
Technical Report 2001-01-01
Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 i

ARCHITECTURE OVERVIEW OF
MOTION VECTOR REUSE
MECHANISM IN MPEG-2

TRANSCODING

Javed I. Khan, Darsan Patel, Wansik Oh, Seung-su Yang,
Oleg Komogortsev, and Qiong Gu

Technical Report TR2001-01-01

Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science

Kent State University, 233 MSB, Kent, OH 44242

(Last Revised January 31, 2001)
javed@kent.edu

1 OVERVIEW
In a typical large network (li ke the global internet) links in the path from the source to the
sink have various capacities. The individual li nk capacities also are not be static. These links
are shared, thus are subject to transient congestion. Also, the network elements switches,
routers) available over the network themselves have unequal computational power, and these
too are shared. Thus, the computational power allocated to individual adaptation process
is also dynamicall y variable. This second level of asymmetry is particularly significant for the
programmable networks—such as active networks [5,6]. In this research we take a fresh look into
this problem from a unified perspective of adaptation with respect to both the fundamental
network resources—bandwidth and processing power.

The transcoder itself offers the first level of adaptation [4,7]. The transcoder has the dynamic
control to modify the outgoing bit rate. It can be deployed as an active net capsule in side the
network. However, video transcoding is a computationally daunting task by its own virtue [4,7]. It
becomes more so when we plan to perform it in-stream in real time inside on a network. Current
state-of-the art in video compression technology requires custom chipset to obtain real-time
performance in MPEG-2 encoding. Roughly speaking, something close to CIF video (CCIR 4:2:0
CIF=352x240 at 30 frames/second or 352 x288 at 25 frames/second) can be decoded in software
satisfactoril y. It requires processing of 69,300 blocks per second. In comparison, a broadcast
qualit y video (CCIR-601 4:2:2: 720x480 at 30 frames/second or 352x576 at 25 frames/second)
requires processing of 405,000 blocks per second, while a production or medical qualit y video
(MPEG-2 HIGH@HIGH-1440 profile=1920x1152x 60 frames/second) will require processing of
5,184,000 blocks per second. Active network [1,5,6] based transcoding adds further computational

Technical Report 2001-01-01
Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 ii

challenge to the above scenario. First of all , a Transcoder is composed of a decoder and an
encoder. Thus, it is computationally a more complex task. Secondly, on an active network the
available processors are expected to be general purpose with general programmabilit y. Which
almost excludes the possibilit y of using any custom chip set (although field programmable logic
may still be an option). Finall y, an active network processor, by definition and location, is going to
be a highly shared resource. The competing processes will also be real time processes. Thus, not
only its processing performance, but also the complexity of the Transcoder itself has to be highly
optimized.

In this research, as a fast step we have investigated quite a few techniques for accelerated
transcoding. Rather than their straight implementation, however, what is more important is to note
that, li ke any approximation algorithm—the gain in speed generall y does not come free. It is a
three-way tradeoff between the speed of the task, gained rate compression, and the quality in the
original transcoding task. Therefore, on the asymmetric node capacity network, we demonstrate an
self-organizing transcoder, where the very transcoder can operate at multiple states, and
automaticall y reconfigure itself with multiple compute resource footprint versions. These varying
configurations offers multiple choice points in compute resource plane—such as CPU cycle
requirement, memory foot-print of data segments and instruction buffer and CPU overhead.

This document outlines a system called self-organizing active transcoder that we have
implemented for demonstrating this concept. In this concept implementation we have chosen to
implement a bi-state transcoder that offers choice in the computational speed. In MPEG-2
transcoding, motion vector estimation [2,8] is the single-most major computation component
consuming as much as about 25-80% of total transcoding cycles. In transcoding we developed a
novel technique where motion vectors can be reused in the recoded stream directly from the

Xcoder States

01 00

11 10

Do not Read
Bypass && Do
not make
Framedecinfo.txt

Read Bypass &&
Do not make
Framedecinfo.txt

Read Bypass &&
make
Framedecinfo.txt

Do not Read
Bypass &&
make
Framedecinfo.tx
t

Technical Report 2001-01-01
Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 iii

encoded stream. It can thus significantly reduce the active-cycle consumption by the transcoding.

