T. Thompson, 

2008) and (Lister, 2000). Bloom’s Taxonomy places learning objectives into three 
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domains: cognitive, psychomotor, and effective (Bloom, 1956). The cognitive domain is 

related to the knowledge and mental skills of a learner. It is the most widely used domain, 

including six levels from low to high mental (processing) levels. 

Bloom’s Taxonomy was modified by Anderson (Anderson et al., 2001), who made 

a significant alteration to it by adding and ordering the names of each level. However, the 

number of levels was kept consistent. The revised cognitive domain levels (from simplest 

to most complex) are: 1) Remembering; 2) Understanding; 3) Applying; 4) Analyzing; 5) 

Evaluating; and 6) Creating (as in Figure 1.1). The educationist (1993) argues the 

importance of the distinctions in the cognitive levels rather than the hierarchy of the levels; 

“the categories themselves are not independent but interdependent”(Crossland, 2010). As 

a result, it is imperative to use the hierarchy for the learning regimen and learning 

objectives. 

The revised Bloom Taxonomy was modified for the domain of Computer Sciences 

(Nafa & Khan, 2015). However, the number of levels had changed. The levels of Computer 

Science Bloom Taxonomy (CSBT), from simplest to most complex, are: 1) Understanding 

(BL1); 2) Applying (BL2); 3) Evaluating and Analyzing (BL3); and 4) Creating (BL4) (as in 

Figure 1.1). CSBT provides a more flexible structure, facilitating the classification of the 

knowledge domain. The main goal for creating a revised version is to provide an effective 

order of BT cognitive skills for computer sciences. CSBT introduces a useful specific-

hierarchy to the existing Bloom’s Taxonomy. 
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The revised Bloom’s Taxonomy is a cognitive skills Taxonomy that has been 

applied for different educational purposes in many fields of study. In the field of Computer 

Science, Bloom’s Taxonomy has been used in course design, teaching methodology, 

material preparation, and measuring student responses to learning (Doran & Langan, 1995) 

and (Oliver & Dobele, 2007). The ACM Computer Science Curriculum specifies learning 

objectives based on the revised version of Bloom’s Taxonomy (Parham, Chinn, & 

Stevenson, 2009). There is a strong need to describe Computer Science knowledge units 

regarding learning goals and regarding levels of mastery.  

The following will therefore define concrete objectives and a clear framework in order to 

bring the techniques one step further towards the application of Bloom’s theory. 

 

 

 

 

Figure 1.1. The Changes from the Revised Bloom’s Taxonomy to the Version of Computer Science 
Bloom Taxonomy (CSBT). 
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1.3  Dissertation Objectives 

The primary objective behind this work is mainly driven by the expanding interest 

and a recent increase in research based on the provided resources of using the Bloom’s 

Taxonomy theory in the field of computer science. This dissertation provides a framework 

for transferring the learning process from quantity to quality regarding CSBT cognitive 

theory. Also included is the realization of whether a model concerning the presentation of 

the learning materials of computer science can be built to assess the learner with regards to 

cognitive CSBT theory, as well as how those regimens connect in a specific domain space.  

In order to address this issue, several areas of investigation such as WordNet (WN), 

VerbNet (VN), Singular Value Decomposition (SVD), First Order Logic (FOL), Skill 

Inference Rules (SIR), Markov Logic Network (MLN), Markov Cognitive Knowledge State 

Network (MCKSN), and Probability-Based Inference, were included in this research. 

1.4 Key Terminology 

This section defines some of the main terms that are used throughout this 

dissertation.  

Concept (C):  The Concept is the smallest unit in knowledge representation. It captures a 

knowledge domain that is eventually acquired by learning the concepts in it and their 

complex interrelationships. Normally, a knowledge domain has a terminology whose 

specific semantics are understood by the domain experts. 
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Knowledge Unit (KU):  A Knowledge Unit is a highly interrelated set of concepts which 

are dense and semantically dependent. Often the understanding of a concept in a KU is 

mutually enhanced by the other concepts in that KU. It can consist of two or more concepts. 

Cognitive Skill (CK): Cognitive skills are human skills of information processing. This 

includes knowledge gained and understood because of thinking, experience and sensations. 

Cognitive abilities involve knowledge banks, attention, memory (including working 

memory), making and evaluating solutions, reasoning, estimating, problem solving, 

decision making, understanding, speaking and speech understanding skills (Anderson et 

al., 2001). 

Cognitive Skill Taxonomy: It is a classification of cognitive skills and strategies that 

develop from a complex set of life-long learning skills in cognition. The classification 

system can be categorized into different types known as Bloom’s Taxonomy(BT) 

(Bloom’s, 1965), Revised Bloom’s Taxonomy (RBT) (Anderson et al., 2001), and  

Computer Science-based Bloom’s Taxonomy (CSBT), the latter being a modification of 

the Bloom’s Taxonomy system which is more useful to computer science learners than 

existing generic ones (Nafa & Khan, 2015). 

WordNet Relationships (WN): It is a dependency relationship between concepts, it has 

different types which are (hyponym, hypernym, meronym, and holonym). 

A Semantic Knowledge Map SKM= (C, E) is defined as a graph where, C = {ci} is the 

set of learning concepts ci, and a set of edges E = {eij(ci,cj,BLk)} is the Cognitive Skill 

Dependencies (CSD) between the concepts ci and cj at a CSD level k (BLk) per the cognitive 

file:///C:/Users/fatem/Box%20Sync/Dissrtation/Fall2016/Chapters/July-Version/August/Ref-82418/Problem%20Description-v11.docx%23_ENREF_2
file:///C:/Users/fatem/Box%20Sync/Dissrtation/Fall2016/Chapters/July-Version/August/Ref-82418/Problem%20Description-v11.docx%23_ENREF_2
file:///C:/Users/fatem/Box%20Sync/Dissrtation/Fall2016/Chapters/July-Version/August/Ref-82418/Problem%20Description-v11.docx%23_ENREF_8
file:///C:/Users/fatem/Box%20Sync/Dissrtation/Fall2016/Chapters/July-Version/August/Ref-82418/Problem%20Description-v11.docx%23_ENREF_2
file:///C:/Users/fatem/Box%20Sync/Dissrtation/Fall2016/Chapters/July-Version/August/Ref-82418/Problem%20Description-v11.docx%23_ENREF_69
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skill taxonomy. The taxonomy identifies relationship models using different skill levels. 

The classical Bloom’s Taxonomy has six levels, while the Anderson’s revised Bloom’s 

Taxonomy has six types but with modified semantics. The six types of cognitive skills are 

as follows: {BL1= Remembering, BL2= Understanding, BL3= Applying, BL4= Analyzing 

BL5= Evaluating, BL6= Creating}, whereas the Computer Science-based Bloom’s 

Taxonomy (CSBT) has four skill levels such as {BL1= Understanding, BL2=Applying, BL3= 

Analyzing-Evaluating, BL4= Creating}. 

Skill Inference Rules (SIR): An SIR is defined as a logical relationship between a set of 

Cognitive Skill Dependencies (CSDs) di=e (ai, bi, BLi). The logical relationship between 

any set of CSDs can be expressed as a First Order Logic expression. More formally, an 

example of this is ϕi = ∀A,B, C {e(A, B, BLi) ∧ e(B, C, BLi) => e(C, A, BLi)}. In other words, 

if concept A is needed to learn concept B, and concept C is needed to learn B, then concept 

C is needed to learn concept A.  

Markov Cognitive Knowledge State Network (MCKSN): An MCKSN is defined as an 

undirected graph G= (F, R), where each node Fi in the node set F represents a Cognitive 

Skill Dependency at a given Bloom level.  R ⊆ F×F is a set of edges connecting the nodes. 

Each edge ri,j represents the appearance of a Cognitive Skill Dependency in the same Skill 

Inference Rule (SIR). 

1.5 Problem Description 

Given a Semantic Knowledge Map SKM = (C, E), a subset of known Cognitive 

Skill Dependencies (CSD) is found between the concepts with their level specifications  
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BLk, and a set of Skill Inference Rules ϕi. Find out the remaining CSDs. The 

graphical representation denotes the symbols; the BLk (in bold), the SIR (in double), and 

the CSD (in the dot), are shown in Figure 1.2. 

Consider a real example, in this scenario suppose that a learner needs to learn some 

concepts from Algorithm book related to different topics such as {Graph, Graph-Traverse, 

BFS, Binary-tree, Data-structure, Algorithm, Insertion-sort, and Heap-sort}. Some of the 

Cognitive Skill Dependencies (CSDs) between concepts are given which are {Apply, 

Analyze, and Create}in addition, a skill dependency among the given CSDs encompassed 

in the SKM. Consider that the learner starts with three concept {Graph, Graph-Traverse, 

BFS} which are three nodes in the SKM as in Figure 1.3. As the CSDs between concepts 

shows that a concept ‘Graph’ is needed to be known to Apply concept ‘Graph-Traverse’ 

and concept ‘Graph-Traverse’ is needed to Create a concept ‘BFS’. The question is can we 

recommended that the learner should learn a concept ‘Graph’ to Create a concept ‘BFS’. 

Figure 1.2. Example of BLk, SIR, and CSD in Semantic Knowledge 
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This scenario represents a subgraph of the SKM as in Figure 1.3. Consist of some CS-

concepts with their CSDs.  

 

 

 

 

 

 

 

1.6 Proposed Solution 

To answer the question above, a human may easily estimate it either by using 

common sense and their experience or by asking domain experts. However, a computer 

requires an immense amount of knowledge to reason out the relationships of different 

areas. To access the best answer, a computer requires algorithmic techniques that can 

process the information for building the model. However, it is not trivial to build a model 

that can answer the question like a human. Therefore, a major challenge is to build a model 

that can assist the learner. To answer the question, Markov Cognitive Knowledge State 

Network (MCKSN) model was used.  

Definition: A Markov Cognitive Knowledge State Network (MCKSN) is defined 

as an undirected graph G= (C, E), where each node ci in the node set C represents a 

Figure 1.3. An Example of Some Cognitive Skill 

Dependencies between CS-Concepts. 
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Cognitive Skill Dependency (CSD) at a given Bloom level.  E ⊆ C×C is a set of edges 

connecting the nodes. Each edge ei,j represents the appearance of CSD’s in the same Skill 

Inference Rules (SIR) (as illustrated in Figure 1.4). 

 

              Figure 1.5 Markov Cognitive Knowledge State Network (MCKSN). 

1.7 Problem Formulation for Applying MCKSN. 

Given a Markov Cognitive Knowledge State Network (MCKSN), subset of CSDs, 

and set of Skill Inference Rules (SIR) and assumed to be true. Estimate the probability of 

the inferred CSDs to be true.  

The proposed model contains some key ingredients which are relied upon in each 

part of the dissertation. The main contribution is to introduce a mental blueprint, using 

these key ingredients to create a proper solution and to proof how these key ingredients can  
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be coupled together to tackle different angles of the research problem. The three keys 

ingredients of the presented model are: 

 

 

 

 

 

 

 

• Mapping the SKM into MCKSN, 

• Using human knowledge to describe the Skill Inference Rules (SIR) 

among the CSDs via First Order Logic (FOL), and  

• Using the Probability Graphical Inference to infer CSDs. 

The act of mapping SKM into MCKSN through CSDs and SIR among the cognitive 

relationships, where the facts describe CSDs between two nodes in the SKM and the Skill 

Inference Rules (SIR) describe CSDs among the CSDs, forms a clique in the MCKSN. 

The Skill Inference Rules (SIR) among CSDs is expressed as First-Order Logic (FOL) 

rules. An example of this is to suppose a subgraph from the previous case includes three 

nodes (‘Graph’, ‘Graph-Traversal’, and ‘BFS’). Based on Bloom’s taxonomy of learning 

theory, a learner is expected to learn those concepts at different Bloom levels. In other 

words, [If a concept ‘Graph’ is needed to be known to ‘Apply’ concept ‘Graph-Traverse,’ 

Figure 1.4. Sub Graph of SKM Converted to MCKSN. 



12 

 

and concept ‘Graph-Traverse’ is needed to be known to ‘Create’ concept ‘BFS’ then a 

concept ‘Graph’ is needed to be known to ‘Create’ a concept ‘BFS’].  

There is no magic coding recipe for taking a sentence expressed in natural language 

or any other form and showing it in first-order logic. However, the syntactic restrictions of 

first-order logic must be obeyed. By obeying First Order Logic’s syntax, the above 

sentence can be expressed as a Skill Inference Rules (SIR) as follows: 

 

 

The dissertation shows how the inference of CSDs can be recast in a probabilistic 

setting. The aim is to apply a probabilistic graphical model to infer CSDs between concepts 

jointly. 

These three ingredients are the general pillars of the proposed model. Each of them, 

however, has a number of sub-domains which are the tunable components making the 

model flexible. In Chapter Three, the first component is explained in detail, followed by a 

proper discussion. In Chapter Four, the second component is described in detail. In Chapter 

Five, the last component is explained and followed with an example. The experimental 

studies aim to showcase how the model can contribute to the research problem. Therefore, 

the proposed model grants new perspectives and brings about balance by showing the 

inference of CSDs among concepts in a CS domain. 

Apply (G, GT) ^ Create (GT, BFS) => Apply (G, BFS) 
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1.8 Subtasks to Support the Main Contribution  

To support the dissertation, an argumentation is articulate around one central 

question (linked to Chapter Five), and the sub-research questions (strictly related to 

Chapter Three and Four of this dissertation), as introduced below. 

Sub Questions: The sub-questions arise as challenging, due to the central question. 

Also, dealing with text involves inherent semantic ambiguities in natural language, as well 

as touching the cognitive skills. Questions regarding these issues include the following: 

• Are there any cognitive verbs that can describe a specific domain? 

• Is Bloom’s measurable verbs list indicative of the cognitive skills, and how 

can the other verbs which are not on Bloom’s verbs list be identified based 

on cognitive skill levels? 

• From a practical point of view, how is it possible to logically design a 

language to map SKM and its internal relationships with Cognitive Skill 

Dependencies? 

• How can the difficulties of learning a new topic be simplified by designing 

a learning map through the revised Cognitive Theory? 

• How can an automatic tool be designed for the management of future 

ACM/IEEE CS curricular revisions (which are expected to have a continued 

emphasis on Bloom’s Taxonomy)? 

The necessity of inferring the Cognitive Skill Dependencies will help learners to 

connect the knowledge gaps between learning objectives and the learning regimen based 
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on each learner’s specific cognitive level. This also effectively and efficiently 

accomplishes the aim of improving critical thinking abilities for learners. The lecturer 

would also have a congruent understanding of learning objectives and learning regimen, 

teaching students how to master all new concepts in each knowledge unit. Finally, the 

learner’s mental skill levels should increase as they progress from one topic to the next. 

A meta learning recommended model was proposed as an application of this work. 

The application developed to explore an interesting angle by looking for the intersection 

between logic and probability in one dimension. The next section will describe the general 

structure of this proposed application of this work which is meta learning recommended 

model. 

1.9 Application of MCKSN Model 

In order to achieve the study’s objectives and to help to answer its research 

questions, a novel meta learning recommended model was developed as an application that 

relies on several components which will be introduced progressively. Figure1.6 illustrates 

an overview of the proposed application. The model involves several basic linguistic 

preprocessing tasks (as illustrated in Figure 1.6).  

The First phase involves basic linguistic preprocessing techniques such as Text-

Preprocessing, Natural Language Processing (NLP), Domain Specific Extraction, and 

Semantic Relationship Extraction. In Text-Preprocessing, the model assumes that the input 

files are in the plain text format. All other formats are turned into plain text before 

beginning the other steps. Next, Natural Language Processing incorporates NLP tools such 
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as splitting each sentence into a sequence of tokens (where tokens are unique concepts). 

The Stanford Parser, which is used to parse each sentence to get its part-of-speech (verb, 

noun, adjective, etc.) is used to extract semantic relationships between concepts (Nafa, 

Khan, Othman, & Babour, 2016c).  

This phase also presents the Computer Science Bloom Taxonomy (CSBT), which 

is implemented using a scheme-based analysis of a revised version of Bloom’ Taxonomy. 

This in turn provides specific cognitive levels for Computer Science learners inspired by 

(Nafa & Khan, 2015). The model core component plays a very important role in this design. 

It is the first step for preprocessing the textbook and Bloom’s Taxonomy, the final form of 

which is represented as a semantic Knowledge Map (SKM) and a revised version of 

cognitive levels (CSBT).  

The Second Phase of this model is classifying the verbs based on their Cognitive. 

Bloom’s Taxonomy    provides a ready-made structure and list of action verbs. These verbs 

are the key to extract the Skill Inference Rules (SIR). However, Bloom’s original list of 

verbs was limited; not all verbs are included in the list. All the verbs in this list are action 

verbs since the learning objectives are concerned with what the students can do at the end 

of mastering a specific knowledge unit. This component proposes three techniques: 

WordNet, VerbNet, and Singular Value Decomposition (SVD) (Nafa, Khan, & Othman, 

2017) . The details of this phase can be found in Chapter Three. 

The Third Phase answers the central question of this dissertation. This phase 

investigates the application of Markov Cognitive Knowledge State Network (MCKSN) 
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technique with human evaluation of the inferred Cognitive Skill Dependencies (CSD). The 

model is a probability-based inference. The details of this phase are presented in Chapter 

Five followed by the results and the human evaluation in chapter Six. 

The idea of this dissertation is to build a model that ascertains the Cognitive Skill 

Dependencies between existing concepts in a specific domain. It can then assess the learner 

in the mastery of any knowledge unit at each cognitive learning level. The idea addresses 

it from an innovative angle, guided along the way by the study’s research questions. 

This work’s contribution can be articulated around the central themes, giving a 

complete model introduced through the chapters of this dissertation. 

 

 

 

Figure 1.5. The Overall Architecture of the Proposed Model. 
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1.10 Assumptions  

The proposed techniques used to solve the problem contain a few assumptions that 

need to be addressed. They are as follows: 

• Verbs typically indicate semantic relations between concepts. 

• Concept is the smallest unit in knowledge-unit. It is an element of a knowledge 

domain that is eventually acquired by learning the member concepts and their 

complex interrelationships. 

• In simple sentence, verbs typically indicate direct semantic relations between 

subject and object. 

• In complex sentence,  concepts that nearest to the verb are semantically related. 

• We only consider knowledge-units of Computer Science domain.  

• The text used for extracting the relationships is structured, and in English 

1.11 Dissertation Structure  

This dissertation presents a meta learning recommended model foundation at the 

algorithm and technical level to support the above goals. Chapter Two presents the 

interpretations of the related work. The model is divided into phases (as illustrated in Figure 

1.6). Tasks are offered throughout the chapters in detail. The second phase of the model, 

classification methodologies for the cognitive verbs, is presented in Chapter Three, the 

third task of the model shown in Chapter Four introduces the construction of Skill Inference 

Rules (SIR). Chapter Five puts into practice the lessons learned from the previous Four 
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chapters. It gives particular attention to the central question of this dissertation after 

answering each sub-question. It introduces a technique to infer Cognitive Skill 

Dependencies (CSD), and it puts the tasks together in order to conclude exciting results 

armed by the human judge for the final results. 

The dissertation ends with a conclusion of the main findings and outcomes, 

including tentative answers to the study’s research questions, along with a discussion of 

this dissertation’s limitations. Finally, it discusses how this model could profitably be 

generalized and transposed to other languages and application domains.  
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 LITERATURE REVIEW 

2.1 Introduction 

The work presented in this chapter is situated at the intersection of several areas of 

related prior work: The Natural Language Processing (NLP), Linguistics, and Knowledge 

Object and Mental Models. Each of these are discussed in turn. Figure 2.1 illustrates a 

general view of the literature review work.  

 

 

Figure 2.1. Three Different Area of the Literature Review 
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2.2 Natural Language Processing (NLP) 

Natural Language Processing (NLP) is a branch of linguistics, artificial intelligence, 

and Computer Science. Its purpose is to develop a computer program that can generate text 

in natural language and speech patterns. The goal is to enable computers to communicate 

with humans in the same way that humans communicate with other humans (C. D. 

Manning, Manning, & Schütze, 1999). NLP has different research areas, some of which 

interrelate with the component and other items in the tasks of NLP in the area of the concept 

extraction, which is a part of Information Extraction. NLP has various techniques used for 

concept extraction including supervised, semi-supervised, and unsupervised techniques 

(Tur, Hakkani-Tür, & Schapire, 2005). One effective technique for concept extraction is a 

graph, very effectively enabling exploration of the concepts. More about graph 

representations of text is discussed in (Valle & Ozturk, 2011) (Walter, 2004) (Mishra, 

Huan, Bleik, & Song, 2012). In a graph, representation concepts are represented by nodes, 

and relations between concepts are represented by edges. A graph-based approach is used 

for the extraction of concepts from the textbook because it is very accurate and efficient 

for domain-specific tasks. This study focuses on textbooks since they provide a 

comprehensive list of domain concepts, and extracted concepts are domain specific. 

Therefore, using a graph-based approach is a promising method to meet the study’s 

demands. 

In the area of the relation extraction, different categories of methods as presented 

in Figure 2.1. This work uses knowledge-based techniques where the relation is a 
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dependency relation among concepts, and the graph is a representation of the extracted 

relationship. Research exists concerning graphical text representations such as concept 

graphs and ontology (Mitra, Wiederhold, & Kersten, 2000). Concept Graph Learning is 

also proposed to present relations among concepts from prerequisite relations among 

courses. Using graph-based method is a promising way to answer the study’s questions and 

to discover novel cognitive relationships between knowledge units.  

2.3 Linguistics 

Verbs are central to the syntactic structure and semantics of a sentence. Existing 

computational resources and classifications developed for verbs can be classified into these 

three types:  

Syntactic Resources: Examples of these are complex dictionaries (Adorni & Zock, 

1996) and (Kipper, Korhonen, Ryant, & Palmer, 2006) and are mostly manually developed. 

An entry here has verb forms and subcategorization information.  

Semantic Resources: Examples of these include FrameNet (Baker, Fillmore, & 

Lowe, 1998) and (Shi & Mihalcea, 2005) and WordNet(G. Miller, 1998). FrameNet groups 

words according to conceptual structures and their patterns of combinations. On the other 

hand, WordNet groups words into synsets (synonym sets) and records semantic relations 

between synsets. However, little syntactic information is present in these resources. 

According to (Kipper, Dang, & Palmer, 2000), WordNet lacks generalization, and its level 

of sense distinction is too fine-grained for a computational lexicon.  
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Syntactic Semantic Resources: Here, verbs are grouped by properties such as 

shared meaning components and morpho-syntactic behavior of words in Levin’s 1993 verb 

classification. Since then, VerbNet (Kipper et al., 2000) has expanded this classification 

with additional verbs and classes.  

