Technical Report 2001-01-01

Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.htmi

ARCHITECTURE OVERVIEW OF
MOTION VECTOR REUSE
MECHANISM IN MPEG-2

TRANSCODING

Javed I. Khan, Darsan Patel, Wansik Oh, Seung-su Y ang,
Oleg Komogortsev, and Qiong Gu

Technical Report TR2001-01-01

Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science
Kent State University, 233 MSB, Kent, OH 44242

(Last Revised January 31, 2001)
javed@kent.edu

1 OVERVIEW

In atypical large network (like the global internet) links in the path from the source to the
sink have various capacities. The individual link capacities also are nat be static. These links
are shared, thus are subject to transient congestion. Also, the network eements switches,
routers) avail able over the network themselves have unequal computational power, and these
too are shared. Thus, the computational power allocated to individual adaptation process
is also dynamically variable. This sond level of asymmetry is particularly significant for the
programmable networks—such as active networks [5,6]. In this research we take a fresh look into
this problem from a unified perspedive of adaptation with resped to bah the fundamental
network resources—bandwidth and processng power.

The transcoder itself offers the first level of adaptation [4,7]. The transcoder has the dynamic
control to modify the outgoing bit rate. It can be deployed as an active net capsule in side the
network. However, video transcoding is a computationall y daunting task by its own virtue[4,7]. It
beames more so when we plan to perform it in-stream in real time inside on a network. Current
state-of-the art in video compresson technology requires custom chipset to oltain real-time
performancein MPEG-2 encoding. Roughly speaking, something close to CIF video (CCIR 4:2:0
CIF=352x240at 30 frames/second or 352 x288at 25 frames/secnd) can be deawded in software
satisfactorily. It requires processng of 69,300 blocks per semnd. In comparison, a broadcast
quality video (CCIR-601 42:2: 720x480at 30 frames/semnd or 352x576at 25 frames/second)
requires processng of 405000 blocks per seand, while a production or medical quality video
(MPEG-2 HIGH@HIGH-1440 pofile=1920x1152x 6Grames/second) will require processng of
5,184,000blocks per second. Active network [1,5,6] based transcoding adds further computational

e
i ALOI
RESEARD AR
ot
ivtle

Technical Report 2001-01-01

Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.htmi

challenge to the abowe scenario. First of all, a Transcoder is composed of a decder and an
encoder. Thus, it is computationally a more omplex task. Secondly, on an active network the
avail able processors are expeded to be general purpose with general programmability. Which
amost excludes the posshility of using any custom chip set (although field programmable logic
may still be an option). Finally, an active network processor, by definiti on and location, is going to
be a highly shared resource The cmmpeting processes will also be real time processs. Thus, not
only its processng performance, but also the mmplexity of the Transcoder itself hasto ke highly
optimized.

In this research, as a fast step we have investigated quite a few techniques for accderated
transcoding. Rather than their straight implementation, however, what is moreimportant isto note
that, like any approximation algorithm—the gain in speed generally does not come free It isa
threeway tradeoff between the speed of the task, gained rate compression, and the quality in the
original transcoding task. Therefore, on the asymmetric node @pacity network, we demonstrate an
self-organizing transcoder, where the very transcoder can operate at multiple states, and
automatically remnfigure itsalf with multi ple ampute resource fodtprint versions. These varying
configurations offers multiple doice points in compute resource plane—such as CPU cycle
requirement, memory fod-print of data segments and instruction buffer and CPU overhead.

This document outlines a system called self-organizing active transcoder that we have
implemented for demonstrating this concept. In this concept implementation we have tosen to
implement a bi-state transcoder that offers choice in the mmputational speed. In MPEG-2
transcoding, motion vedor estimation [2,8] is the singleemost major computation component
consuming as much as about 25-80% of total transcoding cycles. In transcoding we developed a
novel technique where motion vedors can be reused in the remded stream diredly from the

Xcoder States

Do not Read
Bypass &&
make

Framedecinfo.tx
Do not Read

Bypass && Do
not make
Framedecinfo.txt

Read Bypass && Read Bypass &&
make Do not make
Framedecinfo.txt Framedecinfo.txt

Technical Report 2001-01-01

Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.htmi

encoded stream. It can thus significantly reduce the active-cycle consumption by the transcoding.

The transcoder can operatein 4 states. In addition to motion vector bypass/ full logic mode, it can
also choose between a dynamic and non-dynamic states. Once, the transcoder moves into non-
dynamic state, its mode becomes final and cannot be changed. This transcoding system is
intended for processing stream inside a programmable network such as active network.

The Figure above shows the state transition diagram. The engineering of this complex system has
been documented in a series of technical documents. This document only outlines the architectural
detail involved in the implementation of the motion vector bypass/reuse mechanism.