The transcoder can operate in 4 states. In addition to motion vector bypass / full logic mode, it can
also choose between a dynamic and non-dynamic states. Once, the transcoder moves into non-
dynamic state, its mode becomes final and cannot be changed. This transcoding system is
intended for processing stream inside a programmable network such as active network.

The Figure above shows the state transition diagram. The engineering of this complex system has
been documented in a series of technical documents. This document only outlines the architectural
detail involved in the implementation of the motion vector bypass/reuse mechanism.

1.1 What is motion vector bypass?
When the encoder processes data that takes heavy processing time in motion vector estimation.
The motion vector bypass is how we can reduce processing time in encoder by reusing the motion
vectors extracted by the decoder from the bitstream and plugging it into the encoder instead of
estimating the motion vectors in the ENCODER .

1.1 What is the Dynamic Motion Vector Bypass?
The idea of Dynamic Motion Vector Bypass refers to the ability of switching or off the motion
vector bypass per frame basis during the run-time of the transcoder (in other words dynamically
switching ON and OFF motion vector bypass per frame basis.)

1.2 What is the problem for reusing motion vector?
When we are reusing the motion vectors or in other words extracting the motion vectors from the
decoder) we do not get the optimum motion vectors because during the original encoding (i.e

VLC
(putvlc.c)

(0.07) (0.00)

QUANT
(qua ntize .c)

(11.41) (15.1 0)
Buffe r

Gene ra tion of
he a ders

(puth dr.c))

� � � �
� � � � � 	
 �

� � � � � � � � � � �
Inve rse Qua nt

(qua ntise .c)
(1.94) (2.76))

Motion Est imat ion
(mot ion.c)
(21.4) (0)

Fra me Store s

Pre diction
(predict.c)
(1.4) (1.7)

�
�� �

� �� �

Decode_Headers
(gethdr.c)

Var iab le Length
Decoding
(getvlc.c)

Motion Vector
Decoding (motion.c)� � �� � � � � � � � �

Inverse DCT
(idct ref.c)

(83.6)

bitstream

Frame
Read Bypass.par

Create
Enc_Frame_Bypass.par

fo r ENCODER
for All frames.

Framedec.txtON

FRAME
STORE

ON || (OFF AND
DB_COUNTER != 1

Create
Framedec.txt
fo r this frame

Cre a te the file
(fra me rea dy.tx t)

use d to
stored the

conve rte d da ta

CONVERTER

� � � �

 ! ! " " # $ $ % % & '& ' ((*)) + + , &, & -

. / 0 1. / 0 1 2 2 32 2 3 0 10 1 4 4

5 5
6 6

7 87 8 9 9 :;8:;8 < < 9 = >9 = > ? ? @ @ A A @ @

Decode_Picture
(getp ic.c)

0.0

Picture Output
Rout ines
(store.c)

Sequence Frame Frame Frame Frame

Frame

reference Frames

Pred icted
Frame

Y,U,V files

Switch
values Decoded Motioon vectors

Switch
values

Read the bypass.par
generated for the

encoder for this frame
(mot ion.c)

DCT
(fdc tre f.c)

(48.64) (62.9 6)

Re ad yuv
fi le s

(re a dpic.c)
(0.03)

Se que nce leve
routines

(putse q.c))

sequence

Y,U,V files

Frame

Decoded Motioon vectors

Frame

Frame

Frame

Frame

Frame

Frame

Frame

Frame

reference Frame

Estimated Frame

Pred icted Frame

Pred icted Frame

reference Frame

reference Frame

Read
Framedec.txt

For the current
frame

Convert && Write into the
Converted file Created at the

beginning

ON

Converted motion vectors

ON

ON

OFF

OFF

OFF

ON

ON

ON

ON

ON

ON

Converted motion vectors

B BDCDECDEDF FDBDCBDCHG G

I IDJHKJHKDL LDMDIMDIHN N

FormPred iction for each
Macronb lockO P QO P Q P P R R S S

T
Pred ictions

Add_block
(1.96)