Even though an extensive collection of literature exists on verb classification, none 

of the presented techniques have been developed to classify the verbs based on Bloom’s 

Taxonomy    levels. Benjamin Bloom and his colleagues provided the verbs to help identity 

which action verbs align with each Bloom level to describe the learning objectives (Starr, 

Manaris, & Stalvey, 2008). Benjamin Bloom provides a sub-list; not all verbs are included. 

There is a need in the computer sciences to use the domain verbs in order to keep the 

description of the learning objectives measurable and clear. 

2.4 Knowledge Object and Mental Models 

According to this study’s research, no previous works have investigated three 

different taxonomies to represent the three domains of learning: a cognitive Taxonomy    

focused on intellectual learning, an effective Taxonomy    concerned with the learning of 

values and attitudes, and a psychomotor Taxonomy    that addresses the motor skills related 

to learning. One of the cognitive taxonomies is known as Bloom’s Taxonomy (Bloom’s, 

1965). Bloom’s Taxonomy    has been applied in the field of computer science. Specifically, 

such taxonomies have been used in four different ways: 1) course design, 2) teaching 

methodology, 3) the creation of learning and evaluative materials, and 4) student responses 



23 

 

to learning activity (Buck & Stucki, 2001), (Scott, 2003), and (E. Thompson, Luxton-

Reilly, Whalley, Hu, & Robbins, 2008). 

This section appraises the work of many research projects that have applied 

Bloom’s Taxonomy to the field of computer science. Machanick presents the idea of 

ordering materials according to the required cognitive skills taught within three computer 

science courses   (Machanick, 2000). Bloom’s Taxonomy was used to assign grades in an 

introductory programming course. Grading was based on a Bloom-level mastery of tiered 

curricular components rather than grading on a curve by (Starr et al., 2008) .In a review of 

their work, the Taxonomy for computer science was questioned (Johnson & Fuller, 2006). 

The issue with Machanick’s method is that exams regularly fail to test the knowledge of 

students for each level of mastery in Bloom’s Taxonomy (Scott, 2003). Because of this, 

teachers cannot accurately assess the depth of mastery for individual students. A proposed 

solution was to use Bloom’s Taxonomy    to assess the cognitive difficulty of computing 

courses in an IT program by formulating and calculating a Bloom Rating  (Crowe, Dirks, 

& Wenderoth, 2008). A Bloom level was assigned to each test question according to the 

level of cognitive behavior required to properly answer it. Based on the above work, by 

using a Bloom Rating, a Bloom-based course assessment tool could be constructed and 

deployed in a second-level programming course (Schulte & Bennedsen, 2006). The result 

is the assignment of a grade that is based on objective measurements of learning outcomes. 

The paper describes the cognitive tasks required at each of the three grade tiers. Finally,    

Manaris et al. (Lister & Leaney, 2003) applied BT within CS to specify learning objectives 
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of human-computer interaction courses. They presented a collection of courses for various 

target audiences, including freshman non-majors, junior/senior majors, and graduate 

students. For each course, they provided an outline containing learning objectives using 

BT, the amount of time to be spent on each topic and related in-class activities. Closely 

related research was also done by Thompson et al.; their focus was on Computer Science 

assessment (E. Thompson et al., 2008). Their main goal was to use Bloom’s Taxonomy    

to assist in designing introductory programming examinations. More recent research done 

by Starr et al. focused on specifying assessable learning objectives in Computer Science 

(Starr et al., 2008). They believed that their idea of integrating Bloom’s Taxonomy    with 

Computer Science curriculum created more effective faculty communication and 

strengthened the department’s assessment program. Other research work completed for 

specific Computer Science areas of education that used Bloom’s Taxonomy    includes a 

test-driven automatic grading approach for programming (Hernán-Losada, Pareja-Flores, 

& Velázquez-Iturbide, 2008) , Bloom’s Taxonomy levels for three software engineer 

profiles (Bourque, Buglione, Abran, & April, 2003) , and Bloom’s Taxonomy for system 

analysis workshops (Khairuddin & Hashim, 2008). 

2.5 Summary and Discussion  

The use of existing taxonomies is not as efficient for computer science. This study 

addresses a novel aspect of the problem. Based on David Kolb’s research (Kolb, 2014), it 

is apparent that different people can enter the learning cycle at different points. A revised 

BT is modified to show how CSBT cognitive thinking would be more applicable to 
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computer science than the existing generic ones. In “Conceptual Knowledge Space,” 

written by Javed I. Khan, Yongbin Ma, and Manas Hardas  (Khan & Hardas, 2007), the 

authors demonstrated how courses can be composed, based on knowledge ontology. It 

presented a novel methodology to evaluate the bottom-up technique for teaching 

programming concepts based on the theory of constructivism from educational 

psychology. Educators in teaching employed their technique; students do not employ or 

are not able to employ the bottom-up to the technique of constructing concepts in learning. 

Most of the previous work does not focus on building automatic models to assist in 

analyzing domain concepts, where the domain concepts are identified with a cognitive link 

between all the concepts. The link is a verb identifying the certain skill necessary to be 

learned in the prerequisite concept and the target concept to be achieved at a certain skill. 

A review of related work is presented in this Chapter. Next Chapter gives special 

attention to classify Computer Sciences verbs into their cognitive levels using three 

different methodologies. 
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 EXTENDING COGNITIVE SKILL CLASSIFICATION OF 

COMMON VERBS IN THE DOMAIN OF COMPUTER SCIENCES 

3.1 Introduction  

This chapter presents an important part of the picture: a classification of the verbs 

into cognitive skill levels. For this task, not all verbs are equally important; this study 

particularly focuses on identifying verbs indicative of idenifying cognative skill level 

linked to the domain of computer sciences.The classification of a domain-specific verb is 

defined as a Cognitive Skill connection between concepts used in sentences with a given 

verb. The chapter introduces three different techniques used to classify verbs, whereas 

Bloom’s verb list is used as a baseline method to classify some of the CS verbs. but not all 

verbs are included in Bloom’s verb list. This poses an interesting question: What about the 

other verbs which are not on Bloom verbs list? 

The techniques include WordNet (G. Miller, 1998), which was used to access the verb 

synonym; VerbNet, used to access the verb class; and Singular Value Decomposition 

(SVD), for all other verbs not included in WordNet and VerbNet. The three techniques will 

be explained in greater detail in this chapter. 

The techniques are based on linguistic dictionaries for verbal classification. It is ready 

to use.This work made easy access by coding them and investigating the contents of those 

dictionaries. This work adds a contribution by serving the cognitive area via using WordNet 

and VerbNet lexical databases. 
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A running example of the verb classification is shown in Figure 3.1. The textbook is 

organized into a hierarchical structure, where the organization is represented as chapters, 

sections, sub-sections, paragraphs and sentences. The smallest level in the hierarchy is the 

sentence. The structure of the sentences differs throughout the book, depending upon the 

need for each. This study classifies sentences into four different structural types: simple 

sentences, compound sentences, complex sentences, and compound-complex sentences. 

The study’s approach assumes that concepts which are semantically related tend to be 

“near” in a plain text. This assumption arises from the principle of coherence on linguistics 

(Foltz, Kintsch, & Landauer, 1998). Based on this assumption, the study’s proposed 

technique is applied to knowledge units extracted from the texts in order to discover 

semantic relations between concepts. Moreover, this approach is able to find the Cognitive 

Skill levels between concepts based on the verb. 

The Cognative Skill levels between concepts in the sentences are captured from 

different sentences structures. One such example is a specified knowledge unit about the 

‘Heapsort Algorithm’ to extract the concepts and the verbs from given knowledge unit. 

This study’s major goals include the following: Finding the low-level concepts and the 

Figure 3.1. Sentence Structure 
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high-level concepts and showing the dependencies between the concepts based on the verb 

is accomplished in the first phase of the model, where the output is represented as a 

Semantic Knowledge Map (SKM). Next, high-level concepts are used to describe the 

learning objectives based on the verb cognitive level, where the verb level is unknown. 

However, this study’s proposed techniques are able to figure out these verb levels as sub-

tasks. 

The given knowledge unit includes some concepts: Heap-Sort, heap-property, time, 

priority-Queue, max-heap, producer, sorting, array}. The process of finding the Cognitive 

Skill levels of the verb is done by describing the learning objectives required for mastering 

this knowledge unit at different cognitive levels. 

 

Figure 3.2. An Example of a Known and Unknown Bloom’s Verbs. 
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In Figure 3.2 (A), only five verbs are known in their cognitive levels from Bloom’s 

original list; they appear as dark black lines in the graph. In Figure 3.2 (B), by using the 

first methodology for verb classification (WordNet), only one verb classified into its 

cognitive level; the verb appears with a double line in the graph. In Figure 3.2 (C), by using 

the second methodology for verb classification (VerbNet), only two verbs classified into 

its cognitive level; the verbs appear with a double line in the graph. In Figure 3.2 (D), by 

using the third methodology for verb classification (SVD), the rest of the verbs are 

classified into their respective cognitive levels; the verbs appear with a double line in the 

graph. After all classification methods are Applied, verbs are classified into their cognitive 

levels, and the concepts are edited to descibe the learning objectives for this knowledge 

unit. The teacher can then ask him/herself what cognitive levels are necessary for his/her 

students to master this knowledge unit. 

3.2 Bloom’s Verbs and their Cognitive Skill Levels 

Bloom’s Taxonomy provides a ready-made structure and list of action verbs. These 

verbs are the key to writing learning objectives. However, Bloom’s original list of verbs 

was limited; not all verbs are included in the list. All the verbs are action verbs since the 

learning objectives are concerned with what the students can do at the end of mastering a 

specific knowledge unit. As an example, a list of the active verbs used to assess a 

Remembering level is shown in Figure 3.3. 
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To run the linguistic analysis for the knowledge unit in the textbook, Stanford 

University’s Core NLP library is used (C. Manning et al., 2014). This step has been done 

in the first phase of the study’s model, but more characteristics are added to analyze the 

verbs in the knowledge units. The results of the sentence structures for the verbs have also 

been analyzed. The most common modification used to get a high accuracy for the results 

involves incorrect POS tags; errors are shown as stemming; and sometimes a verb can be 

mistagged as a noun. These incorrect POS tags, causing incorrect parsing structures, are 

modified manually. All auxiliary verbs are also removed by checking the verb with a list 

of all auxiliary verbs and their derivatives. For more accurate results, the proposed 

techniques are introduced and used (WordNet, VerbNet, and SVD). The three techniques 

will be explained in detail respectively. 

3.3 Extension Technique based on WordNet (WN)  

An assumption used in this study is the following:  If there is a WordNet relation between 

two verbs, THEN the Bloom label is there; 

Figure 3.3. Example of Bloom Action Verb List 
Remembering Level. 
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If   𝑉𝑖 ↔ 𝑉𝑗  Then  𝛽(𝑉𝑖) = 𝛽(𝑉𝑗) 

 

 

 

 

WordNet documents the verbs based on 14 different files (Klavans & Kan, 1998), 

each file covering a semantic domain:  verbs of bodily care and functions, change, 

cognition, communication, competition, consumption, contact, creation, emotion, motion, 

perception, possession, social interaction, and weather verbs. Each of these files has a 

“unique” set of beginners which correspond to the top most verbs in that hierarchy. These 

sets also denote the most basic concept in that tree, which is specialized by the remaining 

verbs in that tree as an example of the WordNet verb relationship shown in Figure 3.4. 

The verbs provide most of the semantic frame of sentences and are considered the 

most important syntactic category. Although each syntactically correct sentence must have 

a verb, they do not necessarily require a noun. This study is especially interested in the 

verbal relation of synonyms. These synonym relations have more expressive power and are 

better tailored for the task of the Cognitive Skill Levels. Synonymy relation is at the base 

of WordNet’s structure, along with being the most important Levels found in WordNet 

(which is already implicit in the notion of a synset).  WordNet-like taxonomies behave in 

some ways like a dictionary, and in others as an ontology. To avoid Performance, WordNet 

Figure 3.4. The Verb Relationship in WordNet 
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in this research is used as a dictionary for verb synonym relations. Around 3,600 verb 

senses are included in WordNet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. WordNet Technique Algorithm. 

 

As the first technique for finding the level of domain-specific verbs based on 

Cognitive Skill Dependencies, all domain-specific verbs are mapped to their verb 

synonyms from the WordNet database. However, WordNet has a few limitations, one of 

Def WordNet Technique ( ): 

Input BT-Verb [ ], CS-Verb [ ] 

Output: BTN-Verb [ ], Unknown-Verb [ ] 

Def Find-Bloom-Level (CS-Verb-Synonym): 

1.  For Verb in CS-Verb-Synonym: 

2.     For Verb1 in BT-Verb: 

3.        If Verb in BT-Verb (): 

4.           BT-Verb [Verb]=Level 

5.           BTN-Verb [Verb]. Append (Level) 

6.        Else: 

7.            Unknown-Verb [Verb]. append (Zero) 

8.            BTN = GetmostFrequ (BT-Verb) 

Return BTN-Verb [ ], Unknown-Verb [ ] 

Def Find-WordNet-Synonym (CS-Verb): 

9.   For pos in poses: 

10.    For Synset in WN. Synsets (CS-Verb, pos): 

11.     For lemma in synset. Lemmas (): 

12.           If Name! = CS-Verb and Name not in syns: 

13.              Syns.append(Name) 

Return CS-Verb-Synonym 
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which is its limitation of not having all the classes for all verbs, classifying some of the 

verbs but not the others. It also does not cover special domain words, nor does it include 

forms of irregular verbs. 

Figure 3.5 presents an algorithm used in WordNet technique. Input for the 

algorithm includes the original Bloom verb list (B(Vi)) and the domain-specific verb list 

(Vj). An algorithm starts by reading a domain-specific verb list and checks which verbs are 

in Bloom’s verb list; it returns two lists-known verbs as known in Bloom’s list and as 

unknown as Bloom’s list.  It then starts to maintain the unknown verb list by checking verb 

synonyms from the WordNet database; some new verbs have been added to known verbs 

as unknown in Bloom’s list. In case the verb synonym does not return any Bloom level for 

the verb, the Algorithm returns a new verb list with Bloom’s classification and another 

verb list not in Bloom’s Taxonomy. Thus, new verbs synonyms have been added to the 

known verbs as those in Bloom’s list. The list will be saved as unknown verbs in Bloom’s 

Taxonomy. A limitation of WordNet includes gaps between verbs in the database; for that 

reason, some of the verbs will not be found in the WordNet database (K. J. Miller, 1998). 

Finally, for those verbs in which a classification is not found, the algorithm starts the 

classification process over for verbs but uses a different methodology using the VerbNet 

methodology. This will be explained in detail in the following section. 

3.4 Extension Technique based on VerbNet (VN) 

VerbNet (VN) is a vast online repository for the classification of English verbs 

(Schuler, 2005). It includes syntactic and semantic information for classes of English verbs 
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derived from Levin’s Classification (as explained in Related Works, Chapter Two). It is an 

updated version that is considered more detailed than the version included in the original 

organization. VN classification considers very important properties such as the lexical 

meaning of a verb and the kind of argument interchanges that can be observed in the 

sentences with the verb. The classification of VerbNet is based on the senses of verbs. It 

covers 5,200 verb senses. The classification is partially hierarchical, including 237 top-

level classes with only three other levels of subdivision (Schuler, 2005). 

    The VerbNet database also contains information about the correspondence 

between the classes of verbs and lexical entries in other resources. Each verb class in VN 

includes a set of members, thematic roles for the predicate-argument structure of these 

members, sectional restrictions on the arguments, and frames consisting of a syntactic 

description and semantic predicates with a temporal function. New subclasses are added to 

Levin’s original classes to achieve syntactic and semantic coherence among members.  

    VerbNet is a rich database with verb classification, providing easy access for use 

by the programming language. It has been used to help NLP applications such as semantic 

role labeling (Swier & Stevenson, 2004) and word sense disambiguation (Dang, 2004). 

However, it is not very helpful when it comes to processing texts in specific domains where 

verb senses only partly overlap with those in general language use. 
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Figure 3.6 illustrates the algorithm used for the VN technique. As an input for the 

algorithm, it starts by reading the output verb lists from WordNet. It then checks unknown 

verbs in Bloom’s list to return the verb class from the VN database. After it returns the verb 

class from the VN database, new verbs are added to the known verbs as part of Bloom’s 

Def VerbNet Technique ( ): 

Input NBT-Verb [ ], CS-Verb [ ] 

Output: BTN2-Verb [ ], Unknown-Verb [ ] 

Def Find-Bloom-Level (Verb-VN-Category ): 

1.  For Verb in Verb-VN-Category: 

2.     For Verb in NBT-Verb: 

3.        If Verb in BT-Verb (): 

4.           BT-Verb [Verb]=Level 

5.            BTN2-Verb [Verb]. Append (Level) 

6.        Else: 

7.            Unknown-Verb [Verb]. Append (Zero) 

8.             BTN2= GetmostFrequ (NBT-Verb) 

Return BTN2-Verb [ ], Unknown-Verb [ ] 

Def Find-VerbNet-Class (CS-Verb): 

9.   For Verb in CS-Verb: 

10.    Verb-Class=VerbNet.Classids(Verb. Strip ()) 

11.                If Verb-Class=! =[ ]. 

12.        For V in Verb-Class: 

13.                Verb-VN-Category. Append (V) 

Return Verb-VN-Category 

Figure 3.6. VerbNet Technique Algorithm. 
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list. In case the verb class returns nothing for the verb, the algorithm uses the verb member 

to check the availability of having new verb members for the verb under study and checks  

if the new verb is in Bloom’s list. If so, the verb level is returned. 

If the verb is found with neither a class nor members in the VN database, the list is 

saved as unknown verbs in Bloom’s Taxonomy. A limitation for VN includes gaps between 

verbs in the database; for that reason, some of the verbs are not found in the VN database. 

Finally, for those verbs whose classification is not found, the algorithm starts the 

classification process over for verbs but uses a different methodology (the SVD method, 

which will be explained in detail in the next section). 

3.5 Singular Value Decomposition (SVD) Technique  

In this section, verbs are classified based on Latent Semantic Analysis (LSA). LSA 

is a theory and method for extracting and representing the usage and meaning of domain 

concepts by using statistical computations (Golub & Reinsch, 1970). The process is divided 

into two tasks: calculating SVD to divide matrix A into three matrixes; and finding the verb 

level in Bloom’s Taxonomy by applying SVD to the matrix (A). Doing this will break down 

each dimension in the matrix using Equation 3.1. 

𝐴𝑣×𝑠 = 𝑈𝑣×𝑣 × 𝑆𝑠×𝑣 × 𝑉𝑇
𝑠×𝑠 

 

(3.1) 

Where: 

A: v x s matrix (v verbs, s sentences) 

 U: v x v matrix (v verbs, v verbs) 
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 V: s x s matrix (s sentences, s sentences) 

Def Singular Value Decomposition (SVD) Technique ( ): 

Input:  A= Matrix and BTN2-Verb [ ] 

Output: U matrix // Dimension Reduction Matrix 

Def Calculate (): 

1.    U, S, VT = SVD(A)  // U, S, VT matrixes  

2.    UR=U [: 0:3]   //The dimensional Reduction of U  

3.    VR=VT [0:3,]   //The dimensional Reduction of VT 

Def VerbClassify (VR): 

4.   For all V ∈ VR Do 

5.     Verb-Class, Unknown-Verb. ← Check-Class (V, BTN2-Verb)   

6.     V-Class ← ComputeNearstNighbor (V, Verb-Class, Unknown-Verb) 

Return Verb-Class () 

Def Check-Class (V, BTN2-Verb):             

7.    If V in BTN2-Verb (): 

8.     BTN2-Verb [Verb]=Level 

9.     BTN2-Verb [Verb]. Append (Level) 

10.  Else: 

11.     Unknown-Verb [Verb]. append (Zero) 

Return Verb-Class [ ], Unknown-Verb [ ]. 

Def Compute-Nearest-Neighbor (V, Unknown-Verb, Verb-Class): 

    //Find the K nearest neighbors for Unknown Verb based on the Euclidean distance  

12.  For V in Unknown-Verb (): 

13.  For Vi in Verb-Class (): 

14.  D ← Compute the distance d (V, Vi) 

15.  Sort all D according to d (V, Vi) 

14.  Select the first k points from D, those are the k closest distance. 

16.  Select the verb and the class based on D 

17.  Return Verb-Class () 
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 Figure 3.7. Singular Value Decomposition (SVD) Technique Algorithm 

 

 

 

 

 

 

 

  

 

 
 

Figure 3.8. Singular Value Decomposition Matrixes. 

 

As part of applying SVD (Wall, Rechtsteiner, & Rocha, 2003), dimensionality 

reduction techniques are utilized in order to reduce the high dimensionality of the Verbs 

matrix (U). Only 2-dimensions are considered here as illustrated in Figure 3.9. The biggest 

reason SVD is used to transfer this study’s problem into a mathematical-based article is 

because it finds a reduced dimensional representation of the study’s matrix that emphasizes 

the strongest relationships and that removes any noise. 

The algorithm in Figure 3.7. represents the Singular Value Decomposition (SVD) 

technique. The algorithm uses the Checkclass function, and each verb in the verb list is 

checked to see if it belongs in Bloom’s Taxonomy or not. If the verb is found in Bloom’s 
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list, the verb’s level (BL1, BL2, BL3, and BL4) is returned as a verb class. Otherwise, it will 

return as not found (as in Table 3.1). 

Next, verbs are classified by using a Nearest-Neighbor function (Jiang, Pang, Wu, & 

Kuang, 2012). This is done by computing the distance between two verbs after the two 

dimensions are extracted from the U matrix. Equation 3.2 is used to calculate Euclidean 

distance (d) between each of the two verbs. 

𝑉(𝑑) = ∑(𝑣𝑖−𝑣𝑖+1)2

𝑛

𝑖=1

 
 

(3.2) 

Table 3.1: Class label of Bloom’s verbs. 

Verb Returned-class Dimensions from U 

matrix 

Use BL1 (-0.45,0.65) 

Analyze BL3 (-0.86, -0.16) 

Start BL3 (-10.-30) 

Give BL3 (-0.01, -0.05) 

Build Not found (-0.12, -0.39) 

Repeat Not found (-0.14, -0.54) 

It is necessary to compute distance between each two verbs’ dimensions. These 

were normalized by scaling them between 0 and 1 (as seen in Table 3.2), and by using 

Equation 3.3. 

𝑑′𝑖 =
𝑑𝑖 − 𝑑𝑚𝑖𝑛        

𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛
 

(3.3) 

 



40 

 

The dimensions are scaled to fit into a specific range. Many types of normalization 

exist; this study used Min-Max Normalization. Min-Max Normalization transforms a value 

which fits in the range [0, 1] (as in Equation 3.3). 