1.1 What is motion vector bypass?

When the encoder processes data that takes heavy processing time in motion vector estimation.
The motion vector bypass is how we can reduce processing time in encoder by reusing the motion
vectors extracted by the decoder from the bitstream and plugging it into the encoder instead of
estimating the motion vectorsin the ENCODER .

1.1 What is the Dynamic Motion Vector Bypass?

The idea of Dynamic Motion Vector Bypass refers to the ability of switching or off the motion
vector bypass per frame basis during the run-time of the transcoder (in other words dynamically
switching ON and OFF motion vector bypass per frame basis.)

1.2 What is the problem for reusing motion vector?

When we are reusing the motion vectors or in other words extracting the motion vectors from the
decoder) we do not get the optimum motion vectors because during the original encoding (i.e

Motion_compensation Predicted

rar Frame [Frame: Fre
?ﬁmm
ON .
e D A bk

it
valu v o
lllll rar Xt « (1.96)
i e
1

[l [.

oN
Decoded Moticon vectors

It seems 1o have problem. W hre s the output?

CONVERTER

DYnami Buee - % time bypesson

9% time bypeassoff

zo

SR User-crested obines

Userdefined rautinan
inthe cona

Technical Report 2001-01-01

Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.htmi

before decoding into the transcoder) into MPEG format some data is lost due to compression.
Therefore ENCODER OF THE TRANSCODER (or we can call it the REENCODER restimates
the motion_vectors using the motion_estimation() routine to compute optimum motion vectors so
asto get the optimum quality of the video. Hence we need to convert the motion vectors extracted
from the decoder to match their optimum val ues.

2 SYSTEM ARCHITECTURE

The diagram above shows the architecture of the system. The notations (also shown in the bottom
right box) are explained below.

m First notation in the diagram is indicating the status of the Frame bypass svitch with ON or
OFF written on it and this ymbd isfound on many datalinksin the diagram indicating what
the flow of the data when it is OFF and when it is ON.

m Seoond notation in the diagram isindicating the status of the Dynamic bypass svitch with ON
or OFF written on it and this ymbd is found on many data links in the diagram indicating
what the flow of the data when it is OFF and when it is ON.

m Third notation isindicating that the links with that color isthe data linksin the diagram.
m Fourth notation isindicating all the links which carry control information in the architedure.

m .Fifth notation is to identify the links in the architedure where the medianet_incorporated
obeds are aeated and when .

m Sixth notation isto identify the medianet_created data e ementsin the architedure.

m The Seventh notation is used to identify the routines regarding the motion vedor bypass
incorporated by medianet in the original source @de.

m The éghth notation is indicating the percentage of total running time for that particular
routine when the FRAME_BYPASS FLAG _SWITCH is OFF.

m Theninth notation isindicating the percentage of total running timefor that particular routine
when the FRAME_BYPASS FLAG _SWITCH is ON.

2 FUNCTIONAL OVERVIEW

2.1 Decoder’s process:

Initially the header information is extracted from the incoming bitstream by the deader routine
“Deaode header”. The stream of mpeg-2 is encoded in layers such as squence GOP, pictures or
frames in GOP. Hence the next routine deades the frame level information. Then a VLC table
look up and inverse DCT is applied to each frame. This processgives various information along
with the motion vedor information. If the frame bypass flag is set then at this point of the
deading processthe motion vector sfor each macroblock of each frameistrapped and stored
into a set of user-defined file series (one file for each frame) called Vector Files. The decded
motion vedors are generally not diredly usable in a new encoding. Therefore, each vedor fileis
then procesed through a CONVERTER logic designed at the lab. The CONVERTER is
designed to convert the invalid values of the motion vedor data from the deaoder to the valid
values. Invalid values are oltained at decoder because of loss of certain data dueto compressonin

Technical Report 2001-01-01

Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.htmi

the original encoding of the bitstream. The details of the converting routines of the CONVERTER
will be described below. The processed vectors are then fed into the RECODER.

The decoder also using the motion vector information from the bitstream compensates each
macroblock of each of the frame. The compensated frame is then stored into a frame buffer.
Finally each of the frames is stored in the YUV format series file and transmitted to the
REENCODER.

2.2 Reencoder’s process:

From the YUV files supplied, initially it generates the header information. The frames are passed
to the motion_estimation routine in the reencoder. In the full logic mode the routine then
estimates the motion vectors for each macroblock of each frame. Using these motion_vectors the
macroblocks of the different frames are predicted. .If the frame bypass flag is set then the
transcoder instead of estimation of the vectors retrieves the motion_vector data converted by the
CONVERTER and supplies them to the macroblock prediction routine. There are other routines,
which do the DCT, quantization and IDCT of various macroblocks. The values computed by these
routines is added to each macroblock, and finally the frames are reconstructed.