Motion_compensation

U V WU V W X X V V Y Y

Z [\Z [\]] ^ ^ _ _

` ` a ba b c c d d e e f f g g a a h ch c i i ii i i j e e k;l
m nm n o po p q q r s t or s t o u u vu u v w xw x y y z z { {

| }| } ~ � �~ � � } � � �} � � � } �} �

� � � �� � � � � �� � } �} �D� � ~ �~ � � � � � � � � � } } �

� � � � � �� � � � � � � �� � � � � � � � � � �� � � � � � � � �� � � � � � �� � � � � �� � � � � �� � � � � �� � ¡ �¡ � ¢ ¢
£ £ ¤ ¤ ¥ ¥ ¦ ¦ § § ¨ ¨ © © ª « ¬ ª ª « ¬ ª ® ¯® ¯ ° ª° ª ¨ ¨ ¬ ¬
± ± ² ² ³ ³ ´ ´ µ µ ¶ · ¸¶ · ¸ ¹ ¹ º · ¶º · ¶ » ¼» ¼ ½ ½ ¾ ¹¾ ¹ º ·º · ¿ ¿À Á Â Ã ÄÀ Á Â Ã Ä Å Å Æ Æ Ç Ç Ä Ä

% time bypass on

% time bypass o ff

It seems to have problem. W hre is the output?

Frame slideTranslated
block

VLC
(putvlc.c)

(0.07) (0.00)

QUANT
(qua ntize .c)

(11.41) (15.1 0)
Buffe r

Gene ra tion of
he a ders

(puth dr.c))

È É Ê Ë
Ì Í Î Ï Ð Ñ Ò Ó

Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß
Inve rse Qua nt

(qua ntise .c)
(1.94) (2.76))

Motion Est imat ion
(mot ion.c)
(21.4) (0)

Fra me Store s

Pre diction
(predict.c)
(1.4) (1.7)

à
áâ â

â ââ â

Decode_Headers
(gethdr.c)

Var iab le Length
Decoding
(getvlc.c)

Motion Vector
Decoding (motion.c)ã ä åã ä å ä ä ä ä æ æ

Inverse DCT
(idct ref.c)

(83.6)

bitstream

Frame
Read Bypass.par

Create
Enc_Frame_Bypass.par

fo r ENCODER
for All frames.

Framedec.txtON

FRAME
STORE

ON || (OFF AND
DB_COUNTER != 1

Create
Framedec.txt
fo r this frame

Cre a te the file
(fra me rea dy.tx t)

use d to
stored the

conve rte d da ta

CONVERTER

ç ç è è

é êé ê ë ë ì í í î î ï ðï ð ñ ñ*ò ò ó ó ô ïô ï õ

ö ÷ ø ùö ÷ ø ù ú ú ûú ú û ø ùø ù ü ü

ý ý
þ þ

ÿ �ÿ � � � ������ � � � � �� � � � � � � 	 	 � �

Decode_Picture
(getp ic.c)

0.0

Picture Output
Rout ines
(store.c)

Sequence Frame Frame Frame Frame

Frame

reference Frames

Pred icted
Frame

Y,U,V files

Switch
values Decoded Motioon vectors

Switch
values

Read the bypass.par
generated for the

encoder for this frame
(mot ion.c)

DCT
(fdc tre f.c)

(48.64) (62.9 6)

Re ad yuv
fi le s

(re a dpic.c)
(0.03)

Se que nce leve
routines

(putse q.c))

sequence

Y,U,V files

Frame

Decoded Motioon vectors

Frame

Frame

Frame

Frame

Frame

Frame

Frame

Frame

reference Frame

Estimated Frame

Pred icted Frame

Pred icted Frame

reference Frame

reference Frame

Read
Framedec.txt

For the current
frame

Convert && Write into the
Converted file Created at the

beginning

Read
Framedec.txt

For the current
frame

Convert && Write into the
Converted file Created at the

beginning

Read
Framedec.txt

For the current
frame

Convert && Write into the
Converted file Created at the

beginning

ON

Converted motion vectors

ON

ON

OFF

OFF

OFF

ON

ON

ON

ON

ON

ON

Converted motion vectors

������� ��
��
���� �

� ���������� ���������� �

FormPred iction for each
Macronb lock� � �� � � � � � � � �

�
Pred ictions

Add_block
(1.96)

Motion_compensation

� � �� � � � � ! !