 

 

 

 

 

 

 

 

It is shown that the verb with the closest distance for Build is Use, and the verb 

with the closest distance for Repeat is Give. 

 

 

 

 

Finally, table 3.4 illustrates the cognitive skill class for each verb with the name code for 

the cognitive skill class. 

Table 3.2: Normalized Dimensions for Bloom’s Verbs. 

Verb Dimensions from U matrix Normalized dimension 

Use (-0.45,0.65) (1,0.8) 

Analyze (-0.86, -0.16) (0.6,1) 

Start (-10.-30) (1,0.9) 

Give (-0.01, -0.05) (1,0.7) 

Build (-0.12, -0.39) (0.8,1) 

Repeat (-0.14, -0.54) (0.4,1) 

Table 3.3: Distance between Bloom’s Verbs. 

 Use Analyze Start Give 

Build 0.09 0.30 0.14 0.77 

Repeat 1.23 0.90 1.012    0.43 

Table 3.4: The Classified Bloom Verbs. 
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3.6 Experiment Results and Evaluation 

3.6.1 Experiment Results  

This study tests the techniques using three high-quality textbooks found in 

Computer Science classes as course materials in many universities. The study’s proposed 

techniques are then applied to see how they perform on these textbooks. Three text corpora 

are obtained for this task: “Introduction to Algorithms,” “Data Structures and Algorithms,” 

and “Algorithms,” respectively. The experimental results and evaluations show that when 

performing the study’s proposed task, the techniques were effective in classifying verbs 

based on the Cognitive Skill Levels. Sample of the CS-Verb classification provided in 

Appendix C.  

This Chapter specifically focuses on classifying the extracted Computer Science 

action verbs based on their Cognitive Skill Levels. The verbs are used to describe the 

learning objectives. 

As more details of the classification resulted (see Figure 3.10), a prominent feature 

is that significantly equal percentages of the verbs fell in BL2, BL3, and BL4, while the 

percentage of the verbs is highest in BL1. The results of applying this classification show 

that the textbook used to describe a low Cognitive Skill levels is found in the undergrad 

level; the learning objectives for this book will therefore be a prerequisite for the advanced 

Verb Use Analyze Start Give Build Repeat 

BT-class BL1 BL3 BL2 BL2 BL1 BL2 
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courses of the algorithm. On the other hand, there are equal opportunities for high 

Cognitive Skill levels in the textbook. 
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Figure 3.10. Verb Classification Based on the Three Techniques. 
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3.6.2 Evaluation Measures 

As an evaluation step, the gold standard for any linguistic analysis is human 

judgment. In this chapter, statistical measures were used to estimate the agreement between 

the human classification of the verbs as well as the agreement between the results of verb 

classification and the “gold standard.” There are different measures of the agreement; for 

this, Fleiss' kappa measure was applied from the fields of inter-rater agreement (McHugh, 

2012).  

Fleiss' kappa (£) is a statistical measure for assessing the reliability of 

agreement between a fixed numbers of raters when assigning categorical ratings to 

classifying items. This measure calculates the degree of agreement in classification over 

that which would be expected by chance.  

In this result, humans share intuitions about the analysis. For the techniques output, 

the classified verbs were given to native English speakers who are graduate students.  This 

is typically done by checking to see if they agree or disagree with the automatic 

classification of the verbs. Apart from the cognitive validation of the analysis, the majority 

agreed that the verb classification could be used as a baseline classification for Computer 

Sciences to describe the learning objective.  

3.7 Summary and Discussion  

This chapter has described and discussed the concept of using Bloom’s Taxonomy 

in the field of computer science. Automatic techniques that are used to classify the verbs 

according to cognitive skill levels have been presented. The techniques are a sub-task of 

https://en.wikipedia.org/wiki/Statistical_measure
https://en.wikipedia.org/wiki/Inter-rater_reliability
https://en.wikipedia.org/wiki/Inter-rater_reliability
https://en.wikipedia.org/wiki/Categorical_rating
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previous works (Nafa, Khan, Othman, & Babour, 2016a, 2016b).Classifying verbs based 

on cognitive skill levels is a novel and challenging problem.  

The classification techniques make use of the cognitive domain in Computer 

Sciences. Not all the verbs found in the corpuses are equally important in the process of 

extracting the learning objectives; the most informative are the action verbs. These verbs 

are automatically classified using proposed techniques; Bloom suggested a short verb list 

to be used as a baseline. The techniques are also able to recover verbs that are relatively 

infrequent or specialized and thus unlikely to be captured manually by an expert. The 

results show that the classification of verbs overlaps between Cognitive Skill 

Dependencies; one verb can be in more than one level based on its function as a cognitive 

verb level. This adds a different nuance when describing the learning objectives. Based on 

the study’s analytical result, it is possible to conclude that by using Cognitive Skill 

Dependencies, a teacher can decide which verbs to use at which level to match with the 

learner’s skills, thus helping in writing the learning objectives. The final form of the output 

in this phase represented as a Semantic Knowledge Map (SKM) where the connection 

between concepts are cognitive Skill and WordNet relationships. 

The next Chapter will start using Semantic Knowledge Map (SKM) as a graphical 

lexical source for building the Skill Inference Rules (SIR). It also answers a question raised 

here, which is how to logically design a schema as rule templates so that Cognitive Skill 

Dependencies and it is internal relationships can then be mapped to logic rules. 
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 CONSTRUCTING SKILL INFERENCE RULES (SIR)  

4.1 Introduction 

This chapter introduces an interesting approach that jointly models Semantic 

knowledge and First Order Logic (FOL). An FOL approach is adapted for generating Skill 

Inference Rules (SIR) from Semantic Knowledge Map (SKM). SIR is an interlingua that is 

used to translate the structure of SKM by emphasizing Cognitive Skill and WordNet (WN) 

relationships rather than the semantic relationships. Extending the SKM from a logic 

perspective increases its representational power and modelling capabilities to infer 

cognitive skill dependencies. Knowledge correlations in the SKM can be analyzed to infer 

SIR and to predict new facts. SIR describes how relations are associated in the SKM. The 

SIR involves the most complex mathematics in graph analysis, requiring intensive study to 

attain full comprehension. A number of researchers introduce the extraction of FOL from 

SKM (Gad-Elrab, Stepanova, Urbani, & Weikum, 2016; Guo, Wang, Wang, Wang, & Guo, 

2016). However, each of them targets a very specific area, and their research has been 

designed to serve only their domains. The previous chapter presented the classification of 

cognitive CS verbs; this is used to identify both the internal relationship between concepts 

in SKM and other types of relationship between concepts (by using WN in SKM). This 

chapter makes use of those relationships (Cognitive Skill and WordNet) to generate SIR. 

This chapter also walks through an introduction of the knowledge representation FOL and 

goes into how to translate SKM to generate SIR’s. Subsequently, the Chapter describes in 
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detail each type of SIR. Finally, an explanation of SIR format is provided with language 

and graphic descriptions. 

4.2 Logic as a Knowledge Representation Formalism 

The main component of logic as a knowledge representation formalism is the knowledge 

base (KB) (Russell & Norvig, 2016). Each logical KB is composed by a set of rules stated 

in a logical language. These rules are expressed according to the syntax of the logical 

language. The main goal of logical KB is to infer new relationships from existing 

knowledge. For example, fatherOf (x, y) >> sonOf (y, x), in every KB if x is father of y, it 

is implied that y is also the son of x. In this example, the inference is defined as a technique 

to infer a new relationship from KB; if we know that x is the father of y, then y also being 

the son of x could be inferred easily. There are different proposed algorithms to infer the 

relationships in KB. 

To generate simple or complex rules from KB, logical connectives (see Table 4.1) can be 

used. The basic representation for the KB is FOL, where the atomic formulas are predicates 

that assert a relationship among certain elements. In the previous example, fatherOf (x, y) 

is called an Atomic formula, where Complex formulas are computed recursively using truth 

Tables (as in Figure 4.1).  

Truth tables are logic tables which list all possible values of the logical variables in any 

logical statement. Each logical variable can take only two values; a statement with n 

variables requires a table with 2n rows. Truth tables are constructed from IR by 

transforming expressions into atomic formulas. 
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More explanation in the next section, like generating SIR’s from SKM, is introduced. 

 

 

 

 

 

 

 

 

 

4.3 Semantic Knowledge as Skill Inference Rules (SIR)  

This section explains the First Order Logic (FOL) representation used to construct 

SIR from SKM. Translating SKM to SIR by using If-then rules are applied to SKM. The 

cognitive verb levels among concepts are extracted. Then, the lexical database is used to 

extract WordNet (WN) relationship among concepts obtained. The SKM represents the 

connection between concepts in form of WordNet and Cognitive relationships  (Guo et al., 

2016). 

Table 4.1. KB logical 

Connectives 

Connective Meaning 

 Not 

 And 

 Or 

 Implication 

 Biconditional 

Table 4.2. Truth Tables 

A B A AB AB AB AB 

False False True False True True True 

False True True False True True False 

True False False False True False False 

True True False True False True True 
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4.4 Skill Inference Rules (SIR) Mining 

The representation of SIR is based on using If-then rules. If-then rules are applied 

to SKM to generate different templates of Skill Inference Rules. Based on the Cognitive 

Skills relationships that generated in Chapter Two SIR derived from it. The structure of 

SIR’s used the formal structure of the First Order Logic (FOL). The FOL defines different 

types of symbols (Lyons, 1968): 

Constant: It represents the domain objects. 

Logic Variable: It stands for any one object in the domain (e.g. x, y, z) that is used to write 

the rules. 

Predicate: It describes the relationships between two concepts. There are four 

relationships: Understanding, Appling, Analyzing-Evaluating, and Creating. It is important 

to note that each predicate has a value of either True or False. In the generated rules, it is 

necessary to decide whether the rules are True of False. This study makes the assumption 

that all of the generated rules are True.  

This Chapter focuses primarily on mining SIR over predication. Cognitive 

relationships between each two concepts translates into multiple atoms. The conversion is 

applied to the graph so that it consists of a diverse collection of atoms. Four different rules 

are generated: Skill Inference Rules based on Cognitive predication, Skill Inference Rules 

based on Hypernym predication, Skill Inference Rules based on Hypernym and Cognitive 

predication, Skill Inference Rules based on Hyponym predication, and Skill Inference 
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Rules based on Hyponym and Cognitive predication. The next sections describe those rules 

in detail. 

4.5 Skill Inference Rules (SIR) Based on Cognitive Prediction 

These are rules of inferring the relationship between two nodes in SKM where there 

is no direct edge in between by using the directly connected relationships. For example, 

consider three nodes A, B, and C. If node A is connected to node B and node B connected 

to node C, then there is a heightened probability that node A will also be connected to node 

C. In the language of social network, the friend of your friend is also likely to be your 

friend. In terms of graph topology, transitivity means the presence of a heightened number 

of triangles in the graph. The Skill Inference Rules, with respect to cognitive connection 

are divided into four kinds: Skill Inference Rule (Understanding), Skill Inference Rule 

(Analyzing), Skill Inference Rule (Appling), and Skill Inference Rule (Creating). As shown 

in Figure.5.1, the Figure illustrates three formats A, B, and C, where A is the language 

description of each SIR, B is the graphic illustration, and C is the SIR template that is used 

in the next chapter to infer Cognitive Skill Dependencies (CSD) between concepts. 

Skill Inference Rules (Understanding) is a connection between two concepts that 

uses the Understanding cognitive relationship as a pivotal part of the rule. Different 

combinations of the Skill Inference Understanding based with WN relationships also exist 

(as illustrated in Table 5.3). 
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Figure 4.1. Skill Inference Rule Understanding. 
 

 
 

 

 

 

 

 

 

 

Skill Inference Rule (Applying) is a Skill Inference Rule that uses Applying 

relationships as a pivotal part of the rule. Different combinations of the Skill Inference 

Applying based rule exist (as illustrated in Table 5.3). 

  

 

Table 4.3. Combination of the Skill Inference Rule Understanding 

with WN. 

Rule Name IF (A and B)   THEN(C) 

Understanding. Understanding BL1. BL1 BL1 

Understanding. Applying BL1. BL2 BL1|BL2 

Understanding. Analyzing BL1. BL3 BL1|BL3 

Understanding. Creating BL1. BL4 BL1|BL4 

Understanding. Superclass BL1. W1 BL1|W1 

Understanding. Subclass BL1. W2 BL1|W2 

Understanding. Super part BL1. W3 BL1|W3 

Understanding. Subpart BL1. W4 BL1|W4 
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Figure 4.2. Skill Inference Rule Applying. 

 

  

 

 

 

 

 

 

 

Skill Inference Rule (Analyzing) is cognitive level that uses analyzing relationships 

as a pivotal part of the rule. Different combinations of the Skill Inference Analyzing rule 

also exist (as illustrated in Table 5.5).  

 

 

 

 

Table 4.4. Combination of the Skill Inference Rule Applying 

with WND Rules. 

Rule Name IF (A and B) THEN(C) 

Applying. Applying BL2. BL2 BL2 

Applying. Understanding BL2. BL1 BL2|BL1 

Applying. Analyzing BL2. BL3 BL2|BL3 

Applying. Creating BL2. BL4 BL2|BL4 

Applying. Superclass BL2. W1 BL2|W1 

Applying. Subclass BL2. W2 BL2|W2 

Applying. Super part BL2. W3 BL2|W3 

Applying. Subpart BL2. W4 BL2|W4 
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Figure 4.3. Skill Inference Rule Analyzing.  

 

Table 4.5. Combination of the Skill Inference Rule Analyzing 

with WND Rules. 

Rule Name IF (A and B) THEN(C) 

Analyzing. Analyzing BL3. BL3 B3 

Analyzing. Understanding BL3. B1 BL3|BL1 

Analyzing. Applying BL3. BL2 BL3|BL2 

Analyzing. Creating BL3. BL4 BL3|BL4 

Analyzing. Superclass BL3. W1 BL3|W1 

Analyzing. Subclass BL3. W2 BL3|W2 

Analyzing. Super part BL3. W3 BL3|W3 

Analyzing. Subpart BL3. W4 BL3|W4 

 

Skill Inference Rule (Creating) is a cognitive level that uses Creating cognitive 

relationships as a pivotal part of the rule (as illustrated in Figure 4.4). Different 

combinations of the Skill Inference Creating (as illustrated in Table 4.6). 
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Figure 4.4. Skill Inference Rule Creating 
 

Table 4.6. Combination of the Skill Inference Creating with 

WND. 

Rule Name IF (A and B) THEN(C) 

Creating. Creating BL4. BL4 BL4 

Creating. Understanding BL4. BL1 BL4|B1 

Creating. Applying BL4. BL2 BL4|B2 

Creating. Analyzing BL4. BL3 BL4|B3 

Creating. Superclass BL4. W1 BL4|W1 

Creating. Subclass BL4. W2 BL4|W2 

Creating. Super part BL4. W3 BL4|W3 

Creating. Subpart BL4. W4 BL4|W4 

4.6 Skill Inference Rules (SIR) Based on Hypernym Prediction 

This type of rule is a rule of inferring the cognitive relationship using identified 

hypernym relationships among concepts. A hypernym is a particular semantic WN 

relationship represented as hierarchical relationships among concepts. A concept is 

considered a hypernym of another if its meaning lists the second concept as an example of 

its own meaning, for example, consider two nodes A and B and A has children Ai. If node 

A is connected to node B as a hypernym relationship, then there is a heightened probability 
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that children of node A will also be connected to node B as a cognitive relationship. The 

Transitive relationship with respect to cognitive skill levels is divided into four kinds: 

Understanding, Analyzing, Appling, and Creating (As shown in Figure.4.5, Figure.4.6, 

Figure.4.7, and Figure.4.8, respectively). 

 

Figure 4.5. Skill Inference Rule Understanding and SubClass. 

 

Figure 4.6. Skill Inference Rule Analyzing and SubClass 
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Figure 4.7. Skill Inference Rule Appling and SubClass 

 

Figure 4.8. Skill Inference Rule Creating and SubClass. 
 

4.7 Skill Inference Rules (SIR) Based on Hypernym and Cognitive Predication  

It is a rule of inferring the Hypernym WordNet relationship using identified 

Cognitive relationships among concepts. For example, consider two nodes A and B and A 

has children Ai. If the children of concept A are connected to concept B in a Cognitive 

relationship, then there is a heightened probability that A will also be connected to node B 

as a Hypernym relations. B is then a hypernym of A if every A is a kind of B. In the language 
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of social network, the friend of your friend is also likely to be your friend. In terms of graph 

topology, transitivity means the presence of a heightened number of triangles in the graph.  

This rule with respect to cognitive skill levels is divided into four kinds: 

Understanding, Analyzing, Appling, and Creating (as shown in Figure.4.9, Figure.4.10, 

Figure.4.11, and Figure.4. 12, respectively). 

 

Figure 4.9. Skill Inference Rule SubClass and Understanding. 

 

 

Figure 4.10. Skill Inference Rule SubClass and Analyzing. 
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Figure 4.11. Skill Inference Rule SubClass and Applying 

 

Figure 4.12. Skill Inference Rule SubClass and Creating 

 

4.8 Skill Inference Rules (SIR) Based on Hyponym Predication 

The opposite relationship for a hypernym in WN is a hyponym. This rule that 

concludes the cognitive relationship uses identified Hyponym relationships among 

concepts. For example, if two concepts A and B and A has children Ai, if node A is 

connected to node B as a Hyponym relationship, then there is a heightened probability that 

the children of node A will also be connected to node B as a CSBT relationship. R is then 
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Transitive if for all A, B, and C. In terms of graph topology, transitivity means the presence 

of a heightened number of triangles in the graph.  

 

Figure 4.13. Skill Inference Rule Hyponym and Understanding 
 

 

Figure 4.14. Skill Inference Rule Hyponym and Analyzing 
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Figure 4.15. Skill Inference Rule Hyponym and Applying. 
 

 

Figure 4.16. Skill Inference Rule Hyponym and Creating. 

4.9 Skill Inference Rules (SIR) Based on Hyponym and Cognitive Predication 

This rule infers the Hyponym relationship by using identified cognitive 

relationships among concepts. For example, if two nodes A and B, and A has children Ai if 

the children of concept A are connected to concept B as a cognitive relationship, then there 

is a heightened probability that A will also be connected to node B as a Hyponym 

relationship. B is a Hyponym of A if every A is a kind of B.  
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Figure 4.17. Skill Inference Rule Understanding and Hyponym. 

 

 

Figure 4.18. Skill Inference Rule Analyzing and Hyponym. 

 

 

Figure 4.19. Skill Inference Rule Applying and Hyponym. 
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Figure 4.20. Skill Inference Rule Creating and Hyponym. 

 

4.10 Summary and Discussion 

This chapter implies FOL to facilitate the representation of SKM formalism to 

extract the SIR’s. A novel and interesting logic foundation is used to produce a variety of 

SIR’s templates from Cognitive Dependencies and WordNet Dependencies.  

The Skill Inference Rules (SIR) were generated in this Chapter. The generated SIR’s 

are simple because if the SIR is too complex, it is possible for it to be neither valid nor not-

valid. In other words, there would be a chance of generating a not-valid SIR. The SIR’s in 

this experiment are generated by a group of Ph.D. students in the research phase with 

expertise in the Algorithm area.  

These templates are then used to infer Cognitive Skill Dependencies in the Chapter 

Six. Developing a straightforward and easy-to-implement methodology for transforming a 

SKM into the corresponding SIR’s breaks many limitations and obstacles in the extraction 

of Cognitive Skill Dependencies. 
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The chapter demonstrates a background about knowledge representation and FOL. 

It also explains translating SKM to SIR and how to generate Cognitive Dependencies and 

WordNet Dependencies templates. The construction of the rules introduced by details via 

language and graphical description are different categories of templates that are proposed 

and constructed.  

The next chapter introduces the proposed model to infer the Cognitive Skill 

Dependencies (CSD). It uses a probability-based inference. It will be described in greater 

detail in Chapter Five. 
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 THE APPLICATION OF MCKSN MODEL 

5.1 Introduction  

This final chapter builds upon the material discussed in the previous chapters. It 

explores the Markov Cognitive Logic State Network (MCKSN), a probability-based model 

that is used for inferring Cognitive Skill Dependencies attached with a degree of 

probability. In this chapter, the main concepts used in the MCKSN model are presented. 

First, the Markov Network is introduced as an essential concept for this study, followed by 

an explanation of Markov Logic Network (MLN), finally, a description of applying 

MCKSN model to infer Cognitive Skill Dependencies is presented.  

5.2 Markov Network (MN) 

The theory of the Markov Network (MN) provides suitable framework to model the 

dependencies between objects in a domain such as the dependencies between pixels in 

image processing tasks, identifying Twitter spammers based on their dependencies, and the 

analysis of social network structure and other interesting application. In this context, MN 

is used as a framework to model the dependencies between Cognitive Skill in graph form 

with respect to the node neighbors (set of cliques) 

A Markov Network is defined as an undirected graph MN= (V, E), where each node 

vi in the node set V represents a random variable.  E ⊆ V×V is a set of edges connecting 

the nodes. Each edge ei,j represents conditional dependence relationships between the 

random variables vi and vj. Two random variables are conditionally dependent on each 
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other if they have an edge (direct link)(Getoor & Taskar, 2007; Wasserman & Pattison, 

1996)  .According to  (Clifford, 1990; Kemeny, Snell, & Knapp, 2012; Li, 2009; Winkler, 

2012) nodes in an MN represent random variables and Markovian properties described as 

the following: 

• A node is conditionally independent of all other nodes, given its neighbors 

(as in Figure 5.1). 

A ⊥ 𝑟𝑒𝑠𝑡| 𝐵, 𝐶,D 

• Any   two non-adjacent nodes are conditionally independent of each other, 

given all other nodes (as in Figure 5.1). 

A ⊥ 𝐺| 𝑟𝑒𝑠𝑡 

• Any two subsets of nodes are conditionally independent, given a separating 

subset where every path from a node going in the first subset to a node in 

other subset passes through the rest of the nodes (as in Figure 5.1). 

A, B ⊥ 𝐹, 𝐺| C, D, E 

 

Figure 5.1. an Example of a Small Markovian Properties Graph. 
 

The edges represent a direct probabilistic dependency between the random 

variables. If there is a direct edge between any two random variables, then there is a 

C

F

B
D

E

A

G
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dependency connection between them. In MN, if two random variables don’t have a 

dependency, they should not have a path. However, it is possible for there to be an indirect 

path, or for the variables to be indirectly dependent on each other. 

The dependency connection between random variables could be a direct or indirect 

connection. Those types of connections are illustrated in Figure 5.2 (a) and5.2 (b). 

 

Figure 5.2. Example of the Nodes Connection in Markov Network. 

 

Consider four nodes A, B, C and D. From a graphical point of view, the connection 

between nodes expresses the type of relationships between them if it is direct (Figure 5.2.a) 

or indirect (Figure 5.2.b). Suppose that the conditional probability represents the 

connection between nodes.  

In Figure, 5.2.a the nodes A and C are independent of each other, but they are 

conditionally dependent given B. While Figure 5.2.b represents both situations incorrectly; 

the nodes A and C are dependent by transitivity but are conditionally independent given B 

(Sutton & McCallum, 2006).  

This can be expressed in a slightly different way by considering the joint 

distribution of A and B, given C, which can be written as follows: 
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𝑃(𝑎, 𝑏|𝑐) = 𝑝(𝑎|𝑐)𝑝(𝑏|𝑐) 

Figure 6.2.c shows a cyclic dependence structure represented as a directed graph 

where nodes are conditionally independent given their neighbors. While Figure 5.2.d 

captures the conditional independence of A and C given B and D, also, B and D are 

conditionally dependent given C. The modeling the conditional probability between 

random variables depends on the graph structure and direction (Friedman, 2004). The next 

part explains the input and output for the MN with a practical example. 

5.2.1 Markov Blanket 

The Markov Blanket of a random variable (Target) consists of all other random 

variables that make this target conditionally independent of all the other random variables. 

In other words, the node is independent of the rest of the nodes in the graph given its first 

level neighbors (Margaritis & Thrun, 2000). 

Markov Network can answer many questions. One of the interesting question MN 

can answer is to estimate the probability of a given outcome of the random variable given 

the outcome of certain other random variables. The following section presented an example 

of using MN to estimate the hidden dependencies of the transmission of bad habitats 

between friends given some evidence in small social network. 
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5.2.2 Example of Markov Network 

Assume that four random variables A, B, C, D (as in Figure 5.3) correspond with 

four students Alice, Bob, Charles, Debbie studying together in a group (Ivanova, 2017; 

Koller & Friedman, 2009).  

 

Figure 5.3. A Simple Example of a Markov Network 

 

The potential function in this example indicates whether the students had a 

misconception due to the potentially confusing material (as given in Table 5.1). In this 

example, assuming that the query is the probability of Bob (B) having a misconception, 

given the evidence that Charles (C) does not have the misunderstanding, the probability 

is written as: 

𝑝(𝑏1|𝑐0) 

As in Table 5.1, the numbers in each table indicate the local agreement of each 

variable takes a joint assignment. The intuition in this example says that if two friends (A 

and B) study together, then they will influence each other somewhat. As for this influence 

concerning misconceptions, they are represented in the formula as follows: a0=has 

misconception a1=no misconception b0=has misconception, and b1=no misconception. 

This indicates that if A and B are friends and study together then an edge between them 



68 

 

indicates that if one of them has a misunderstanding, the other one is also likely to have the 

same misconception, denoted as (a0,b0), which is 30 in Table 5.1 Likewise, if one of them 

has no misconception, the others are also likely to have no misconception, denoted as 

(a1,b1) which is equal to 10 in Table 5.1. Finally, the other two numbers in the middle mean 

that their disagreement is very low. The table also shows the similar notions of happiness 

for the other pairs in the graph, given as ∅(B,C), ∅(C,D), and ∅(D,A).  Given the 

information from the graph, it is clear that B and C really seem to agree with each other. 

It's very difficult for them to have opposing opinions. This doesn't fit neatly into a directed 

graph, and because the influence flows in both directions, utilizing the Markov Network is 

proposed. On the other hand, C and D like to argue with each other all the time. For 

example, if one of them says that it's going to rain today, the other one is going to say that 

it's sunny today. Therefore, the preferred assignments for their local opinion would be the 

one in which they disagree with one another.   

 

 

Table 5.1 A Simple Example of Markov Network Variables with their Potential Function 

Assignment. 

Random 

Variables 

∅(𝑨, 𝑩)  Random 

Variables 

∅(𝑩, 𝑪)  Random 

Variables 

∅(𝑪, 𝑫)  Random 

Variables 

∅(𝑫, 𝑨) 

a0 b0 30  b0 c0 100  c0 d0 1  d0 a0 100 

a0 b1 5  b0 c1 1  c0 d1 100  d0 a1 1 

a1 b0 1  b1 c0 1  c1 d0 100  d1 a0 1 

a1 b1 10  b1 c1 100  c1 d1 1  d1 a1 100 
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Mathematically speaking, to define a joint probability distribution, the notion of the 

product of factors are used (Pearl, 2014). They can then be multiplied together using the 

formula as follows: 

𝑝(𝑥) =
1

𝑍
(∏ ∅𝑖(𝑋)𝑖=1 )                     (5.1) 

Where: 

X ∈ {A, B, C, D}  

x1: student has the misconception  

x0: Student does not have a misconception. 

Z: is a Partition Function. 

Applying Equation 5.1 to these factors resulted in the outcome illustrated in Table 

5.2.  

Table 5.2 A Simple Example of Normalized and Non-normalized Random Variables. 

Random Variables  

A B C D Nonnormalized Normalized 

a0 b0 c0 d0 300000 0.04 

a0 b0 c0 d1 300000 0.04 

a0 b0 c1 d0 300000 0.04 

a0 b0 c1 d1 30 0.0000041 

a0 b1 c0 d0 500 0.000069 

a0 b1 c0 d1 500 0.000069 

a0 b1 c1 d0 5000000 0.69 

a0 b1 c1 d1 500 0.000069 

a1 b0 c0 d0 100 0.000014 

𝑍 = ∑ ∅𝑖(𝑥)

𝑋

 
(5.1.1) 
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a1 b0 c0 d1 1000000 0.14 

a1 b0 c1 d0 100 0.000014 

a1 b0 c1 d1 100 0.000014 

a1 b1 c0 d0 10 0.0000014 

a1 b1 c0 d1 100000 0.014 

a1 b1 c1 d0 100000 0.014 

a1 b1 c1 d1 100000 0.014 

Total  7,201,840  

To normalize those factors, a partition function (Pearl, 2014) was used. This 

function can be seen as a normalizing constant that sums up all these entries, resulting in 

the value Z (as in Table 5.2), where Z = 7,201,840. By dividing all the entries by Z, the 

probability distribution is normalized (as in Table 5.2). Any desired probability can be 

obtained from the joint distribution as usual. This example attempts to compute the 

following: 

𝑝(𝑏1|𝑐0) =
𝑝(𝑏1 ∩  𝑐0)

𝑝(𝑐0)
 

(5.2) 

𝑝(𝑏1|𝑐0) = 
 

0.000069 + 0.000069 + 0.0000014 + 0.014

0.04 + 0.04 + 0.000069 + 0.000069 + 0.000014 + 0.14 + 0.0000014 + 0.014
 

 
 
 

(5.2.1) 

 

𝑝(𝑏1|𝑐0) =
0.014

0.234
 = 0.06 (5.2.3) 

 
Based on the results of this, it can then be concluded that if Charles does not have 

a misconception, Bob is only 6% likely to have one as well. 
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5.3 Markov Logic Network (MLN) 

Markov Logic Network (MLN) provide a powerful probabilistic modeling 

framework based on first-order logic and probability inference to infer the hidden 

relationships between objects. MLN can be used in different application such extracting 

many kinds of syntactic and semantic information, Drug event extraction, and Concept 

extraction in ontology learning. There is different type of probability-based techniques that 

has been used in the previous studies for extracting the semantic relations from the text. 

But MLN add a new flavor in terms of using a descriptive language such as First Order 

Logic(FOL) to build rules that can guide the inference of the relationships. 

The simplest way to understand Markov Logic as introduced by (Richardson & 

Domingos, 2006) is to combine FOL and MN. The main idea behind Markov Logic is that, 

by attaching strengths to a Rules template, these IR’s can be used to infer fact between 

objects. The formal definition is mentioned in (Richardson & Domingos, 2006). MLN is 

formally defined as: 

Definition: A Markov Logic Network is defined by MLN as an undirected graph 

G= (V, E), where V is a set of facts, each node of which represents a fact. E ⊆ V×V is a set 

of edges connecting the facts and representing the correlations between the facts. 

The nodes in an MLN represent facts, where the facts are equivalent to the random 

variables in MN. The fact describes relations between two logic variables which is the 

constants in the domain- Friends (‘Anna’, ‘Bob’). This type of fact is called a ground fact 

if it maps to specific individual objects in the domain. The set of ground facts define the 
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structure of the Markov Logic Network (Mario&Matr, 2014).  The facts in the real world 

is true or false in most domains it is challenging to come up with a fact that is always true, 

hence the reason for modeling random variables to facts. It is important to note that each 

fact has a value of either True or False. In the generated facts, it is necessary to decide 

whether the IR’s are True or False. 

The facts in an MLN should have the same assumptions as those in an MN. More 

than one fact can represent an IR. The IR’s are expressed according to the syntax of the 

logical language. The primary goal of IR’s is to infer new facts from existing ones. One 

example is fatherOf (x, y) >> sonOf (y, x); in every IR, if x is the father of y, it is implied 

that y is also the son of x. In this example, the inference is defined as a technique to infer a 

new fact from the IR. If we know that x is the father of y, then y also being the son of x 

could be readily inferred. For definitions and illustrative examples of the logic theories, the 

reader is invited to consult a textbook like (Fitting, 2012; Makkai & Reyes, 2006; 

Smullyan, 2012; Sowa, 2000). Two facts are connected by an edge if both facts appear in 

the same IR where the edge represents the dependency relationship between them. If the 

IR combines the relationship between a few facts, one may influence the other’s 

dependence. 

Input:  

1. Constants: are fixed objects in the domain. 
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2. Hypothesis Facts: are an atomic formula consisting of a predicate with a suitable 

number of arguments. Each fact maps term to term where the terms is an expression 

representing an object in the domain. 

3. Hypothesis Inference Rule (IR): are FOL, IR’s consisting of one fact or more 

connected using logical connectives. In the following example, facts are given 

about friendship relations and smoking habits. 

4. The Potential Function is a composed of simple values for the IR, expressed with 

integers {0, 1}. For each IR, this function assumes a value of 1 for a state of the 

clique if the truth values of the nodes make the IR true, while considering a value 

of 0 for a state of the clique if the truth values of the nodes make the IR false. 

5. User Query: estimates the probability of a given outcome of a fact given the 

outcome of certain other ground facts. 

Output: 

MLN can estimate the probability of a given outcome of a fact given the outcome 

of certain other ground facts. 

5.4 Example of Markov Logic Network (MLN) 

The motivating example is used to explain the procedure of applying MLN. This 

example will model the smoking habits between friends in a social network (Mario&Matr, 

2014; Richardson & Domingos, 2006). In other words, people with friends who smoke 

would also smoke, and that people who smoke would then have cancer. 
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Based on several studies done between 1971-2000 about the smoking habits of a 

social network, the study showed that some people who don’t smoke but who have friends 

that smoke became smokers after several years. Also, people don’t stop smoking at random 

but stop smoking in clumps. If a friend of a person stops smoking, that means that the 

person will be more likely to quit smoking themselves, and if the friend doesn’t stop, the 

person would have a harder time to stop smoking by themselves. Using MLN, this problem 

can be modeled by using a few facts and IR’s. To introduce the input for the MLN model 

by using the example above, suppose that the IR’s in Figure 5.4 and Figure 5.5 are given. 

The IR in Figure 5.4 means that smoking causes cancer. Also, the SIR in Figure 5.5 implies 

that IF x and y are friends and x is a smoker that means that y will be a smoker too due to 

influences from each other. The input for the MLN procedure is as follows:  

• Constant: assume that there is a very simple social network which includes two 

people (‘Anna’ and ‘Bob’). 

• Two facts 

 

 

Figure 5.4. The Fact Template 
 

 

 

 

Figure 5.5. The Inference Rule (IR) Template 

 

• A fact about this social network (Smokes(‘Bob’)). 

• The potential function is defined as: 

f(x) = {
1              if     𝐼𝑅  is  true(Has value = 1 in the truth table)
0                                                                                       otherwise

 

Smokes (x) => Cancer (x) 

Friends (x, y) => (smokes (x) <=> smokes (y)) 
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• The query is that if there is the fact that Bob smokes and he is Anna’s friend 

and Anna does not smoke, what is the probability that Anna will become a 

smoker, and that both Anna and Bob will develop cancer. 

 

 

 

 

 

 

 

 

 

Figure 5.6. Markov Logic Network Procedure. 
 

Figure 5.6 represents the MLN Procedure as follows: The input of the MLN is a set of The 

Inference Rules (IR) (as in Figure 5.4 and Figure 5.5), a fact [Smokes (Bob)], and two 

constants (Anna and Bob), where the output is an estimation of the maximum probability 

of all possible smoking and cancer fact being True. 

Figure 5.7 was created where A stands for Anna, and B stands for Bob. The predicate 

that had a True value (which is the truth grounding) became a clique (according to Table 

5.8 and Table 5.9). 

Procedure 1:  Markov Logic Network  

Input:  The Inference Rule (IR), a fact, and two constants (Anna and Bob) 

Output: Estimation of the Maximum Probability of Smokes (Anna), Cancer (Bob), 

and Cancer (Anna) of being True. 

// The Procedure steps 

1. Estimate the strength of the IR. 

1.1. Create all possible worlds based on the given constants (Anna and Bob) and 

the predicate (ground atoms) 

1.2. Create Truth Table and find the line (Cases) in the Truth Table where the 

target predicate is True 

1.3. Consider the predicates which have a value equal to True to be a clique. 

2. Estimation the maximum probability of the smoking and cancer facts between 

friends in a social network based on the given fact which is Bob(B) smokes. 

Return: Maximum Probability of each fact. 
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Figure 5.7. The Ground Markov Network for Social Network Example. 
 

The explanation of the MLN procedure is as follows: 

Step 1: Estimate the Strength of the Inference Rule (IR). 

In this step, Markov Logic adds strength to each IR to indicate the confidence of 

the knowledge. In other words, the strength reflects how strong the IR is. For example, the 

strength of the generated IR’s in this example is 1.5 and 1.1, respectively 

1.5 Smokes (x) => Cancer (x) 

 

The mathematical explanation of the used method begins by estimating the strength 

of the IR. In this example, the strengths are estimated by maximizing the pseudo-log-

likelihood of the entire set of ground atoms, as the probability distribution over the possible 

worlds x for the Markov Logic Network based on (Richardson & Domingos, 2006) are 

given by: 

Ps(x)=
exp( ∑ Sifi(x)n

i=1

Z
     

 where: 

 

(5.3) 

 

1.1    Friends (x, y) => (smokes (x) <=> smokes (y) 
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Z= ∑ Sifi
X

(x) 
                (5.3.1) 

Where:  

𝒇𝒊(𝒙): is the number of true groundings (cliques) of the Inference Rule (IR), and  

𝑺𝒊: is the IR strength that needs to be estimated from the given data. 

The log-likelihood concerning a particular strength Si is given by Equation 5.3. By taking 

a log for Equation, 5.3 (Lowd & Domingos, 2007). 

log Ps(X=x) = Log {
exp( ∑ sifi(x)i=1 )

Z
 }     

       (5.3.2) 

log Ps(X=x) = ∑ Sifi(x)

i

- log Z 
       (5.3.3) 

A derivative of the log-likelihood of a IR with respect to its strength: 

∂

∂sj

log Ps(X=x)= 
∂

∂sj

∑ Sifi(x)

i

-
∂

∂sj

log Z 
                    (5.3.4) 

= f
i
(x)-

1

Z

∂

∂sj

Z 
 (5.3.5) 

= f
i
(x)-

1

Z
∑ x'

∂

∂sj

exp (∑ Sifi(x
'
)

i

) 
  (5.3.6) 

= f
i
(x)-

1

Z
∑ x'

∂

∂sj

exp (∑ Sifi(x
'
)

i

) si(x') 
 (5.3.7) 

Derivative of sifi(x) with respect to Si  is zero for i != j  

f
i
(x)-

1

Z
∑ x'

∂

∂si

exp (∑ Sifix
'

i

) f
i
(x') = 0 

 (5.3.8) 



78 

 

Then the update IR with gradient ascent for Si is:  

f
i
(x)-

1

Z
∑ x'

∂

∂si

exp (∑ Sifix
'

i

) f
i
(x') = 0 

  (5.3.9) 

Applying the steps above for this example, the goal is to estimate of the strength of the IR’s 

in Figure 5.4 and Figure 5.5 by using Equation 5.3.2. 

S Smokes (x) => Cancer (x) 

1.5 Smokes (x) => Cancer (x) 

 

S    Friends (x, y) => (smokes (x) <=> smokes (y)) 

1.1 Friends (x, y) => (smokes (x) <=> smokes (y) 

As shown above, the strength of the IR is 1.5 and 1.1 respectively. The steps can then be 

shown to estimate the strength of each IR. 

Step 1.1: Create all outcomes (atomic formulas) based on the given constants and 

facts. Consider that constants (Anna and Bob), one fact [smokes (Bob)] and two IR’s 

[Friends (x, y) => (smokes (x) <=> smokes (y)] and [Smokes (x) => Cancer (x)] are given 

to create all possible outcomes as in Table 5.3. There are 2 entities (Constants): (Anna and 

Bob).  

The IR has three facts (Friends, smokes, Cancer), all of which are binary relations 

from propositional logic(Cheng, Wan, Buckles, & Huang, 2014; Mario&Matr, 2014; 

Urbanek & Theus, 2008). The number of possible ground atoms for each relation = nr., 

where n: is a number of constants, and r: is the number of relations. Then, the number of 

possible ground atoms for each relation = 23 = 8.  
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Table 5.3 All Possible Ground Atoms. 

Friends 

Friends (Ana, Ana) 

Friends (Ana, Bob) 

Friends (Bob, Bob) 

Friends (Bob, Ana) 

Cancer 

Cancer (Ana) 

Cancer (Bob) 

Smokes 

Smokes (Ana) 

Smokes (Bob) 

 

Step 1.2: Create a Truth Table for each atomic formula and find the line (Cases) in 

the Truth Table where the target predicate is True. 

In Step 1.1, all possible atomic formulas were generated; in this step, the truth table 

was created for each atomic formula. The truth table for all atomic formulas are in Table 

5.4, Table 5.5, Table 5.6, and Table 5.7 

 

  

 

 

Table 5.4. The Truth Table for Atomic Formula 1 

Smokes (Anna) Cancer (Anna) IR 

(If-Then) 

Potential Function f(x) 

0 0 1 1 

0 1 1 1 

1 0 0 0 

1 1 1 1 

Table 5.5. The Truth Table for Atomic Formula 2 

Smokes (Bob) Cancer (Bob) IR 

(If-Then) 

Potential Function f(x) 

0 0 1 1 

0 1 1 1 

1 0 0 0 

1 1 1 1 
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Finding the line (Cases) in the Truth Table where the target predicate is True for 

the IR’s in Figure 5.4 and Figure 5.5 are illustrated in Table 5.8 and Table 5.9. 

 

 

 

 

 

 

 

 

 

 

Table 5.6. The Truth Table for Atomic Formula 3 

Friends (Anna, Bob) Smokes (Anna) Smokes (Bob) IR Potential Function f(x) 

1 1 0 0 0 0 

1 1 1 1 1 1 

1 0 0 1 1 1 

1 0 1 0 0 0 

0 1 0 0 1 1 

0 1 1 1 1 1 

0 0 0 1 1 1 

0 0 1 0 1 1 

Table 5.7. The Truth Table for Atomic Formula 4 

Friends (Bob, Anna) Smokes (Anna) Smokes (Bob) IR Potential Function f(x) 

1 1 0 0 0 0 

1 1 1 1 1 1 

1 0 0 1 1 1 

1 0 1 0 0 0 

0 1 0 0 1 1 

0 1 1 1 1 1 

0 0 0 1 1 1 

0 0 1 0 1 1 

Table 5.8. The potential Function for Atomic Formula 1 and 2. 

Potential Function 

Atomic Formula 1 

Potential Function 

Atomic Formula 2 

fi(x) 𝑒𝑓𝑖(𝑥)∗𝑠𝑖  

1 1 2 e2s 

1 1 2 e2s 

0 0 0 1 

1 1 2 e2s 

Table 5.9. The potential Function for Atomic Formula 3 and 4. 

Potential Function 

Atomic Formula 3 

Potential Function 

Atomic Formula 4 

fi(x) 𝑒𝑓𝑖(𝑥)∗𝑠𝑖 

0 0 0 1 

1 1 2 e2s 

1 1 2 e2s 

0 0 0 1 

1 1 2 e2s 

1 1 2 e2s 

1 1 2 e2s 

1 1 2 e2s 
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Let us start calculating the strength for the IR in Figure 5.4 as follows: 

 

As seen in Equation 5.3.14 the Equation cannot be computed in closed form, but it 

can be found using an optimization gradient descent method known as the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm (Biegler, 2010; Hasdorff, 1976; 

Jahn, 2007). A Python scikit package was also used to calculate it (Pedregosa et al., 2011). 

The ground formulae created from the same IR shared their strengths.  

Quasi-Newton methods are well-known methods in solving optimization problems. 

Ps(x)=
exp( ∑ Sifi(X)n

i=1

Z
    

where: 

 

Z= ∑ Sifi
X

(x)  

First, let us calculate the Numerator in the above Equation  

Ps(x)=
exp(2s+2s+1+2s)

Z
 

(5.3.10) 

Ps(x)=
(e

2s
.e2s.1.e2s)

Z
 

(5.3.11) 

Ps(x)=
(e

2s
.e2s.1.e2s)

Z
=

(e
2s

)

Z

3

=
(e

6s
)

Z
 

(5.3.12) 

Second let us calculate the Denominator in Equation 5.3.  

Since Z= ∑ SifiX (x)  

Then: 

 

Z = 3 e2s + 1 (5.3.13) 

By substituting in Equation 5.3:  

Ps(x)=
e6s

3 e
2s + 1

 
 

(5.3.14) 
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These methods, which use the updating formulas for approximation of the Hessian, 

were introduced by Davidon in 1959, and later popularized by Fletcher and Powell in 1963 

to give the Davidon-Fletcher-Powel (DFP) method. In 1970 Broyden, Fletcher, Goldfarb 

and Shanno developed the idea of a new updating formula, known as BFGS, which has 

become widely used in many researches. In this dissertation the BFGS method was used to 

estimate the strength of the IR, which is equal to 1.5. By applying the same steps for the 

SIR in Figure 5.5. 