" # $" # $ % % & & ' '

(() *) * + + , , - - . . / /)) 0 +0 + 1 1 11 1 1 2 - - 3�4

5 65 6 7 87 8 9 9 : ; < 7: ; < 7 = = >= = > ? @? @ A A B B C C

D ED E F G HF G H E I J IE I J I E KE K

L M G ML M G M J IJ I E KE K�N N F LF L N N O O M M G G E E H

P P Q Q R SR S T T U U V WV W X X Y Y X X W W Z[[\] ^ _ `] \\] ^ _ `] \a a b b c dc d e e f ef e g g d h fd h f i ai a j j
k k l l m m n n o o p p q q r s t r ur s t r u v wv w x rx r p p t t
y y z z { { | | } } ~ � �~ � � � � � � ~� � ~ � �� � � � � �� � � �� � � �� � � � �� � � � � � � � � � � � �

% time bypass on

% time bypass o ff

� � � �� � � � � � � � � � � � � � � �� � � � �� � � � � � ���

� �� � � � ¡ ¡ ¢ £ ¤ �¢ £ ¤ � ¥ ¥ ¦¥ ¥ ¦ § ¨§ ¨ © © ª ª « «

¬ ¬ ® ¯ °® ¯ ° ± ² ± ± ² ± ³ ³

´ µ ¯ µ´ µ ¯ µ ² ±² ± ³ ³�¶ ¶ ® ´® ´ ¶ ¶ · · µ µ ¯ ¯ °

¸ ¸ ¹ ¹ º »º » ¼ ¼ ½ ½ ¾ ¿¾ ¿ À À Á Á À À ¿ ¿ ÂÃ Ã º ¿ Ä » ¹ ¿ ºº ¿ Ä » ¹ ¿ º
Å Å Æ Æ Ç ¿Ç ¿ ¼ ¼ ¾ ¼¾ ¼ Â Â ¿ ½ ¾¿ ½ ¾ » Å» Å ¹ ¹
È È À À ¿ ¿ Â Â É É ¼ ¼ Â Â ¿ ½ ¾ ¿ º¿ ½ ¾ ¿ º Å ÆÅ Æ Ç ¿Ç ¿ ¼ ¼ ¾ ¾

È È À À ¿ ¿ Â Â Ã Ã º ¿ Äº ¿ Ä » » ¹ ¿ º¹ ¿ º Â ÅÂ Å Á Á ¾ »¾ » ¹ ¿¹ ¿ À À» ¹ ¾ Ê ¿» ¹ ¾ Ê ¿ ¼ ¼ Å Å º º ¿ ¿

% time bypass on

% time bypass o ff

It seems to have problem. W hre is the output?

Frame slideTranslated
block

Technical Report 2001-01-01
Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 iv

before decoding into the transcoder) into MPEG format some data is lost due to compression.
Therefore ENCODER OF THE TRANSCODER (or we can call it the REENCODER restimates
the motion_vectors using the motion_estimation() routine to compute optimum motion vectors so
as to get the optimum quality of the video. Hence we need to convert the motion vectors extracted
from the decoder to match their optimum values.

2 SYSTEM ARCHITECTURE

The diagram above shows the architecture of the system. The notations (also shown in the bottom
right box) are explained below.

� First notation in the diagram is indicating the status of the Frame bypass switch with ON or
OFF written on it and this symbol is found on many data links in the diagram indicating what
the flow of the data when it is OFF and when it is ON.

� Second notation in the diagram is indicating the status of the Dynamic bypass switch with ON
or OFF written on it and this symbol is found on many data links in the diagram indicating
what the flow of the data when it is OFF and when it is ON.

� Third notation is indicating that the links with that color is the data links in the diagram.
� Fourth notation is indicating all the links which carry control information in the architecture.
� .Fifth notation is to identify the links in the architecture where the medianet_incorporated

objects are created and when .
� Sixth notation is to identify the medianet_created data elements in the architecture.
� The Seventh notation is used to identify the routines regarding the motion vector bypass

incorporated by medianet in the original source code .
� The eighth notation is indicating the percentage of total running time for that particular

routine when the FRAME_BYPASS_FLAG _SWITCH is OFF.
� The ninth notation is indicating the percentage of total running time for that particular routine

when the FRAME_BYPASS_FLAG _SWITCH is ON.