1.5 Smokes (x) => Cancer (x) 

As seen in Equation 5.3.19 the Equation cannot be computed in closed form, but 

by using the BFGS method the strength of the IR is equal to 1.1 

Ps(x)=
exp( ∑ Sifi(X)n

i=1

Z
   

where: 

 

 

Z= ∑ Sifi
X

(x) 
 

First, let us calculate the numerator in the above Equation  

Ps(x)=
exp(1+2s+2s+1+2s+2s+2s+2s)

Z
 

(5.3.15) 

Ps(x)=
(1.e

2s
.e2s.1.e2s.e2s.e2s.e2s)

Z
 

(5.3.16) 

Ps(x)=
(1.e

2s
.e2s.1.e2s.e2s.e2s.e2s)

Z
=

(e
2s

)

Z

6

=
(e

12s
)

Z
 

(5.3.17) 

 

Second let us calculate the denominator in Equation 5.3. 
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1.1 Friends (x, y) => (smokes (x) <=> smokes (y) 

 

Step 1.3: Consider the predicates which require a value equal to be True in order to be a 

clique. 

In the second step, the possible world for each atomic formula was created by using 

truth tables. The result of that process is called an observation. After the ground predicates 

are identified, it should be transformed to a graph where nodes are the facts, and edges 

between them are added if two ground facts appear in the same IR. In this case, the 

groundings of the predicates were {Smokes (Bob), Smokes (Anna), Cancer (Bob), Cancer 

(Anna), friends (Bob, Anna), friends (Anna, Bob), friends (Bob, Bob), friends (Anna, 

Anna)}. According to the atomic formulas in Table 5.3, the ground Markov Network in  

 
Step 2: Estimate the maximum probability of the smoking and cancer facts between 

friends in a social network based on the given fact which is Bob(B) smokes. 

What the estimate means in this context was the act of querying the Markov Logic 

Network. Since the MLN could represent the full joint probability distribution over the set 

 

Since Z= ∑ SifiX (x)     then: 

 

 

Z = 3 e2s + 1 (5.3.18) 

By substituting in Equation 5.3 

 

 

𝑃𝑠(𝑥) =
𝑒12𝑠

6 𝑒2𝑠 +  2
 

(5.3.19) 
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of random variables, it could then be used to answer any probabilistic query about the world 

(de Oliveira, 2009; Getoor & Taskar, 2007). There are two common types of queries used 

for different purposes: 

• The Conditional Probability Query in the form p(Y|E=e), where Y is the query 

variable and E is the evidence. That is, the posterior probability distribution over 

the values y of Y is conditioned on the fact that E = e. For example, P (Beach | 

Sunny=true, Hot=true) gives two probabilities distributions: one when Beach=true 

and another when Beach=false; 

• The Maximum a Posteriori Query (MAP) is a query in the form argmaxy(y|e). 

This type is used when calculating not only the probability of a set of variables Y, 

given the evidence E=e is needed, but for which that probability is maximal as well. 

For example, a MAP query of Beach, given {Sunny=true, Hot=true} provides the 

most likely assignment to the variable Beach (de Oliveira, 2009). 

In the inference of the MLN, the Maximum A Posteriori (MAP) is used. This type 

of reasoning is called an approximate inference. Different types of algorithms are utilized 

to perform this type of reasoning (Koller & Friedman), one of the simplest of which is a 

Markov Chain Monte Carlo (MCMC) (Metropolis, Rosenbluth, Rosenbluth, Teller, & 

Teller, 1953). 

A Markov Chain Monte Carlo (MCMC) algorithm is used to obtain a sequence of 

observations which are approximated from a specified probability distribution when direct 

sampling is difficult. This sequence can be used to approximate the conditional probability. 
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One of the algorithms MCMC uses for sampling is the Gibbs Sampling Algorithm. The 

Gibbs Sampler was first formally introduced by (Casella & George, 1992; Geman & 

Geman, 1984; Robert, 2014) to the field of image processing. The Gibbs Sampling 

Algorithm is simple: it continuously samples a variable from its posterior distribution with 

all other variables temporally fixed. After a long while, the samples are guaranteed to be 

unbiased. To accomplish this goal, Markov chains are used as a fundamental method 

(Hastings, 1970). Generating a Markov chain makes sense of using the previous sample 

values to randomly generate the next sample value. It can be seen as a transition probability 

between sample values. The steps of the Gibbs Sampling procedure are explained in Figure 

5.8. There are two essential components of a Markov chain: the states, and the transition 

probability. 

Procedure 2 Gibbs Sampling  

1. Start with an initial random assignment to nodes 

2. One node at a time, sample node given its Markov blanket 

3. Repeat 

4. Use samples to compute P(X) 

5. Apply to the ground network 
Figure 5.8.Gibbs Sampling Procedure. 

 

The Gibbs Sampling Algorithm can begin to be applied to the Markov Logic 

Network (as in Figure 5.7) since it is a simple graph that is used to estimate the maximum 

probability of each fact of being True. By using the inference task, the proximate result for 

our query of the smoking habit and having cancer in our small social network which is 

Anna and Bob will be as follows: The probability that Anna will have cancer is 51%, and 
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the probability that Bob will have cancer is 52%, and Anna will be a smoker is 52% with 

our evidence that Bob smokes. 

5.5 A Markov Cognitive Knowledge State Network (MCKSN) 

Definition: A Markov Cognitive Knowledge State Network (MCKSN): is defined 

as an undirected graph G= (F, R), where each node Fi in the node set F represents a 

Cognitive Skill Dependency at a given Bloom level.  R ⊆ F×F is a set of edges connecting 

the nodes. Each edge ri,j represents the appearance of Cognitive Skill Dependency in the 

same Skill Inference Rule(SIR). 

The nodes in an MSKSN represent the Cognitive Skill Dependency, where the 

Cognitive Skill Dependency are equivalent to the random variables in MN. In most 

domains, it is challenging to come up with a Cognitive Skill Dependency that is always 

true that is the reason for modeling random variables to Cognitive Skill Dependencies. An 

edge connects two Cognitive Skill Dependencies if both of them appear in the same Skill 

Inference Rule (SIR) where the edge represents the dependency relationship between them. 

If the SIR combines the connection between a few Cognitive Skill Dependencies, one could 

influence the other dependently. 

The Cognitive Skill Dependencies in an MSKS should have the same assumptions 

as those in an MN. More than one Cognitive Skill Dependency can represent an SIR. The 

SIR’s are expressed according to the syntax of the logical language. The primary goal of 

SIR is to infer new Cognitive Skill Dependencies from existing ones. One example is 

fatherOf (x, y) >> sonOf (y, x); in every SIR, if x is the father of y, it is implied that y is also 
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the son of x. In this example, the inference is defined as a technique to infer a new fact 

from the SIR. If it is known that x is the father of y, then y also being the son of x could be 

easily inferred. 

Input:  

1. Constants CS concept space where the concepts constructed from Textbooks. 

2. Cognitive Skill Dependencies: is a logical fact generated by mapping the concepts 

from a set of terms in a sentence to the set of nodes using verb-based mapping. 

3. Skill Inference Rules (SIR): is defines as a logical relationship between a set of 

Cognitive Skill Dependencies (CSDs) di=e (ai, bi, BLi). The logical relationship 

between any set of CSDs can be expressed as a first order logic expression. More 

formally an example of that ϕi = ∀A,B,C {e(A, B, BLi) ∧ e(B, C, BLi) => e(C, A, BLi)}. 

In other words, if concept A is needed to learn concept B, and concept C is needed 

to learn B, then concept C is needed to learn concept A.  

4. The potential function in this example is composed of simple truth tables for the 

SIR, expressed with integers {0, 1}. For each SIR, this function assumes a value of 

1 for a state of the clique if the truth values of the nodes make the SIR true, while 

considering a value of 0 for a state of the clique if the truth values of the nodes 

make the SIR false. 

5. User Query: Find out the remaining Cognitive Skill Dependencies (CSD) between 

concepts. 

Output: 
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MSKSN can estimate the maximum probability of the Cognitive Skill 

Dependencies (CSD) between concepts. 

5.5.1 Example of Markov Cognitive Knowledge State Network (MCKSN) 

The motivating example is used to explain the procedure of applying MLN. Suppose 

the SIR in Figure 5.9 is one of the ISR’s generated in Chapter Four. The SIR means that IF 

the concept z is essential to be learned to Create Concept x, AND if it is also important to 

be learned to Apply concept y, then concept x is important to be learned to Create y, where 

two different cognitive Skill Dependencies(CSD) are given. Consider that three CS 

concepts (x, y, and z) are given (the number of concepts is limited to three to simplify the 

calculation so that it can be easy to follow) and consider that three concepts from CS 

knowledge space are used: Graph, Graph-Traverse, and Depth First Search (BFS). Also 

suppose that a SIR extracted from SKM (as mentioned in Chapter Four), as well as one CSD 

as evidence is given (as in Figure 5.10). The ‘Graph’ as a concept would then be important 

to be learned in order to apply ‘Graph-Traversal’. 

 

Figure 5.9. Skill Inference Rule (SIR) Template. 
 

 

 

Figure 5.10. The Cognitive Skill Dependency (Apply) 
 

The question is how to estimate the probability of knowing one of the given 

concepts to Apply and Create the other concept based on the given CSD that to apply the 

Apply (‘Graph’, ‘BFS’) 

Create (z, x) ^ Apply (z, y) => Create (x, y) 
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Breadth-first Search (BFS) concept, one must know the Graph concept as well. The 

proposed solution is to use a Markov Cognitive Knowledge State Network (MCKSN), 

Model. The main steps of the proposed MLN model are illustrated in Figure 5.11. 

Procedure 3:  Markov Cognitive Knowledge State Network (MCKSN) 

Input: subset of CSD’s, a set of SIR, and three CS-concepts (‘Graph,’ ‘Graph-Traverse,’ 

and ‘Depth First Search’) 

Output: Estimation of the Maximum Probability of each CSD of being True 

// The Procedure steps 

1. Estimate the strength of the SIR. 

1.1. Create all possible worlds based on the given constants (CS-concepts) and the 

predicate (ground atoms) 

1.2. Create Truth Table and find the line (Cases) in the Truth Table where the target 

predicate is True 

1.3. Consider the predicates which have a value equal to True to be a clique. 

2. Estimate the maximum probability of the knowing state of a given CSD at a 

particular bloom level given the states of few other concepts at a specific Bloom 

level (SIR). 

Return: Maximum Probability of each Bloom Fact. 

Figure 5.11. MCKSN Procedure. 

 

The algorithm in Figure 5.11 represents the MCKSN procedure as follows: The 

input of the algorithm is a SIR (as in Figure 5.9), a CSD (as in Figure 5.10), and three CS-

concepts (Graph, Graph-Traverse, and Depth First Search), where the output is an 

estimation of the maximum Probability of all possible CSD’s being True. The explanation 

of the MCKSN procedure is as follows: 

Step 1: Estimate the strength of the SIR. 

In this step, MCKSN adds strength to each SIR to indicate the confidence of the 

knowledge. In other words, the strength reflects how strong the SIR is. For example, the 

strength of the given SIR in the following example is 12.69. 
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The mathematical explanation of the used method begins by estimating the strength 

of the SIR. In this dissertation, the strengths are evaluated by maximizing the pseudo-log-

likelihood of the entire set of ground atoms, as the probability distribution over the possible 

worlds x for the MCKSN are given by: 

Ps(x)=
exp( ∑ Sifi(X)n

i=1

Z
     

 

Where: 

(5.3) 

 

Z= ∑ Sifi
X

(x) 
 (5.3.1) 

Where:  

𝒇𝒊(𝒙): is the number of true groundings (cliques) of the SIR, and  

𝑺𝒊: is the strength of SIR that needs to be estimated. 

The log-likelihood with respect to a particular strength Si is given by Equation 5.3. 

By taking a log for Equation, 5.3. Assuming the following SIR as an example, the goal is 

to estimate the strength of the SIR in Figure 5.9 by using Equation 5.3. 

S   (CREATE (x, y) ^ APPLY (y, z)) => CREATE (x, z) 

12.69 (CREATE (x, y) ^ APPLY (y, z)) => CREATE (x, z) 

As shown above, the strength of the SIR is 12.69. The steps can then be shown to 

estimate the strength of the SIR. 

12.69    Create (x, y) ^ Apply (y, z) => Create (x, z) 
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Step 1.1: Create all possible outcomes (atomic formulas) based on the given constants and 

CSD. Consider that three concepts (Graph, Graph-Traversal, and BFS), one CSD [Apply 

(Graph, BFS)] and a SIR [Create (z, x) ^ Apply (z, y) => Create (x, y)] are given to create 

all possible outcomes. There are three entities (Constants): Graph, Graph Traversal, and 

BFS.  

• The SIR has two relations (Create, Apply), both of which are binary relations 

from propositional logic. 

• The number of possible ground atoms for each relation = nr., where n: is a 

number of constants, and r: is the number of relations.  

• Then, the number of possible ground atoms for each relation = 32 = 9.  

• The total number of ground atoms = 93 =27 ground atoms.  
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For formatting purposes, the concepts and the relations are abbreviated to letters such as: 

Graph-Traversal = GT, Breadth-First Search = BFS, create =CR, and Apply= AP. 

Table 5.10 All Possible Ground Atoms for the Example. 

Créate (X,Y) ^Apply (Y,Z) => Create (X,Z) 

Z X Y 
  

Graph Graph Graph 
1. CR (Graph, Graph) ^AP(Graph, Graph) ) => CR (Graph, 

Graph)  

  
Graph BFS 

2. CR (Graph, Graph) ^AP (Graph,  BFS ) => CR (Graph, 

BFS) 

  
Graph Graph Traverse  3. CR (Graph, Graph) ^AP (Graph, GT) => CR (Graph, GT ) 

  
BFS BFS 4. CR (Graph, BFS) ^AP(Graph, BFS ) => CR (BFS, BFS ) 

  
BFS Graph 5. CR (Graph, BFS) ^AP(Graph, GT ) => CR (BFS, GT)  

  
BFS Graph Traverse  

6. CR(Graph, Graph)^AP(Graph, Graph) ) => CR (Graph, 

Graph)  

  
GT Graph Traverse  7. CR(Graph, GT)^AP(Graph, GT) ) => CR (GT,GT)  

  
GT BFS 8. CR(Graph, GT)^AP(Graph, BFS) ) => CR (GT, BFS)  

  
GT Graph 9. CR(Graph, GT)^AP(Graph, Graph) ) => CR (GT, Graph)  

BFS BFS BFS 10. CR(BFS, BFS)^AP(BFS, BFS) ) => CR (BFS, BFS)  

  BFS Graph 11. CR(BFS, BFS)^AP(BFS, Graph)) ) => CR (BFS, Graph)  

  BFS Graph Traverse  12. CR(BFS, BFS)^AP(BFS, GT ) => CR (BFS, GT)  

  Graph BFS 13. CR(BFS, Graph)^AP(BFS, BFS) ) => CR (Graph, BFS)  

  
Graph Graph 

14. CR(BFS, Graph)^AP(BFS, Graph) ) => CR (Graph, 

Graph)  

  Graph Graph Traverse  15. CR(BFS, Graph)^AP(BFS, GT) ) => CR (Graph,GT)  

  GT Graph Traverse  16. CR(BFS, GT)^AP(BFS, GT) ) => CR (GT,GT)  

  GT BFS 17. CR(BFS, GT)^AP(BFS, BFS) ) => CR (GT, BFS)  

  GT Graph 18. CR(BFS, GT)^AP(BFS, Graph) ) => CR (GT,Graph)  

Graph 

Traverse  
GT Graph Traverse  19. CR (GT, GT)^AP(GT, GT ) => CR (GT, GT)  

  GT BFS 20. CR(GT, GT)^AP(GT, BFS) => CR (GT, BFS) 

  GT Graph 21. CR (GT, GT)^AP(GT, Graph ) => CR (Graph, GT ) 

  BFS BFS 22. CR(GT, BFS)^AP(GT, BFS ) => CR (BFS, BFS ) 

  BFS Graph 23. CR (GT, BFS) ^AP (GT, Graph ) => CR (BFS, Graph)  

  BFS Graph Traverse  24. CR (GT, BFS)^AP(GT, GT ) => CR (BFS,GT)  

  Graph BFS 25. CR (GT, Graph) ^AP (GT, BFS) ) => CR (Graph, BFS)  

  Graph Graph 26. CR(GT, Graph)^AP(GT,Graph) ) => CR (Graph, Graph)  

  Graph Graph Traverse  27. CR (GT, Graph) ^AP (GT, GT) => CR (Graph, GT)  
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Step 1.2: Create a Truth Table and find the line (Cases) in the Truth Table where the target 

predicate is True. 

 In Step 1.1, all possible atomic formulas were generated; in this step, the truth table was 

created for each atomic formula. Truth tables are constructed from SIR’s by transforming 

expressions into atomic formulas. To follow the next steps more easily, only three atomic 

formulas were used. These three atomic formulas were three rows in the third column, each 

of which is highlighted by different colors (as in Table 5.10). Table 5.11 shows the chosen 

atomic formulas. Tables 5.12, Table 5.13, and Table 5.14 illustrate the truth tables for the 

three atomic formulas with their respective coded colors. 

Table 5.11. The Chosen Atomic Formulas. 

Atomic Formulas 

1. CR (Graph, BFS) ^AP (Graph, GT) => CR (BFS, GT)  

2. CR (Graph, GT) ^AP (Graph, BFS) => CR (GT, BFS)  

3. CR (BFS, GT) ^AP (Graph, BFS) => CR (GT, Graph)  

 

 

 

 

 

 

Table 5.12. The Truth Table for Atomic Formula 1. 

CR (Graph, BFS) AP (Graph, GT) CR (BFS, GT) CR (Graph, BFS) ^AP (Graph, GT) SIR 

(If-Then) 

Potential 

Function 

f(x) 

1 1 1 1 1 1 

1 1 0 1 0 0 

1 0 1 0 1 1 

1 0 0 0 0 0 

0 1 1 0 1 1 

0 1 0 0 0 0 

0 0 1 0 1 1 

0 0 0 0 0 0 
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Where the potential function is defined as: 

f(x) = {
1  if     SIR  is  true(Has value=1 in the truth table)

0                                                               otherwise
 

Finding the line (Cases) in the Truth Table where the target predicate is True for 

the SIR in Table 5.12, Table 5.13 and Table 5.14 illustrated in Table 5.15. This is achieved 

by applying the Equation 5.3 for the three atomics formulas used (as in Table 5.15). 

Table 5.13. The Truth Table for Atomic Formula 2. 

CR (Graph, GT) AP (Graph, BFS) CR (GT, BFS) CR (Graph, GT) ^AP (Graph, BFS) SIR 

(If-Then) 

Potential 

Function 

f(x) 

1 1 1 1 1 1 

1 1 0 1 0 0 

1 0 1 0 1 1 

1 0 0 0 0 0 

0 1 1 0 1 1 

0 1 0 0 0 0 

0 0 1 0 1 1 

0 0 0 0 0 0 

Table 5.14. The Truth Table for Atomic Formula 3. 

CR (BFS, Graph) AP (Graph, BFS) CR (GT, Graph) CR (BFS, GT) ^AP (Graph, BFS) SIR 

(If-Then) 

Potential 

Function 

f(x) 

1 1 1 1 1 1 

1 1 0 1 0 0 

1 0 1 0 1 1 

1 0 0 0 0 0 

0 1 1 0 1 1 

0 1 0 0 0 0 

0 0 1 0 1 1 

0 0 0 0 0 0 
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It is started by calculating the strength for the SIR in Figure 5.9 as follows:   

As seen in Equation 5.3.23 the Equation cannot be computed in closed form, but 

using BFGS method the strength of the SIR is equal to 12.69 

Table 5.15. The Truth Table for Atomic Formula 1,2, and 3. 

Potential Function 

Atomic Formula 1 

Potential Function 

Atomic Formula 2 

Potential Function 

Atomic Formula 3 

fi(x) 𝑒𝑓𝑖(𝑥)∗𝑠𝑖 

1 1 1 3 e3s 

0 0 0 0 1 

1 1 1 3 e3s 

0 0 0 0 1 

1 1 1 3 e3s 

0 0 0 0 1 

1 1 1 3 e3s 

0 0 0 0 1 

Ps(x)=
exp( ∑ Sifi(X)n

i=1

Z
  

 where: 

 

Z= ∑ Sifi

X

(x) 

First, calculate the Numerator in the above Equation 

Ps(x)=
exp(3s+1+3s+1+3s+1+3s+1)

Z
                                                               (5.3.19) 

Ps(x)=
(e

3s
.1.e3s.1.e3s.1.e3s.1)

Z
                                                                          (5.3.20) 

Ps(x)=
(e

3s
.1.e3s.1.e3s.1.e3s.1)

Z
=(e3s)

4
= 𝑒12𝑠                                                  (5.3.21)  

Second calculate the Denominator in Equation 5.3. 

Since Z= ∑ SifiX (x)  

Then: 

Z = 4 e3s + 4                                                                                      (5.3.22) 

By substituting in Equation 5.3 

𝑃𝑠(𝑥) =
e12s

4 e3s + 4
                                                                        (5.3.23) 
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12.69 (Create (z, x) ^ Apply (z, y)) => Create (x, y) 

Step 1.3: Consider the predicates which require a value equal to True to be a clique. 

In the second step, the possible outcomes for each atomic formula were created by using 

truth tables. After the ground predicates are identified, it should be transformed to a graph 

where nodes are the ground predicates, and edges between them are added if two ground 

atoms appear in the same SIR. In this case, the groundings of the predicates were {CR 

(Graph, BFS), AP (Graph, GT), CR (BFS, GT), CR (Graph, GT), AP (Graph, BFS), CR 

(GT, BFS), CR (GT, Graph)}. The ground Markov Network in Figure 5.12 was created. 

The predicate that had a True value (which is the truth grounding) became a clique. 

 

Figure 5.12. The Ground Markov Cognitive Knowledge State Network (MCKSN). 
 

Step Two: Estimate the maximum probability of the known state of a given concept 

at a particular Bloom level, given the states of a few other concepts at a particular Bloom 

level. In the inference of the MCKSN, the Maximum A Posteriori (MAP) is used. This type 

of reasoning is called an approximate inference. Different types of algorithms are utilized 
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to perform this type of inference (Koller & Friedman), one of the simplest of which is a 

Markov Chain Monte Carlo (MCMC) (Stuart Russell and Norvig 2002). 

A Markov Chain Monte Carlo (MCMC) algorithm is introduced in section 5.3. The 

steps of the Gibbs Sampling Algorithm are explained in Figure 5.8. The Gibbs Sampling 

Algorithm can begin to be applied to the MCKSN (as in Figure 5.12) since it is a Sub-

network that is used to estimate the maximum probability of each cognitive fact of being 

True. 

 

Figure 5.13. A Sub-Network MLN. 

 

The estimation of the Maximum Probability is done iteratively, and each CSD in 

the graph is also updated iteratively (according to the probability of each CSD, given its 

Markov blanket). When the first iteration is finished over all the nodes, then one cycle is 

completed. In this example, the starting node was node Number 1, the ground atom CR 

(Graph, BFS). The ground atom holds the cognitive relationship Create (CR) between two 
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concepts Graph and BFS. So, estimating the maximum probability value of this Bloom fact 

to be true needs to be computed. The Red node AP (Graph, BFS) is given as a fact in this 

example. Considering that each node corresponds to a random variable, the probability 

with which each node is sampled can be calculated based only on its Markov blanket. The 

likelihood of any ground atom x when its Markov blanket MB(x) is estimated can be shown 

by using Equation 5.4: 

Figure 5.14 requires estimating the probability value for the green node. Based on 

Equation 5.4, the maximum probability could be used for the conditional green node in its 

Markov blanket, the observations of which are in the attached truth table in Figure 5.14. 

Since the green node was node number 1, it had two neighbors in the same clique. Sampling 

node number 1 from its posterior distribution with all other variables temporally fixed with 

the same value was done by applying Equation 5.4.  

P(x|MB(x))=
exp( ∑ sii f

i
(x))

exp( ∑ sii f
i
(x=0))+exp( ∑ sii f

i
(x=1))

 
(5.4) 

Where fi is the set of ground formulas that x appears in, the MB(x) Markov blanket of 

node x, and fi(x=1) and fi(x=0) are the values (0 or 1) of the feature corresponding to 

the ith ground formula. 
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Figure 5.14. Gibbs Sampling for Node Number 1. 

 

A calculation of P (CR (Graph, BFS) using Equation 5.4 goes as follows:  

P(x|MB(x))=
exp( ∑ sii f

i
(x))

exp( ∑ sii f
i
(x=0))+exp( ∑ sii f

i
(x=1))

 

First, calculate the Numerator in Equation 5.4 

 𝑒𝑥𝑝(∑ 𝑠𝑖𝑓𝑖(𝑥)𝑖 )  counts all the assignments where CR (Graph, BFS) is True. 

This is based on the generated sampling using Gibbs sampling. Sample P (CR (Graph, BFS)) 

given its Markov blanket, and repeat. Count the number of times that P (CR (Graph, BFS)) is 

true and false in the samples. As illustrated in Figure 5.14, the sampling is generated randomly, 

where  

AP (Graph, GT) is equal to: 

exp(∑ sifi(x)i ) = (3*e12S) = 3e12S 



100 

 

It is clear that this Equation had multiple solutions, meaning that the Equation was 

not in a closed form. Therefore, iterative techniques to compute the maximum values 

should have been used. One of the most straightforward iterative methods is the gradient 

ascent (as introduced in Section 5.3.1.3): 

3e12

5+3e12
=0.235004 

Then the probability of the fact’s validity that (node number1) is equal to 0.235004 

(as mentioned in the Gibbs sampling) was not the final value. In this case, the sampling 

was repeated iteratively until the best value was reached. 

The next node is node number 2, which is AP (Graph, GT) (as in Figure 5.15). The 

same steps were repeated to estimate the maximum degree of credibility that learning a 

concept graph is necessary to know in order to reach the applying cognitive level where 

the GT concept can be applied. Figure 5.10 explains the method for computing the 

The denominator in Equation 5.4, is exp(∑ sifi(x=0)i )+ 𝑒xp( ∑ sifi(x=1)i ) 

In Equation 5.4  exp(∑ sifi(x=0)i ) represents the cases where CR (Graph, BFS) is False 

conditional of its MB (their first level neighbor), which is also is False. That means 

P (CR (Graph, BFS) =0 | AP (Graph, GT) =0, CR (BFS, GT) =0) = 5. 

In Equation 5.4  exp(∑ sifi(x=1)i ) represents the cases where CR (Graph, BFS) is a True 

conditional of its MB, which is also a True. That means 

P (CR (Graph, BFS) =1 | AP (Graph, GT) =1, CR (BFS, GT) =1) = 3*e12S = 3e12S 

Then, by substituting in Equation 5.4: 

P (CR (Graph, BFS) =
e12S

5+ 3 e
3s                                                                               (5.3.11) 
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estimation probability for the green node. As seen in Figure 5.10, the node only had two 

neighbors in the same clique, so the sampling started by sampling this node where all other 

variables were temporally fixed with the same value. A calculation of P (AP (Graph, GT)) 

using Equation 5.4 goes as follows: 

P(x|MB(x))=
exp( ∑ sii f

i
(x))

exp( ∑ sii f
i
(x=0))+exp( ∑ sii f

i
(x=1))

 

 

First, the numerator in Equation 5.4 is calculated as  exp(∑ Sifi(x)i ) , which counts 

all the assignments where P (AP (Graph, GT)) is True. 

This is based on the generated sampling using Gibbs sampling. Sample P (AP (Graph, GT)) is 

given its Markov blanket, and the process is repeated for each assignment. Count the number 

of times that P (AP (Graph, GT)) is true and false in the samples. As illustrated in Figure 5.9, 

the sampling is generated randomly, where AP (Graph, GT) is equal to: 

exp(∑ Sifi(x)i ) = (5*e12S) = 5e12S 

The denominator in Equation 5.4. is exp(∑ sifi(x=0)i ) + exp( ∑ sifi(x=1)i ) 

In Equation 5.4,  𝑒𝑥𝑝(∑ 𝑠𝑖𝑓𝑖(𝑥 = 0)𝑖 ) represents the cases where P (AP (Graph, GT)) is False, 

conditional of its MB (their first level neighbor) being False too. That means 

P (AP (Graph, GT) = 0|CR (BFS, GT) = 0, CR (Graph, BFS) = 3. 

In Equation 5.4,  exp(∑ sifi(x=1)i ) represents the cases where P (AP (Graph, GT)) is True, 

conditional of its MB being True too. That means 

P (AP (Graph, GT) = 1 |CR (BFS, GT) = 1, CR (Graph, BFS) = 1 = 5*e12S = 5e12S 
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Figure 5.15. Gibbs Sampling for Node Number 2. 

 

Next, for node number 3, CR (BFS, GT) (as in Figure 5.11), the same steps were 

repeated to estimate the maximum degree of probability of the fact’s validity that learning 

a BFS concept is necessary to know in order to reach the creation cognitive level to Create 

a Graph Traverse. 

Figure 5.16 illustrates the estimation probability that is needed to be computed for 

the green node. The Markov blanket of this node consists of node1, node2, node 5, and 

node7 (the observations of which are illustrated in Figure 5.16). As seen in Figure 5.16, 

the node had neighbors in different cliques, so the sampling began with node number 3, 

where all other variables were temporally fixed with the same value. It is clear that node 7 

Then, by substituting in Equation 5.4, the maximum probability of the fact of learning Graph to 

apply GT is the following: 

P (AP (Graph, GT) =
5e12S

3+ 5 e
12s                                                               (5.3.11) 
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is evidence that the value of this node is always true no matter which neighbor it has. By 

applying Equation 5.4: 

P(x|MB(x))=
exp( ∑ sii f

i
(x))

exp( ∑ sii f
i
(x=0))+exp( ∑ sii f

i
(x=1))

 

First, the Numerator in Equation 5.4 was calculated, and 

 𝑒𝑥𝑝(∑ 𝑠𝑖𝑓𝑖(𝑥)𝑖 )  counts all the assignments where CR (BFS, GT) is True. This is based on 

the generated sampling using Gibbs sampling. Sample CR (BFS, GT) given its Markov 

blanket, and repeat. Count the number of times that CR (BFS, GT) is true and false in the 

samples. As illustrated in Figure 5.16, the sampling is generated randomly, where CR (BFS, 

GT) is equal to: 

exp(∑ sifi(x)i ) = (5*e12S) = 5e12S 

The Denominator in Equation 5.4. is  exp(∑ sifi(x=0)i ) + exp( ∑ sifi(x=1)i ) 

In Equation 5.4  exp(∑ sifi(x=0)i ) represents the cases where CR (BFS, GT) is False, 

conditional of its MB (their first level neighbor) being False too. That means 

P (CR (BFS, GT) = 0 |CR (Graph, GT) = 0, AP (Graph, GT) = 0, AP (Graph, BFS) = 0, CR 

(GT, Graph) = 0)). 

In Equation 5.4,  exp(∑ wifi(x=1)i ) represents the cases where CR (BFS, GT) is True, 

conditional of its MB being True too. That means 

P (CR (BFS, GT) =1 |CR (Graph, GT) =1, AP (Graph, GT) =1, AP (Graph, BFS) =1, CR 

(GT, Graph) =1)) 

= 5*e12S = 5e12S 
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Figure 5.16. Gibbs Sampling for Node Number 3. 

 

The sampling procedure iteratively drew samples from the full conditional 

distributions for the rest of nodes in the graph (node 4, node 6, and node 7) except for the 

evidence node, which is the red node in Figure 5.16. After finishing the iteration over all 

the nodes, one cycle was completed. Then, the new sampling cycle started. The Gibbs 

sampling procedure was performed until convergence was reached. 

Then, by substituting in Equation 5.4, the maximum probability of the fact of learning Graph 

to apply GT is the following: 

P (AP (Graph, GT) =
6e

12

2+6e12                                                                                    (5.3.11) 

Table 5.16. The Probability of the Fact at each Iteration. 

Inferred Facts Iteration-1 Iteration-2 Iteration-3 Iteration-4 Iteration-10 

CREATE (Graph, BFS) 0.497000 0.535000 0.502941 0.504444 0.500476 

APPLY (Graph, GT) 0.483333 0.500000 0.506667 0.501176 0.514167 

CREATE (BFS, GT) 0.502407 0.502482 0.5902482 0.692411 0.7976 
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 Ten iterations were used in this example, as Table 5.17 illustrates the values of the 

fact in each iteration. Through this example, it is clear that the value of the evidence, the 

raw number six, was equal to one in all iterations, meaning that they were fixed. 

Meanwhile, the other values for each fact depended on their values in the previous iteration; 

however, the sampling procedure was known to converge on the desired posterior 

distribution. 

 
Figure 5.17. The Probability of the Fact at the First Iteration and Last Iteration. 

 

CREATE (Graph, GT) 0.499009 0.497163 0.497163 0.4956 0.560000 

APPLY (Graph, BFS) 1 1 1 1 1 

CREATE (GT, BFS) 0.483333 0.482222 0.484167 0.490000 0.501154 

CREATE (GT, Graph) 0.520000 0.520000 0.528333 0.502067 0.502067 
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5.6 Summary and Discussion  

This chapter outlined and discussed the main concepts of the proposed 

methodology, a Markov Network (MN), a Markov Logic Network (MLN), and a Markov 

Cognitive Knowledge State Network (MCKSN). MN introduced the central concepts to 

understand both MLN and MCKSN. 

MLN built a framework of combining the logic with the Markov Network. MCKSN 

used a framework to tackle the cognitive problem into a new context. The chapter also 

introduced the Markov Network with a practical example, as well as showing the 

intersection point of the Markov Network and Markov Logic Network which was 

generating the potential function based on the logic. Additionally, MCKSN introduced a 

methodology that showed promising results where the task of knowing concepts at a 

particular cognitive level was the focus. The MCKSN technique makes use of the cognitive 

domain in Computer Sciences.  

The next chapter will discuss the experiment step and the evaluation of the Markov 

Cognitive Knowledge State Network (MCKSN). 
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 EXPERIMENT RESULTS AND EVALUATION 

6.1 Introduction 

This chapter presents an experimental validation on the MCKSN model’s 

performance in identifying the hidden Cognitive Skill Dependencies (CSD) when 

compared to the results done by human identification. The chapter then illustrates the 

details of the used dataset, along with the design of the human model to assess the 

efficiency of the MCKSN model. Finally, it presents the comparison between the human 

model and the MCKSN model, as well as proof that the proposed model acts like humans 

when inferring the hidden Cognitive Skill Dependencies. 

6.2 Test Dataset 

This section discusses the bench mark dataset used in the experiments. An 

experiment was conducted on Introduction to Algorithms, a highly adapted textbook used 

in Computer Science classes at many universities. Table 6.1 provides a breakdown of the 

information about the chosen textbook.  

Table 6.1. Statistical Information about the Textbook. 

 Algorithm Textbook Statistical Information 

Table of Content depth 4 

Number of Sentences 11077 

Number of Paragraphs 5959 

Number of concepts (Nouns and Verbs) 207356 

Number of Noun Concepts 2384 

Number of Verb Concepts 354 

Number of Extracted Relationships (Verb) 3886 

Number of Extracted CSBT Relationships 615 
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Number of Extracted CSWN Relationships 680 

 

Twenty-Two CS concepts were used in this experiment (see Table 6.2). The 

concepts were used as an input for both the human model and the MCKSN model. The 

experiment was only done for a subset of concepts, as the manual process of evaluating 

Cognitive Skill Dependencies is time consuming. The discussion led to the researcher 

choosing the concepts included in the course learning objectives. 

Table 6.2. Several CS Concepts from the Algorithm Textbook. 

CS- Concepts 
1. ALGORITHM 

2. DATA-STRUCTURE 

3. BINARY-SEARCH-TREES 

4. FLOYD-WARSHALL-ALGORITHM 

5. GREEDY-ALGORITHM 

6. RED-BLACK-TREES 

7. LONGEST-COMMON-SUBSEQUENCE 

8. SORTING-IN-LINEAR-TIME 

9. BREADTH-FIRST-SEARCH 

10. GRAPH-ALGORITHM 

11. COUNTING-SORT 

12. PRIM-ALGORITHM 

13. LISTS 

14. STACKS 

15. RUNNING-TIME  

16. WORST-CASE 

17. HEAP-SORT-ALGORITHM 
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18. SORTING-ALGORITHM 

19. QUICK-SORT-ALGORITHM 

20. MST 

21. TOPOLOGICAL-SORT 

22. STRONGLY CONNECTED COMPONENT 

 

Figure 6.1 illustrates a Semantic Knowledge Map (SKM) view of a fully connected 

graph for the twenty-two concepts. In the context of this experiment, initially the 

assumption is that there are Cognitive Skill Dependencies between any two concepts 

(nodes). In other words, the Semantic Knowledge Map (SKM) is a fully connected graph. 

Each two nodes in the graph have four types of dependencies. In reality, some of the nodes 

are not connected, while others are strongly connected based on their Cognitive Skill 

Dependencies. A fully connected graph was given to both the MCKSN model and the 

human model. Both models were then used to attempt to label the Cognitive Skill 

Dependencies between concepts in the graph. 
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6.3 Skill Inference Rules (SIR) Extraction 

The Skill Inference Rules (SIR) were generated in this experiment (Table 6.3 

illustrates the generated SIR). The SIR’s were used as input to guide the MCKSN model to 

infer the Cognitive Skill Dependencies. The generated SIR’s are deliberately meant to be 

simple because if the SIR is too complex, it is possible for it to be neither valid nor not-

valid. In other words, there would be a chance of generating a not-valid SIR. The SIR’s in 

this experiment are generated by a group of Ph.D. students in the research phase with 

expertise in the Algorithm area. After many meetings and discussions, the SIR’s were 

generated and evaluated. The group introduced their best efforts in this, taking into account 

the SIR format of the First Order Logic. 

There is no universal method to determine whether a Skill Inference Rules (SIR) in 

First Order Logic is logically valid or not-valid, but the structure satisfies the validity of 

Figure 6.1. Semantic Knowledge Map (SKM) with the Cognitive Skill 
Dependencies between Concepts. 
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the SIR. In general, it's up to the cleverness and creativity of the experts to make a valid 

determination. 

Table 6.3. Skill Inference Rules (SIR) 

//Cognitive Skill Dependencies (Understanding) Rules 

Understanding (z, x) ^ Understanding (z, y) => Understanding (x, y) 

Understanding (z, x) ^ Applying (z, y) => Understanding (x, y) 

Understanding (z, x) ^ Applying (z, y) => Applying (x, y) 

Understanding (z, x) ^ Analyzing (z, y) => Understanding (x, y) 

Understanding (z, x) ^ Analyzing (z, y) => Analyzing (x, y) 

Understanding (z, x) ^ Creating (z, y) => Understanding (x, y) 

Understanding (z, x) ^ Creating (z, y) => Creating (x, y) 

//Cognitive Skill Dependencies (Applying) Rules 

Applying (z, x) ^ Applying (z, y) => Applying (x, y) 

Applying (z, x) ^ Understanding (z, y) => Applying (x, y) 

Applying (z, x) ^ Understanding (z, y) => Understanding (x, y) 

Applying (z, x) ^ Analyzing (z, y) => Applying (x, y) 

Applying (z, x) ^ Analyzing (z, y) => Analyzing (x, y) 

Applying (z, x) ^ Creating (z, y) => Applying (x, y) 

Applying (z, x) ^ Creating (z, y) => Creating (x, y) 

//Cognitive Skill Dependencies (Analyze) Rules 

Analyze (z, x) ^ Analyze (z, y) => Analyze (x, y) 

Analyze (z, x) ^ Understanding (z, y) => Analyze (x, y) 

Analyze (z, x) ^ Understanding (z, y) => Understanding (x, y) 

Analyze (z, x) ^ Applying (z, y) => Analyze (x, y) 

Analyze (z, x) ^ Applying (z, y) => Applying (x, y) 

Analyze (z, x) ^ Creating (z, y) => Analyze (x, y) 

Analyze (z, x) ^ Creating (z, y) => Creating (x, y) 

//Cognitive Skill Dependencies (Creating) Rules 

Creating (z, x) ^ Creating (z, y) => Creating (x, y) 

Creating (z, x) ^ Understanding (z, y) => Creating (x, y) 

Creating (z, x) ^ Understanding (z, y)) => Understanding (x, y) 

Creating (z, x) ^ Analyzing (z, y) => Creating (x, y) 

Creating (z, x) ^ Analyzing (z, y) => Analyzing (x, y) 

Creating (z, x) ^ Applying (z, y) => Creating (x, y) 

Creating (z, x) ^ Applying (z, y) => Applying (x, y) 

6.4   Human Evaluation Model Experiment 

The purpose of the human evaluation was to measure the performance reliability of 

the MCKSN model. The ground truth was provided by two group of students since they 

have intuitive understanding about the Cognitive Skill Dependencies. The students were 
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only asked to label the Cognitive Skill Dependencies between concepts for the final 

answer. Human judgment, the most widely accepted form of judgment, was used in order 

to best evaluate the proposed model. The human model experiment will be explained in 

detail in Section 6.3 in this chapter. 

6.4.1 Evaluation Procedure 

Procedures for selecting the participants and collecting the data are described in 

this section. The first thing to describe here is The Data Collection. Data was collected on 

November 26th during the Fall 2016 Semester. The collecting of the data is intentionally 

done at the end of the semester because the learning of the chosen concepts has already 

been completed by then. This study employed one mode of data collection: a student 

survey. The survey was used to label the Cognitive Skill Dependencies between concepts. 

The survey contained multiple-choice questions. There are four types of Cognitive Skill 

Dependencies between concepts: Understanding, Analyzing, Applying-Evaluating, and 

Creating (which are denoted as {BL1, BL2, BL3, BL4} respectively)(Nafa & Khan, 2015).  

During the study, the researcher allocated the final 10 minutes of the class period 

to explain the survey procedure to the participants. The survey was a take home survey.  A 

description of Bloom’s Taxonomy levels was given to participants with a simple example 

to explain the difference between each of the cognitive levels. Participants were told that 

the survey would not be graded and that their responses would not be shown to their 

instructor. The survey was given to participants, asking them questions based on their 

understanding and knowledge. Participants were also free to use external references to 
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classify the Cognitive Skill Dependencies between each of the two concepts, where more 

than one type could be possible between two concepts. 

Secondly, there were The Participants. The evaluation of the MCKSN model 

performance reliability focused on data purposefully obtained from a group of students. 

The students were deemed to be accurate learners to identify Cognitive Skill Dependencies 

because they had already learned the concepts used in this experiment prior to the 

experiment taking place. The study utilized two groups of co-ed students whose ages 

ranged from 23 to 55. The first group was composed of students enrolled in the “Design 

and Analysis of Algorithms” course offered by the Computer Science department at Kent 

State University. The second group consisted of Computer Science students at the masters 

and PhD levels who had already taken this course.  

The class had 80 students, seventy of whom responded to participate in the study. 

Of the 80 students who responded to participate, ten students either subsequently declined 

to participate, or revealed that they were absent. As such, they were removed from 

consideration for this study. Consequently, the second sample consisted of 50 participants: 

Masters and PhD students who had taken this course previously. 

The total participants for this study were 120 learners. Participants were orally 

informed that they could choose not to participate in the study. The class instructor was not 

present while the survey was administered so that students would not feel intimidated 

regarding their participation. As a group, these 120 study participants had the following 

characteristics: Seventy-five percent of the study’s participants were male, and twenty-five 
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percent were female. Ninety-two percent of the participants were CS majors, while eight 

percent were non-CS majors. The GPA for study participants varied in four different 

groups, where thirty percent had A’s, thirty-eight percent had B’s, twelve percent had C’s 

and seventeen percent had D’s. Table 6.4 illustrates the statistical information about the 

participants.  

Table 6.4. Statistical Information about the Participants. 

Gender Major GPA 

Female Male CS Non-CS A B C D 

25% 75% 92% 8% 30% 38% 12% 17% 

Finally, there was the Institutional Review Board (IRB) Processing. This was the 

necessary approval given to conduct this study by Kent State University’s Institutional 

Review Board (IRB). A reproduction of the e-mail message for the study’s approval is 

provided in Appendix B. Rather than include a picture of the email printout, the e-mail 

message was typed out to preserve the anonymity of the institution at which this study was 

conducted. Once potential participants had been identified, instructions were given to them, 

along with the Informed Consent Form. It included a description of the research study, 

research procedures, risks and benefits of participation in the study, participant’s rights, 

and protection of confidentiality. Students who signed the consent form became 

participants in the study. Before handing out the survey, the researcher asked participants 

if they had read and understood the consent form. Participants then received details about 

the process and procedures, along with a copy of the survey questions. 
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6.4.2 Human Model Result 

The final data of the Human model were tabulated in eight tables, namely H1, H2, 

H3, and H4, respectively (as given in Appendix C). The Human model (Hb) tables contain 

Cognitive Skill Dependencies estimated by a human. For the evaluation, 460 Cognitive 

Skill Dependencies between 22 concepts were picked. Thus, in each table, there are 460 

rows and 120 columns, where the rows denote the Cognitive Skill Dependencies between 

each two concepts and the columns represent human answers. The Human model was 

represented as a matrix Hb, where rows represent the ith Cognitive Skill Dependencies 

identified by the sth human subject (columns) for each Cognitive Skill Dependency, and 

where cell values are human agreement counts for Cognitive Skill Dependencies. The 

Human model matrix Hb can be defined as follows: 

𝐻𝑏[𝑖, 𝑠] 

Where: 

i: is the Cognitive Skill Dependencies index 1 ≤ i ≤ 460, s: is the human subject index 1 ≤ 

s ≤ 120, and b: is the Cognitive Skill Dependency index 1 ≤ b ≤ 4. Then the Human-

Evaluation matrix 𝐻𝑏[𝑖, 𝑠] was converted to a vector of elements 𝐻𝑏[𝑖]. 