2 FUNCTIONAL OVERVIEW

2.1 Decoder’s process :
Initiall y the header information is extracted from the incoming bitstream by the decoder routine
“Decode header” . The stream of mpeg-2 is encoded in layers such as sequence, GOP, pictures or
frames in GOP. Hence the next routine decodes the frame level information. Then a VLC table
look up and inverse DCT is applied to each frame. This process gives various information along
with the motion vector information. If the frame bypass flag is set then at this point of the
decoding process the motion vectors for each macroblock of each frame is trapped and stored
into a set of user-defined file series (one file for each frame) called Vector Files. The decoded
motion vectors are generall y not directly usable in a new encoding. Therefore, each vector file is
then processed through a CONVERTER logic designed at the lab. The CONVERTER is
designed to convert the invalid values of the motion vector data from the decoder to the valid
values. Invalid values are obtained at decoder because of loss of certain data due to compression in

Technical Report 2001-01-01
Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 v

the original encoding of the bitstream. The details of the converting routines of the CONVERTER
will be described below. The processed vectors are then fed into the RECODER.

The decoder also using the motion vector information from the bitstream compensates each
macroblock of each of the frame. The compensated frame is then stored into a frame buffer.
Finally each of the frames is stored in the YUV format series file and transmitted to the
REENCODER.

2.2 Reencoder’s process :
From the YUV files supplied, initially it generates the header information. The frames are passed
to the motion_estimation routine in the reencoder. In the full logic mode the routine then
estimates the motion vectors for each macroblock of each frame. Using these motion_vectors the
macroblocks of the different frames are predicted. .If the frame bypass flag is set then the
transcoder instead of estimation of the vectors retrieves the motion_vector data converted by the
CONVERTER and supplies them to the macroblock prediction routine. There are other routines,
which do the DCT, quantization and IDCT of various macroblocks. The values computed by these
routines is added to each macroblock, and finally the frames are reconstructed.

3 IMPLEMENTATION

3.1 DECODER:
The routine

�
Decode_headers extracts the header information from the bitstream and sends it to

the
�

Decode_picture which extracts the frame information. The routine Read Bypass.par reads
the bypass.par file since the dynamic bypass switch is ON at the beginning. If the
Dynamic_Bypass_Flag_Flag_Flag_flag is ON or OFF & DB_counter is 0 then it creates the
encoder file. This encoder file has the current values of the bypass.par. These values will be read
by the current frame in the encoder. If the FRAME_ bypass _flag is ON then it will create user-
defined decoder log called Framedec.txt

3.2 ENCODER:
The control flows to the sequence level routine

�
 putseq. The user_defined routines reads the

enc_Frame_Bypass.par generated by the decoder. The values of the Dynamic_bypass_flag and
Frame_Bypass _flag for current frame are read.

If the Frame_Bypass_Flag switch is OFF then it does not create the file (frameready.txt).This file
stores the converted data generated by the CONVERTER. The control will be transferred to the
routine MOTION_ESTIMATION. The routine PREDICTION will use the motion vector data
generated by the MOTION_ESTIMATION routine.

The above sequence of operations can be determined in the Architecture document by following
the indicator for the FRAME_BYPASS_FLAG(yellow box with OFF written on it) .

Hence similarly following the FRAME_BYPASS_FLAG (with ON written on it) you can
understand the sequence that will be followed in the program when FRAME_BYPASS_FLAG is
ON.

Technical Report 2001-01-01
Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 vi

3.3 CONVERTER:

3.3.1 How we converted the original motion vector to encoder’s motion vector?
The CONVERTER reads in the motion vector data extracted by the decoder in the file for each
frame. Before we describe the mechanism of conversion we need to describe the various attributes
associated with a macroblock.