6.5 A Markov Cognitive Knowledge State Network (MCKSN) Model Experiment 

This section handles the experiments of applying the MCKSN model with a 

different set of SIR’s as explained in section 6.2 in this chapter. The implementation of the 

MCKSN model is based on using pracMLN, an MLN python package for statistical 

relational learning and reasoning (Ankan & Panda, 2015). An input for this model (as 
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mentioned in Chapter 5) consists of a Semantic Knowledge Map (SKM), a set of logic 

Inferential Algebra, facts, and CS Concepts. The MCKSN model is queried for four 

different Cognitive Skill Dependencies (BL1, BL2, BL3, and BL4), which are Understanding, 

Applying, Evaluating-Analyzing and Creating, respectively. 

As a final result of the MCKSN model, four databases were created (BL1, BL2, BL3, 

and BL4, respectively). Each column in the database represents a percentage of the 

probability of the Cognitive Skill Dependencies between the concepts. The MCKSN model 

results are called (Mb). There are also expanded graphs in (Appendix A) of the dissertation. 

These present the Cognitive Skill Dependencies between the concepts based on their 

degree probability where the graphs are plotted according to a specific threshold (βm). In 

these experiments, βm had four different values (0.50, 0.65, 0.75, and 0.85, respectively) 

for each Bloom level (BL1, BL2, BL3, and BL4). 

6.6 Comparing MCKSN Model and Human Model of inferring Cognitive Skill 

Dependencies. 

The results of the MCKSN model were tabulated in eight tables, namely BL1, BL2, 

BL3, and BL4 respectively. The BL1, BL2, BL3, BL4 tables include Cognitive Skill 

Dependencies estimated by an MCKSN model (Mb). For the evaluation, 460 relationships 

between 22 concepts were picked. Thus, in each table, there are 460 rows and one column. 

The MCKSN model Mb can be defined as a vector of elements as follows: 

𝑀𝑏[𝑖] 

Where: 
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i: is the Cognitive Skill Dependencies index 1 ≤ i ≤ 460 and b: is the Bloom level index 1 

≤ b ≤ 4. 

6.6.1 Data Preprocessing 

The preprocessing step is used as an essential step of the compression procedure. 

In this study, the preprocessing steps are scaling, matching and mismatching, and 

performance matrix. 

6.6.1.1 Scaling  

Scaling is needed as a preprocessing step for computing the accuracy of the MCKSN 

model results Mb[i] to better compare those with the Human-Evaluation Hb[i] of 

discovering the Cognitive Skill Dependencies between concepts. In this context, scaling 

entails mapping all values to the same range. There is primary reason for doing this. Having 

all data in the same range eliminates the possibility of data with greater values dominating 

in the result and thus having a larger influence during the process of discovering the 

Cognitive Skill Dependencies. There are different techniques to scale the data (Muller & 

Guido, 2017; Müller & Guido, 2016). This section introduces the most widely used scaling 

techniques: Minmax and Log scaling techniques. The main reason for choosing them was 

to keep the dimensions of the data simple and convenient, thus matching the units. 

Minmax Scaler, The Minmax Scaler is the most widely-used scaler, especially 

when dealing with the issue of classification. In the Minmax Scaler algorithm, the scaling 

was applied for both 𝐻𝑏[𝑖] and 𝑀𝑏[𝑖]. The Minimax Scaler algorithm maps each contain 
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an element in both 𝐻𝑏[𝑖] and 𝑀𝑏[𝑖] to new scaled elements, 𝐻𝑏
𝑚𝑚[𝑖] 𝑎𝑛𝑑 𝑀𝑏

𝑚𝑚[𝑖] 

respectively, by using the following Formulas 6.2 and 6.3: 

 

Where: 

Hb[i] is the Human-Evaluation data and Hb
mm[i] is the scaled data, max(Hb[i]) is the 

maximum value in 𝐻𝑏[𝑖] and min(𝐻𝑏[𝑖]) is the minimum value in Hb[i]. 

 

Where: 

𝑀𝑏[𝑖] is the data estimated by MCKSN model, 𝑀𝑏
𝑚𝑚[𝑖]  is the scaled data; 𝑚𝑎𝑥(𝑀𝑏[𝑖]) 

is the maximum value in 𝑀𝑏[𝑖]  and min(𝑀𝑏[𝑖]) is the minimum value in Mb[i]. 

Log Scaling, the log (LG) scaling takes the log of each data point, where each data 

point is replaced by its natural log. The log can be valuable both for making patterns in the 

data more interpretable and for helping to meet the assumptions of the used threshold. The 

scaling is applied for both 𝐻𝑏[𝑖] and 𝑀𝑏[𝑖]. It can be calculated by using the following 

formulas 6.4 and 6.5: 

Where: 

𝐻𝑏[𝑖] is the Human-Evaluation data and 𝐻𝑏
𝐿𝐺[𝑖] is the scaled data; and 

Hb
mm[i]=

Hb[i]-min(Hb[i])

max(Hb[i]) -min(Hb[i])
 

      (6.2) 

Mb
mm[i]=

Mb[i]-min(Mb[i])

max(Mb[i]) -min(Mb[i])
 

              (6.3) 

Hb
LG[i]=Log(Hb[i])                 (6.5) 

Mb
LG[i]=Log(Mb[i])                (6.4) 
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Where: 

 𝑀𝑏[𝑖] is the data estimated by MCKSN model and 𝑀𝑏
𝐿𝐺[𝑖]  is the scaled data. 

6.6.1.2 Matching and Mismatching  

Each Human Evaluation 𝐻𝑏[𝑖] element should match with the MCKSN model 

𝑀𝑏[𝑖] elements for each Cognitive Skill Dependency i. That means: 

𝑀𝑏
𝑚𝑚[𝑖] ≈ 𝐻𝑏

𝑚𝑚[𝑖] and  𝑀𝑏
𝐿𝐺[𝑖] ≈ 𝐻𝑏

𝐿𝐺[𝑖] 

The matching indicates how likely it would be for the results estimated by the 

MCKSN model 𝑀𝑏[𝑖]  to match with those of the Human-Evaluation 𝐻𝑏[𝑖]. In this study, 

the matching value was different from Cognitive Skill Dependency to another to restrict 

the result to only those cognitive Skill Dependency believed to be highly likely to be 

correct, driving confidence up to meet the human match rate. It can be said that 𝑀𝑏
𝑚𝑚[𝑖]  

matches with 𝐻𝑏
𝑚𝑚[𝑖]  , and vice versa, and that 𝑀𝑏

𝐿𝐺[𝑖]  matches with 𝐻𝑏
𝐿𝐺[𝑖]  , and vice 

versa. The matching decision is described as follows: 

 H'1
mm[i]= {

1    if     H1
mm[i] ≥ 0.60  

0    if     H1
mm[i] < 0.60 

   and  𝑀′1
𝑚𝑚[𝑖] = {

1     𝑖𝑓    𝑀1
𝑚𝑚 ≥ 0.61  

  0    𝑖𝑓   𝑀1
𝑚𝑚[𝑖] < 0.61 

 

 H'1
LG[i]= {

1   if     H1
LG[i] ≥ 4.0  

0   if     H1
LG[i] < 4.0

       and   𝑀′1
𝐿𝐺[𝑖] = {

1               𝑖𝑓      𝑀1
𝐿𝐺 ≥ 4.1  

  0              𝑖𝑓      𝑀1
𝐿𝐺[𝑖] < 4.1

 

Where 𝑀′1
𝑚𝑚[𝑖]  and  𝑀′1

𝐿𝐺[𝑖]   are the scaled data estimated by an MCKSN model, 

and 𝐻′1
𝑚𝑚[𝑖] and  𝐻1

′𝐿𝐺[𝑖] are the scaled data estimated by the Human for Cognitive Skill 

Dependency (Understanding). In this formula the  𝐻1
𝑚𝑚[𝑖] should be greater than or equal 

to 0.60; if this is true, it can then be said that Cognitive Skill Dependency (Understanding) 

exists between two concepts. If 𝐻1
𝑚𝑚[𝑖] is less than 0.60, it can be said that no Cognitive 
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Skill Dependency (Understanding) can be found between the two concepts. This works in 

a similar way for other formulas as well. 

 𝐻′2
𝑚𝑚[𝑖] = {

1       𝑖𝑓     𝐻2
𝑚𝑚[𝑖] ≥ 0.50  

0       𝑖𝑓     𝐻2
𝑚𝑚[𝑖] < 0.50 

   and  𝑀′2
𝑚𝑚[𝑖] = {

1        𝑖𝑓          𝑀2
𝑚𝑚 ≥ 0.56

0         𝑖𝑓      𝑀2
𝑚𝑚[𝑖] < 0.56 

 

 𝐻′2
𝐿𝐺[𝑖] = {

1         𝑖𝑓     𝐻2
𝐿𝐺[𝑖] ≥ 4.0

0         𝑖𝑓     𝐻2
𝐿𝐺[𝑖] < 4.0

        and   𝑀′2
𝐿𝐺[𝑖] = {

1   𝑖𝑓           𝑀2
𝐿𝐺 ≥ 4.0

0     𝑖𝑓     𝑀2
𝐿𝐺[𝑖] < 4.0

 

Where 𝑀′2
𝑚𝑚[𝑖]  and  𝑀′2

𝐿𝐺[𝑖]   are the scaled data estimated by MCKSN and 𝐻′2
𝑚𝑚[𝑖] and 

 𝐻2
′𝐿𝐺[𝑖] are the scaled data evaluated by the Human subject for Cognitive Skill 

Dependency (Applying). 

 H'3
mm[i]= {

1       if     H3
mm[i] ≥ 0.60 

0        if     H3
mm[i] < 0.60 

   and  M'3
mm[i]= {

1       if        M3
mm ≥ 0.61

  0     if      M3
mm[i] < 0.61

 

 H'3
LG[i]= {

1          if     H3
LG[i] ≥ 4.0 

0           if     H3
LG[i]< 4.0

     and   M'3
LG[i]= {

1         if      M3
LG ≥ 4.1  

  0         if      M3
LG[i] < 4.1

 

Where 𝑀′3
𝑚𝑚[𝑖]  and  𝑀′3

𝐿𝐺[𝑖]   are the scaled data estimated by MCKSN and 𝐻′3
𝑚𝑚[𝑖] and 

 𝐻3
′𝐿𝐺[𝑖] are the scaled data evaluated by the Human subject for Cognitive Skill 

Dependency (Analyzing). 

 

 H'4
mm[i]= {

1     if     H4
mm[i] ≥ 0.60  

0    if     H4
mm[i]< 0.60 

   and  M'4
mm[i]= {

1            if      M4
mm≥0.62  

  0            if      M4
mm[i]<0.62 

 

 H'4
LG[i]= {

1      if     H3
LG[i] ≥ 4.0 

0       if     H3
LG[i] < 4.0

    and   𝑀′4
𝐿𝐺[𝑖] = {

1         𝑖𝑓          𝑀4
𝐿𝐺 ≥ 4.1  

0        𝑖𝑓      𝑀4
𝐿𝐺[𝑖] < 4.1

 

Where 𝑀′4
𝑚𝑚[𝑖]  and  𝑀′4

𝐿𝐺[𝑖]   are the scaled data estimated by MCKSN 

and 𝐻′4
𝑚𝑚[𝑖] and  𝐻4

′𝐿𝐺[𝑖] are the scaled data evaluated by the Human subject for Cognitive 
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Skill Dependency (Creating). The following section introduces the Performance matrix 

used to identify the evaluation parameters and the types of errors found in the MCKSN 

model. 

6.6.2 Performance Evaluation 

The performance evaluation matrix is a tabulation of the performance of the 

MCKSN model of inferring Cognitive Skill Dependencies. Table 6.4 defines the most 

common performance evaluation matrix-based evaluation measures used in the literature 

(Davis & Goadrich, 2006; Fawcett, 2006). It relates the human evaluation number of the 

Cognitive Skill Dependency per class (as its rows) to the MCKSN number of Cognitive 

Skill Dependency per class (as its columns). The numeric values of the matrix generated 

during the comparison of human model and MCKSN model. Since there are two different 

scaling techniques, two different Performance matrixes were defined. The first 

performance matrix used was Ai,j, which contains the elements of   𝐻′𝑏
𝑚𝑚[𝑖] and with 

 𝑀′𝑏
𝑚𝑚[𝑖] as an entry. The second performance matrix is Bi,j, which contains the elements 

of  𝐻′𝑏
𝐿𝐺[𝑖] , with 𝑀′𝑏

𝐿𝐺[𝑖]  as an entry (as seen in Table 6.5.) 

Table 6.5. Two Performance Matrixes. 

Aij M′b
mm[i]    Bij M′b

LG[i] 

HE′b
mm[i] Yes No    HE′b

LG[i] Yes No 

Yes a11 a12    Yes b11 b12 

No a21 a22    No b21 b22 
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Before going further, several important terms for both Performance matrixes 

explained in Table 6.5 need to be defined, and they are as follows: 

True Positives: in the Aij matrix, the true positive case is the cell (a11) representing 

the total number cases that are correctly estimated by the MCKSN model as Cognitive Skill 

Dependencies. In other words, these are the total matches between the MCKSN model and 

human model that were positive (𝐻′𝑏
𝑚𝑚[𝑖] = 𝑀𝑏

′𝑚𝑚[𝑖] = 1). Mathematically, it can be 

calculated by using Equation 6.6: 

 

 

In the Bij matrix, the true positive case is the cell b11 and the decision (in this case between  

𝑀′𝑏
𝐿𝐺[𝑖] 𝑎𝑛𝑑 𝐻′𝑏

𝐿𝐺[𝑖],  where (H'b
LG[i]=M'b

LG[i]=1). It can be calculated by using Equation 

6.7: 

False Negative: in the Aij matrix, the false negative case is the cell (a12) 

representing the total number of cases that are incorrectly estimated by the MCKSN model 

as non-Cognitive Skill Dependency.  In other words, it was the sum of the mismatches 

between both models, where the mismatches were positive ( 𝐻′𝑏
𝑚𝑚[𝑖] = 1 𝑎𝑛𝑑 𝑀′𝑏

𝑚𝑚[𝑖] =

0). Mathematically, it can be calculated by using Equation 6.8: 

𝑎11 = ∑ 𝐻′𝑏
𝑚𝑚[𝑖]

𝑆

𝑖=1
∗ 𝑀′𝑏

𝑚𝑚[𝑖] 
(6.6) 

b11= ∑ (H'
b

LG[i]
S

i=1

*M'b
LG[i]) 

  (6.7) 

𝑎12 = ∑ [𝐻′𝑏
𝑚𝑚[𝑖] − (𝐻′𝑏

𝑚𝑚[𝑖] ∗ 𝑀′𝑏
𝑚𝑚[𝑖])]

𝑆

𝑖=1
 

(6.8) 
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In the Bij matrix, the false negative case is the cell b12 representing the decision (in this case 

between  𝑀𝑏
𝐿𝐺[𝑖] 𝑎𝑛𝑑 𝐻′𝑏

𝐿𝐺[𝑖]  where 𝐻′𝑏
𝐿𝐺[𝑖] = 1 𝑎𝑛𝑑 𝑀𝑏

′𝐿𝐺[𝑖] = 0). It can be calculated 

by using Equation 6.9: 

False Positive: in the Aij matrix, the false negative case is the cell (a21) representing 

the total number of cases that are incorrectly estimated by the MCKSN model as Cognitive 

Skill Dependency (Also known as a "Type II error"). In other words, it was the sum of the 

mismatches between both models, where the mismatches were negative (H′b
𝐿𝐺[i] =

0 and Mb
′LG[i] = 1). Mathematically, it can be calculated by using Equation 6.10: 

In the Bij matrix, the false positive case is the cell b21, and the decision in this case is 

between  Mb
LG[i] and H′b

LG[i],  where (𝐻′𝑏
𝐿𝐺[𝑖] = 0 𝑎𝑛𝑑 𝑀′𝑏

𝐿𝐺 = 1). It can be calculated by 

using Equation 6.11: 

True Negative: in the Aij matrix, the false negative case is the cell (a22) representing 

the total number of cases that are correctly estimated by the MCKSN model as non-

Cognitive Skill Dependency. In other words, it was the sum of the matches between both 

models where the matches were negative (𝑀′𝑏
𝑚𝑚[𝑖] = 𝐻′𝑏

𝑚𝑚[𝑖] = 0). Mathematically, it 

can be calculated by using Equation 6.12: 

𝑏12 = ∑ [𝐻′𝑏
𝐿𝐺[𝑖] − (𝐻′𝑏

𝐿𝐺[𝑖] ∗ 𝑀′𝑏
𝐿𝐺[𝑖])]

𝑆

𝑖=1
 

           (6.9) 

a21= ∑ [M'b
mm[i]-(H'b

mm[i]*M'b
mm[i])]

S

i=1

 
  (6.10) 

b21= ∑ [M'b
LG[i]-(H'b

LG[i]*M'b
LG[i])]

S

i=1

 
          (6.11) 
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In the Bij matrix, the true negative case is the cell b22, and the decision in this case is 

between  𝑀′𝑏
𝐿𝐺[𝑖] 𝑎𝑛𝑑 𝐻′𝑏

𝐿𝐺[𝑖],  where 𝑀′𝑏
𝐿𝐺[𝑖] = 𝐻′𝑏

𝐿𝐺[𝑖]  = 0. It can be calculated by 

using Equation 6.13: 

Precision: this is a factor to measure how much of the MCKSN model’s guess was 

correct (Grishman & Sundheim, 1996). Based on the first scaling technique, precision was 

calculated as follows in Equation 6.14: 

Based on the second scaling technique, precision was calculated as follows in Equation 

6.15: 

Recall: this is used as a performance metric when the MCKSN model predicts yes, 

and it is actually correct (Grishman & Sundheim, 1996). Based on the first scaling 

technique, the formula for calculating recall is given in Equation 6.16: 

Based on the second scaling technique, recall is calculated as follows in Equation 6.18: 

a22=N- ∑ [(H'b
mm[i]+M'b

mm[i])-(H'b
mm[i]*M'b

mm[i])]
S

i=1

 
       (6.12) 

b22= S- ∑ [(H'b
LG[i]+M'b

LG[i])-(H'b
LG[i]*M'b

LG[i])]
s

i=1

 
      (6.13) 

P = 
a11

∑ ai1
2
i=1

            (6.14) 

P' = 
b11

∑ bi1
2
i=1

 
          (6.15) 

R = 
a1,1

∑ a1,j
2
j=1

          (6.16) 
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Accuracy: it is most commonly defined over all the classification errors that are 

made (Powers, 2011); therefore, based on the first scaling technique denoted as D, it is 

calculated as follows in Equation 6.19: 

Based on the second scaling technique, an accuracy D' is calculated as follows in Equation 

6.20: 

F-measure: this is a measure that uses both the precision and recall when testing 

accuracy. The calculation considers both P and R (Lewis, 1995). The F-measure score is 

at its highest point when it equals 1, and at its lowest when it equals 0. Initially introduced 

by van Rijsbergen(Van Rijsbergen, 1974), F-measures work as an evaluation criterion as 

follows:  

Based on the second scaling technique, the F'-measure is calculated as follows in Equation 

6.22: 

𝑅'=
b11

∑ b1j
2
j=1

 
          (6.18) 

𝐷=
a11+a22

∑ ∑ aij
2
j=1

2
i=1

 
(6.19) 

𝐷′ =
𝑏11 + 𝑏22

∑ ∑ 𝑏𝑖𝑗
2
𝑗=1

2
𝑖=1

 
(6.20) 

F∙ Measure =
2

1
R

+
1
P

=2.
P.R

P+R
 

(6.21) 
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As a result of calculating the Performance matrix for Cognitive Skill Dependency 

(Understanding) using both scaling techniques illustrated in table 6.6. 

Table 6.6. Two Performance Matrixes for Cognitive Skill Dependency (Understanding). 

Aij M′1
mm[i]   Bij M′1

LG[i] 

HE′1
mm[i] Yes No   HE′1

LG[i] Yes No 

Yes 261 64   Yes 336 2 

No 8 127   No 68 119 

                       

Table 6.6 presents the eight instance values calculated from performance matrix of 

the four entries that are presented in the table for both scaling techniques (MinMax scaling 

and Log scaling) for the cognitive skill dependency (Understanding). 

 

 

F'∙ Measure =
2

1
R'

+
1
P'

=2.
P'.R'

P'+R'
 

(6.22) 
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Figure 6.2. The Accurateness of the Inferred Cognitive Skill Dependencies (Understanding). 
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Figure 6.2 has been shown that the True Positive (TP) rate measures the fraction of 

positive Cognitive Skill Dependencies that are correctly labeled as positive. The True 

Negative (TN) rate measures the fraction of positive Cognitive Skill Dependencies that are 

correctly labeled as negative. In the other hand, False Positive (FP) and False Negative 

(FN) measures the fraction of cases that are misclassified of Cognitive Skill Dependencies. 

It is clear that, TP and FN in both scaling techniques shows the highest values in the Figure. 

It means that the MCKSN model is suitable for the research problem and makes well 

behavior to estimate the Cognitive Skill Dependency (Understanding). Meanwhile, the 

pattern of the misclassification rates in the False Positive (FP) and False Negative (FN) 

were low. Overall, the higher the number of the accurateness parameters (TP and TN), the 

more correct the estimation of Cognitive Skill Dependencies; the reverse occurred with 

respect to incorrect classification. 

Table 6.7. Two Performance Matrixes for Cognitive Skill Dependency (Applying). 

Aij 𝑀′2
𝑚𝑚[𝑖]   Bij 𝑀′2

𝐿𝐺[𝑖] 

𝐻𝐸′2
𝑚𝑚[𝑖] Yes No   𝐻𝐸′2

𝐿𝐺[𝑖] Yes No 

Yes 324 49   Yes 301 23 

No 52 36   No 76 60 

                    

Table 6.7 presents the eight instance values calculated from the performance matrix 

of the four entries presented in the table for both scaling techniques (MinMax scaling and 

Log scaling) for the cognitive skill dependencies (Applying). 
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Figure 6.3. The Accurateness of the Inferred Cognitive Skill Dependencies (Applying). 

Figure 6.3 has been shown the accurateness parameters used to gauge the 

performance of the MCKSN model for Cognitive Skill Dependencies (Applying). The 

Figure illustrated that True Positive (TP) and True Negative (TN) rates in both scaling 

techniques shows the pick values in the Figure. while keeping the False Positive (FP) and 

False Negative (FN) rates at an acceptable level. Clearly, the MCKSN model generates only 

a small number of FP. The MCKSN model provides a meaningful estimation of the 

Cognitive Skill Dependency (Applying). 

Table 6.8. Two Performance Matrixes for Cognitive Skill Dependency (Analyzing-Evaluating). 

Aij 𝑀′3
𝑚𝑚[𝑖]   Bij 𝑀′3

𝐿𝐺[𝑖] 

𝐻𝐸′3
𝑚𝑚[𝑖] Yes No   𝐻𝐸′3

𝐿𝐺[𝑖] Yes No 

Yes 322 37   Yes 314 17 

No 42 59   No 50 79 
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Table 6.8 presents the eight instance values calculated from the Performance matrix 

of the four entries presented in the table for both scaling techniques (MinMax scaling and 

Log scaling) for the cognitive skill dependencies (Analyzing-Evaluating). 

 

Figure 6.4. The Accurateness of the Inferred Cognitive Skill Dependencies (Analyzing-Evaluating). 
 

 

Figure 6.4 has been illustrated that the True Positive (TP) and True Negative (TN) 

rates in both scaling techniques displays the highest values in the Figure. It means that the 

MCKSN model is suitable for the proposed problem and makes well behavior to estimate 

the Cognitive Skill Dependencies compared with a human subject. Meanwhile, the pattern 

of the misclassification rates in the False Positive (FP) and False Negative (FN) were low. 

Overall, the higher the number of the accurateness parameters (TP and TN), the more 

correct the estimation of Cognitive Skill Dependency; the reverse occurred with respect to 

incorrect classification. 
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Table 6.9. Two Performance Matrixes for Cognitive Skill Dependencies (Applying). 

Aij 𝑀′2
𝑚𝑚[𝑖]   Bij 𝑀′2

𝐿𝐺[𝑖] 

HE′2
mm[i] Yes No   HE′2

LG[i] Yes No 

Yes 324 49   Yes 301 23 

No 52 36   No 76 60 

 

Table 6.9 presents the eight instance values calculated from the Performance matrix 

of the four entries presented in the table for both scaling techniques (MinMax scaling and 

Log scaling) for the cognitive skill dependencies (Applying). 

 

Figure 6.5. The Accurateness of the Inferred Cognitive Skill Dependencies (Creating). 

 

In Figure 6.5, it is clear that the True Negative (TN) rate is a significantly higher 

than those of the other parameters, where the TP, FN, and FP are the lowest values. 

Overall, the result shows different performances for Inferred Cognitive Skill Dependencies 
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(Creating). This skill level is the highest Bloom skill, so it is rigid to estimate the Cognitive 

Skill Dependencies with high accuracy. 

Overall, it is clear that the results show mostly similar behaviors for the TP, TN, 

FP, and FN estimated by the MCKSN model. From the obtained results, it is important to 

notice that the model behavior slightly differs from the inferring of Cognitive Skill 

Dependency (Creating). This is affected in a different way by the sample size, which is 

small compared to the others found in other Cognitive Skill Dependencies. To summarize, 

the MCKSN model can be used to obtain an optimal inference of the Cognitive Skill 

Dependencies, finding that the behavior of the model was very good. The analysis is 

supported by experimental results, showing the potential and practical use of the MCKSN 

model. There are other important properties and experiments to consider, making it 

interesting to further study the proposed model.  

It is important to decide the usefulness of the MCKSN model. It has been shown 

that the task of assessing model performance is not trivial, and that there are many available 

evaluation measures to do so. Many of the performance measures are in some way derived 

from the Performance matrix, which enumerates the correct and incorrect predictions 

produced by the model.  

Table 6.10 shows the performance of the Cognitive Skill Dependencies 

(Understanding), where all the measured values were obtained by the MCKSN model by 

using two different scaling techniques. The MCKSN model was successful in obtaining a 

Precision(P) of 97%, a Recall(R) of 66%, an accuracy (D)of 84%, and an F-measure of 
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78% for the MinMax scaling technique; and a Precision (P') of 84%, a Recall(R') of 84%, 

an accuracy(D') of 81%, and an F'-measure of 84% for the Log scaling technique. 

 

 

 

 

 

As can be seen in Figure 6.13, the overall performance of the MCKSN model for 

Cognitive Skill Dependencies (Understanding) with respect to the evaluation parameters 

displayed high accuracy using both scaling techniques. 

 

 

Figure 6.6. Evaluation parameters for Cognitive Skill Dependencies (Understanding). 
 

Table 6.6 shows the performance of the Cognitive Skill Dependencies (Applying), 

where all the measured values were obtained by the MCKSN model using two different 

scaling techniques. The MCKSN model was successful in obtaining a Precision(P) of 81%, 
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Table 6.10.   Evaluation Parameters for Cognitive Skill Dependency 

(Understanding) 

Evaluation Parameters 

P P' R R' D D' F. Measure F'. Measure 

0.97 0.84 

 

0.66 0.84 0.84 0.81 0.78 0.84 
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a Recall(R) of 100%, an accuracy(D) of 81%, and an F-measure of 86% for the MinMax 

scaling technique; and a Precision (P') of 95%, a Recall(R') of 100%, an accuracy(D') of 

95%, and an F'-measure of 97% for the Log scaling technique. 

 

 

 

 

 

As can be seen in Figure 6.7, the overall performance of the MCKSN model for 

Cognitive Skill Dependencies (Applying) with respect to performance evaluation 

parameters showed a high rate accuracy using both scaling technique. 

 

Figure 6.7. Evaluation parameters for Cognitive Skill Dependency (Applying). 
 

Table 6.12 shows the performance of Cognitive Skill Dependencies (Analyzing-

Evaluating), where all the measured values were obtained by the MCKSN model using two 
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Table 6.11.   Evaluation Parameters for Cognitive Skill Dependency (Applying) 

Evaluation Parameters 

P P' R R' D D' F. Measure F'. Measure 

0.81 0.95 1.0 1.0 0.81 0.95 

 

0.86 0.97 
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of 88%, a Recall (R) of 88%, an accuracy(D) of 83%, and an F-measure of 89% for the 

MinMax scaling technique; and a Precision(P') of 95%, a Recall(R') of 95%, an 

accuracy(D') of 85%, and an F-measure of 95% for the Log scaling technique. 

 

 

 

 

 

As can be seen in Figure 6.8, the overall performance of the MCKSN model for 

Cognitive Skill Dependency (Analyzing-Evaluating) with respect to performance 

evaluation parameters improved with the Log scaling technique. 

 

Figure 6.8. Evaluation parameters for Cognitive Skill Dependencies (Analyzing-Evaluating). 
 

Table 6.13 shows the performance of the Cognitive Skill Dependencies 
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Table 6.12.   Evaluation Parameters for Cognitive Skill Dependency (Analyzing-

Evaluating) 

Evaluation Parameters 

P P' R R' D D' F. Measure F'. Measure 

0.88 0.95 0.88 0.95 0.83 0.85 

 

0.89 0.95 
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obtaining a Precision(P) of 1%, a Recall(R) of 44%, an accuracy(D) of 88%, and F-

measure of 17% for the MinMax scaling technique; and Precision (P') of 34%, Recall (R') 

of 34%, an accuracy(D') of 81%, and F'-measure of 34% for the Log scaling technique. 

 

 

 

 

As can be seen in Figure 6.9, the overall performance of the MCKSN model for 

inferring Cognitive Skill Dependency (Creating) with respect to performance evaluation 

parameters  

 

Figure 6.9. Evaluation parameters for Cognitive Skill Dependencies (Creating). 
 

As illustrated in Figure 6.10, the accuracy rate for all the inferred Cognitive Skill 
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Table 6.13.   Evaluation Parameters for Cognitive Skill Dependency (Creating) 

Evaluation Parameters 

P P' R R' D D' F. Measure F'. Measure 

0. 1 0.34 0.44 0.34 0.88 0.81 0.17 0.34 
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Figure 6.10. The Accuracy Rate for all the Inferred Cognitive Skill Dependencies. 

6.7 Margin of Errors 

Throughout this dissertation, the probability that the results of MCKSN model are 

significant means that the obtained results were accurate. Showing a high confidence level 

means that a very small probability of the MCKSN results happened by chance. The 

confidence level ranged from 0% to 100%. If the confidence level of the obtained results 

is zero, it means that there is no faith at all in getting the same results if the human 

experiments were to be repeated. If the confidence levels are less than 100, it means that 

there is no doubt at all that if the experiment were repeated that it would get the same 

results. The confidence level value (CL) is called the Wilson score interval (Gilbert, 

1987)The values of the CL are provided from statistics, and common values used are: 

(90%, 95%, 98%, and 99%). 
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In MCKSN model experiments, the confidence level used to calculate the margin 

of errors was 95%. The Margin of Errors (ME) is the probability of any type of errors in 

the MCKSN model results. Knowing the margin of error for the result helps to estimate 

how close the MCKSN results are to the truth, based on the Human Evaluation.  

The formula to calculate ME used in this dissertation was Z times the Standard Error 

as in 6.23. 

Where:  

Z: z-score is the value that meets the CL = 95% (1.96 in the z-table). The z-table is 

a statistical table allowing to interpret the results marked in that table. It can tell what 

percentage is under the curve at any particular point (Brownlee, 1965).. 

SE: is the standard error calculation that can be done by the mathematical formula 

6.24: 

Where:  

N: is the sample size, and 𝑀𝑏
𝑚𝑚[𝑖]𝑒 is an MCKSN error. It is calculated as in 

Equation 6.25. 

 

ME=Z x SE               (6.23) 

𝑆𝐸 = √
𝑀′𝑏

𝑚𝑚[𝑖]𝑒(𝑀′𝑏
𝑚𝑚[𝑖]𝑒 − 1)

𝑁
 

                       (6.24) 

𝑀𝑏
𝑚𝑚[𝑖]𝑒 =

𝑎22

𝑁
   (6.25) 

http://ncalculators.com/statistics/standard-error-calculator.htm
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Where: 

a22: is an incorrect prediction in both the MCKSN model 𝑀𝑏
′𝑚𝑚[𝑖] and the human results 

H′b
mm[i]. and N: is the total number of all the inferred Cognitive Skill Dependencies(CSD). 

By applying the formula in 6.23, the ME for each CSD level is as follows: 

For Cognitive Skill Dependency (Understanding), ME was equal to 

0.0356290588537. By turning it to a percentage, the margin of error was 3.58%, with a 

confidence level of 95%. This means that there is a 95% chance that the MCKSN result for 

Cognitive Skill Dependency (Understanding), did NOT happen by accident. It can also 

mean that there is a probability of 3.5% that the Cognitive Skill Dependency 

(Understanding), using the MCKSN model were incorrect. 

For Cognitive Skill Dependency (Applying), ME was equal to 0.0357876652214. 

By turning it to a percentage, the margin of error was 3.56%, with a confidence level of 

95%. This means that there is a 95% chance that the MCKSN result for Cognitive Skill 

Dependency (Applying) did NOT happen by accident. It can also mean there is a 

probability of 3.58% that the Cognitive Skill Dependency (Applying) using the MCKSN 

model were misinterpreted. 

For Cognitive Skill Dependency (Analyzing-Evaluating), ME was equal to 

0.037829206789. By turning it to a percentage, the margin of error was 3.78%, with a 

confidence level of 95%. This means that there is a 95% chance that the MCKSN result for 

a22 = N − ∑ [(H′b
mm[i] + M′b

mm[i]) − (H′b
mm[i] ∗ M′b

mm[i])]
N

i=1
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Cognitive Skill Dependency (Analyzing-Evaluating) did NOT happen by accident. It can 

also mean there is a probability of 3.78% that the Cognitive Skill Dependency (Analyzing-

Evaluating) using the MCKSN model were misinterpreted. 

For Cognitive Skill Dependency (Creating), ME was equal to 0.0433301771194. 

By turning it to a percentage, the margin of error was 4.33%, with a confidence level of 

95%. This means that there is a 95% chance that the MCKSN result for Cognitive Skill 

Dependency (Creating) did NOT happen by accident. It can also mean there is a probability 

of 4.33% that the Cognitive Skill Dependency (Creating)using the MCKSN model were 

misinterpreted. 

Table 6.14. Margin of Error and Confidence Level for CSD’s . 

Cognitive Skill Dependencies Margin of Errors Confidence Level 

Understanding 3.56% 95% 

Applying 3.58% 95% 

Analyzing-Evaluating 3.78% 95% 

Creating 4.33% 95% 

6.8 Summary and Discussion  

In this chapter, we came full circle by presenting the results of the proposed model. 

The material introduced gradually in the previous chapters was here summarized in a 

meaningful way, producing a clear picture of the critical experiments of this dissertation. 

The obtained results of the model were presented in detail. In order to measure the 

reliability of the proposed model the results were compared with human evaluation using 

a survey. Step by step explanation of the human subject procedure was presented. 
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Additionally, an evaluation measures that were used to evaluate the efficiency of the 

presented model. The model measured the quantitative inference and probability 

estimation of the inferred Cognitive Skill Dependencies facts. Finally, the analysis of the 

experiment was displayed.  
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 CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

In computer sciences curriculum instructors usually focuses on which concepts to 

teach and when, not on how. An interesting angle to rank the learning materials by level of 

difficulty in terms of inferring the Cognitive Skill Dependencies. This chapter recapitulate 

what has come out of our work. The dissertation developed a novel meta learning 

recommended model to classify the domain specific concepts based on their Cognitive 

Skill Dependencies. The engine of the model is the third phase, which is inferring 

Cognitive Skill Dependencies in the learning region. The problem of inferring Cognitive 

Skill Dependencies was explored, and a sophisticated technique was implemented to access 

high accuracy and efficiency. Additionally, many of the sub tasks have been solved to reach 

the optimal result of inferring Cognitive Skill Dependencies.  

We recommended to use the initial version of our model to introduce varity of 

options starting from measuring the knowledge in a textbook, which is affect both the 

quality of the knowledge acquired and the time needed to learn this knowledge. 

Furthermore, using FOL as a fundamental to construct the SIR, which are used for inferring 

Cognitive Skill Dependencies using MCKSN model. Based on the results and the human 

evaluation our model introduced accurate result where the topic is still open research. Some 

interesting questions will be addressed as a future work.  



142 

 

The result of this dissertation added a novel parameter, which is using Cognitive 

Skill Dependencies to improve knowledge quality for the learner’s by maximizing the 

learning benefits with minimum efforts for the learner.  

7.2 MCKSN Model Application 

The model will serve the following application: 

• Extracting teaching plan for instructors based on Cognitive Skill 

Dependencies between concepts.  

• Inferring the learning objectives of a course based on Cognitive Skill 

Dependencies. 

• Introducing a learning map for CS learners. 

• Generating a summary template from the learning materials based on the 

most discussion topics in the textbook. 

7.3 Limitations of the MCKSN Model 

Here the limitations of the current model are presented. These limitations are not 

fundamental to context sensitive moralization; The extensions addressed as future work 

• The experiment setup should be created by domain experts (a large group 

of professors). The access for the domain experts was not available in the 

current work. 

• The participants in this experiment had various grade averages (A, B, C, and 

D). In other words, all grade levels were included b in this experiment 
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because of the IRB limitation of the sample size used in the human model. 

Also, if the sample size were smaller, then the possibility that participants 

could more easily be identified would also increase. 

• In these experiments simple Skill Inference Rules (SIR) were used. The SIR 

set can extend to include more complex patterns. 

• The automatic model needed to be presented as an online tool in website to 

serve the learner and instructors. 

• More learning sources needed to be tested to see the behavior of our model. 

• The domain space only CS domain space hopefully other domains be tested 

as well.  

• Only English Language is used in the model. 

7.4 Future work 

There are several interesting and promising directions in which this work could be 

extended. 

• Do a human experiment which is included only students with high level 

grade with specific GPA level. 

• Do an experiment created by a large expert in Algorithm area. 

• More complex Skill Inference Rules (SIR) should be generated to be tested 

by the proposed model.  

• Using the proposed model to build an online Computer Science Courses. 
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• Using the proposed model to create exam questions based on the Cognitive 

Skill Dependencies levels. 

• Using the model to investigate different domain for example analyzing 

health-records or analyzing social network. 

• Even though there exist many applications in which a Singular Value 

Decomposition (SVD) is useful, there are a few drawbacks to using the SVD. 

For example, the choice for the number of dimensions k to use can be a 

crucial aspect. In the dissertation, two dimensions were used. Using too 

many dimensions will add unnecessary noise to the result. The 

dimensionality reduction needs deeper analysis. 

•  It is interesting if it were possible to modify the singular value 

decomposition SVD. 

• The model could be used to mimic human learning using psychomotor 

Bloom domain by building a reliable picture of a student’s relevant 

cognitive states during learning. 
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APPENDIX A  

This appendix shows the experiment result for MCKSN for the inferred Cognitive Skill 

Dependencies with different threshold βm values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A. 2. a Biredview of the inferred Cognitive Skill Dependencies (Understanding) using MCKSN 

probability Model at threshold βm =65%. 

 

Figure A. 1. a Biredview of the inferred Cognitive Skill Dependencies (Understanding) 
using MCKSN probability Model at threshold βm =50%. 
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Figure A. 3. a Biredview of the inferred Cognitive Skill Dependencies (Understanding) using MCKSN 

probability Model at threshold βm =75%. 

 

Figure A. 4. a Biredview of the inferred Cognitive Skill Dependencies (Understanding) using MCKSN 
probability Model at threshold βm =85%. 
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Figure A. 6. a Biredview of the inferred Cognitive Skill Dependencies (Analyzing) using MCKSN 
probability Model at threshold βm =65%. 

 

Figure A. 5. a Biredview of the inferred Cognitive Skill Dependencies (Analyzing) using 
MCKSN probability Model at threshold βm =50%. 
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Figure A. 7. a Biredview of the inferred Cognitive Skill Dependencies (Analyzing) using MCKSN 

probability Model at threshold βm =75%. 

 

Figure A. 8. a Biredview of the inferred Cognitive Skill Dependencies (Analyzing) using MCKSN 
probability Model at threshold βm =85%. 
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Figure A. 9. a Biredview of the inferred Cognitive Skill Dependencies (Applying) using MCKSN probability 
Model at threshold βm =50%. 

 

Figure A. 10. a Biredview of the inferred Cognitive Skill Dependencies (Applying) using MCKSN 
probability Model at threshold βm =65%. 
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Figure A. 11. a Biredview of the inferred Cognitive Skill Dependencies (Applying) using MCKSN 
probability Model at threshold βm =75%. 

 

Figure A. 12. a Biredview of the inferred Cognitive Skill Dependencies (Applying) using MCKSN 

probability Model at threshold βm =85%. 
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Figure A. 13. a Biredview of the inferred Cognitive Skill Dependencies (Creating) using MCKSN 
probability Model at threshold βm =50%. 

 

Figure A. 14. a Biredview of the inferred Cognitive Skill Dependencies (Creating) using MCKSN 
probability Model at threshold βm =65%. 
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Figure A. 15. . a Biredview of the inferred Cognitive Skill Dependencies (Creating) using MCKSN 
probability Model at threshold βm =75%. 

 

 

Figure A. 16. a Biredview of the inferred Cognitive Skill Dependencies (Creating) using MCKSN 

probability Model at threshold βm =85%. 
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APPENDIX B  

AUTHORIZATION OF STUDY BY INSTITUTIONAL REVIEW BOARD 

Date: This application was approved on October 31, 2016. 

Subject: IRB Study Approved 

The Kent State University Institutional Review Board has reviewed and approved your 

Application for Approval to Use Human Research Participants as Level I/Exempt from 

Annual review research.   Your research project involves minimal risk to human subjects 

and meets the criteria for the following category of exemption under federal regulations. 
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APPENDIX C  

This appendix shows the Cognitive Class for some of the CS-Verbs. 

CS-Verb Cognitive Class 

Demonstrate BL1, BL2 

Analyze BL1, BL2 

Show  BL1, BL2 

Translate  BL1, BL2 

Identify  BL1, BL2, BL3 

Illustrate  BL1, BL2, BL3 

Select  BL1, BL2, BL3, BL4 

Develop  BL1, BL2, BL4 

Characterize  BL1, BL3 

List  BL1, BL3 

Compare  BL1, BL3, BL4 

Estimate  BL1, BL3, BL4 

Interpret  BL1, BL3, BL4 

Discuss  BL1, BL4 

Summarize  BL1, BL4 

Determinant  BL2, BL3 

Discover  BL2, BL3 

Examine  BL2, BL3 

Investigate  BL2, BL3 

Choose  BL2, BL3, BL4 

Relate  BL2, BL3, BL4 

Build  BL2, BL4 

Change  BL2, BL4 

Construct  BL2, BL4 

Organize  BL2, BL4 

Produce  BL2, BL4 

Solve  BL2, BL4 

Evaluate  BL3, BL4 

Measure BL3, BL4 
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APPENDIX D  

13 research papers have been published on the above discussed contributions, 

where 8 of them are specific to the proposed model in this dissertation. The conferences 

are peer reviewed, and the papers are as follows: 

1. Conceptualize the Domain Knowledge Space in the Light of Cognitive Skills. F. Nafa, J.I 

Khan. Proceedings of the 7th International Conference on Computer Supported Education 

(CSEDU) 2015. 

2. An Iterative Method for Enhancing Text Comprehension by Automatic Reading of 

References. Babour, F. Nafa, and J. I. Khan. Fourth International Conference on Intelligent 

Systems and Applications (INTELLI), 2015 

3. Connecting the Dots in a Concept Space by Iterative Reading of FreeText References with 

Wordnet. Babour, F. Nafa, and J. I. Khan. IEEE/WIC/ACM International Conference on 

Web Intelligence (WI) 2015 

4. Automatic Concepts’ Classification Based on Bloom’s Taxonomy    Using Text Analysis 

and the Naïve Bayes Classifier Method. F. Nafa., S. Othman, and J.I. Khan. International 

Conference on Computer Supported Education (CSEDU) 2016 

5. Mining Cognitive Skills Levels of Knowledge Units in Text Using Graph Triangularity 

Mining. F. Nafa, S. Othman, J.I. Khan, and A. Babour. IEEE/WIC/ACM International 

Conference on Web Intelligence (WI) 2016 

6. Discovering Bloom Taxonomic Relationships between Knowledge Units Using Semantic 

Graph Triangularity Mining. F. Nafa, J.I. Khan, S. Othman, and A. Babour. International 

Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery 

(CyberC) 2016 

7. Semantic Graph Transitivity for Discovering Bloom Taxonomic Relationships between 

Knowledge Units in a Text. F. Nafa, S.  Othman, J.I., Khan, and A. Babour. Proceedings 
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of the Fifth International Conference on Intelligent Systems and Applications (INTELLI) 

2016 

8. Extending Cognitive Skill Classification of Common Verbs in the Domain of Computer 

Science Algorithms Knowledge Units. F. Nafa, S. Othman, and J.I. Khan. Proceedings of 

the 9th International Conference on Computer Supported Education (CSEDU) 2017. 
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