1. Forward motion vectors
2. Backward motion vectors
3. Macroblock_type
4. Motion_type
5. Pict_structure
6. Pict_type
7. Motion_vertical_field_select

3.3.2 Step 1:
The Macroblock_type attribute when extracted by the decoder contains a value. This value
represents all the possible information associated with a Macroblock (we will call it Combined
value). It includes the motion_vector data values along with some other values combined. The
prediction routine in the encoder only needs the motion vector data values associated with
Macroblock_type value. Hence CONVERTER extracts only the motion vector data values from
the Macroblock_type value. The values of motion_vectors data in the Macroblock_type are:

8
�

 forward motion vectors if present
4

�
 backward motion vectors present

12
�

 both the above vectors present(in case of B-picture)

Hence the Macroblock_type value can have any of the above motion vectors values. The motion
vectors values are extracted from the Macroblock_type value as follows:

By performing a logical AND of the Macroblock_type with either 8 OR 4 OR 12 where OR is
the logical OR.

3.3.3 Step 2:
Macroblock can be decoded as either frame or field type depending on the motion_type associated
with it. When a macroblock is decoded as frame, Forward and backward motion vectors of the
second field of each macroblock should be zero. That is not done by the decoder for the invalid
values .

Hence the CONVERTER takes care of that step by making the second field motion_vector values
to zero whenever the MOTION_TYPE attribute has the value 2 .

3.3.4 Step 3:
As we know there is a loss of data because of compression during the original encoding. This
results in the invalid values for certain parameters. Decoder is unable to regain the valid values for
those parameters since it just extracts what is supplied to it. One of those parameters is the

Technical Report 2001-01-01
Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 vii

Macroblock_type associated with each macroblock. The value “0” is considered to be an invalid
value for this parameter. It can take any of the following values.

1, 2, 4, 8, 16, 32, or 64. (explained in the files mpeg2dec.h and mpeg2enc.h)

But due to the reason explained above , decoder gets the invalid values for some macroblocks for
each frame.

Hence the CONVERTER takes care of the invalid values by putting in the valid values.

4 COMMENTS
In this implementation we decided to use disk files as opposed to socket based inter process
communication. The socket based implementation yields faster communication. CCIR-601 4:2:2:
720x480 at 30 frames/second MPEG-2 stream transcoding, with disk file mediated
communication, when profiled demonstrated spending 8-10% time in file I/O. The net
improvement from socket conversion will im pact this part of the overall operation. The focus of
this technical report is to document the motion vector bypass mechanism. Please consult
associated technical reports for other detail s.

The work has been funded by DARPA Research Grant F30602-99-1-0515 under it's Active
Network initiative.

5 REFERENCES

 [1] Bhattacharjee, S., Kenneth L. Calvert and Ellen W. Zegura. An Architecture for Active Networking. High
Performance Networking’ 97 ,White Plains, NY, April 1997. [also available at
http://www.cc.gatech.edu/projects/canes/papers/anarch.ps.gz, October 98]

[2] Haskell B. G., Atul Puri and Arun Netravali , Digital Video: An Introduction to MPEG-2, Chapman and Hall ,
NY, 1997.

[3] Information Technology- Generic Coding of Moving Pictures and Associated Audio Information: Video,
ISO/IEC International Standard 13818-2, June 1996.

[4] Keesman, Gertjan; Helli nghuizen, Robert; Hoeksema, Fokke; Heideman, Geert, Transcoding of MPEG
bitstreams Signal Processing: Image Communication, Volume: 8, Issue: 6, pp. 481-500, September 1996,

[5] Tennenhouse, D. L., J. Smith, D. Sincoskie, D. Wetherall & G. Minden., "A Survey of Active Network
Research", IEEE Communications Magazine, Vol. 35, No. 1, Jan 97, pp 80-86

[6] Wetherall , Guttag, Tennenhouse, "ANTS: A Tool kit for Building and Dynamically Deploying Network
Protocols", IEEE OPENARCH'98, San Francisco, April 1998. Available at:
http://www.tns.lcs.mit.edu/publications/openarch98.html

[7] Youn, J, M.T. Sun, and J. Xin, "Video Transcoder Architectures for Bit Rate Scaling of H.263 Bit Streams,"
will beappeared to ‘ACM Multimedia 1999’ , Nov., 1999. pp243-250.

 [8] Fluckiger, F, Understanding Networked Multimedia Applications and Technology, Prentice Hall , UK, 1995.