3 IMPLEMENTATION

3.1 DECODER:

The routine=» Decode_headers extracts the header information from the bitstream and sends it to
the =»Decode _picture which extracts the frame information. The routine Read Bypass.par reads
the bypass.par file since the dynamic bypass switch is ON at the beginning. If the
Dynamic_Bypass Flag_Flag Flag_flag is ON or OFF & DB_counter is O then it creates the
encoder file. Thisencoder file has the current values of the bypass.par. These values will be read
by the current frame in the encoder. If the FRAME_ bypass _flag is ON then it will create user-
defined decoder log called Framedec.txt

3.2 ENCODER:

The control flows to the sequence level routine=» putseq. The user_defined routines reads the
enc_Frame Bypass.par generated by the decoder. The values of the Dynamic_bypass flag and
Frame Bypass _flag for current frame are read.

If the Frame_Bypass Flag switch is OFF then it does not create the file (frameready.txt). Thisfile
stores the converted data generated by the CONVERTER. The control will be transferred to the
routine MOTION_ESTIMATION. The routine PREDICTION will use the motion vector data
generated by the MOTION_ESTIMATION routine.

The above sequence of operations can be determined in the Architecture document by following
the indicator for the FRAME_BYPASS FLAG(yellow box with OFF written on it) .

Hence similarly following the FRAME_BYPASS FLAG (with ON written on it) you can
understand the sequence that will be followed in the program when FRAME_BYPASS FLAG is
ON.

Technical Report 2001-01-01

Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.htmi

3.3 CONVERTER:

3.3.1 How we converted the original motion vector to encoder’s motion vector?

The CONVERTER reads in the motion vector data extracted by the decoder in the file for each
frame. Before we describe the mechanism of conversion we need to describe the various attributes
associated with a macroblock.

Forward motion vectors
Backward motion vectors
Macroblock_type
Motion_type

Pict_structure

Pict_type
Motion_vertical_field select

NouRwWNE

3.3.2 Step 1:

The Macroblock_type attribute when extracted by the decoder contains a value. This value
represents al the possible information associated with a Macroblock (we will call it Combined
value). It includes the motion_vector data values along with some other values combined. The
prediction routine in the encoder only needs the motion vector data values associated with
Macroblock_type value. Hence CONVERTER extracts only the motion vector data values from
the Macroblock_type value. The values of motion_vectors datain the Macroblock _type are:

8 = forward motion vectorsif present
4=> backward motion vectors present
12=>» both the above vectors present(in case of B-picture)

Hence the Macroblock _type value can have any of the above motion vectors values. The motion
vectors values are extracted from the Macroblock_type value as follows:

By performing a logical AND of the Macroblock_type with either 8 OR 4 OR 12 where OR is
thelogical OR.

3.3.3 Step 2:

Macroblock can be decoded as either frame or field type depending on the motion_type associated
with it. When a macroblock is decoded as frame, Forward and backward mation vectors of the
second field of each macroblock should be zero. That is not done by the decoder for theinvalid
values.

Hence the CONVERTER takes care of that step by making the second field motion_vector values
to zero whenever the MOTION_TY PE attribute hasthe value 2 .

3.3.4 Step 3:

As we know there is a loss of data because of compression during the original encoding. This
resultsin theinvalid values for certain parameters. Decoder isunableto regain the valid values for
those parameters since it just extracts what is supplied to it. One of those parameters is the

Vi

Technical Report 2001-01-01

Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.htmi

Macrohlock_type associated with each macroblock. The value “0” is considered to be an invalid
value for this parameter. It can take any of the foll owing val ues.

1, 2,4, 8, 16, 32, or 64. (explained in the files mpeg2dech and mpeg2enc.h)

But due to the reason explained above, deader gets the invalid values for some macrobl ocks for
each frame.

Hencethe CONVERTER takes care of the invalid values by putting in the valid values.

4 COMMENTS

In this implementation we dedded to use disk files as opposed to socket based inter process
communication. The socket based implementation yields faster communication. CCIR-601 42:2:
720x480 at 30 frames/seoond MPEG-2 sream transcoding, with disk file mediated
communication, when profiled demonstrated spending 810% time in file 1/0. The net
improvement from socket conversion will im pact this part of the overall operation. The focus of
this technical report is to document the motion vedor bypass medanism. Please consult
asociated technical reports for other detail s.

The work has been funded by DARPA Research Grant F3060299-1-0515 wnder it's Active
Network initi ative.

5 REFERENCES

[1] Bhattacharjee S., Kenneth L. Calvert and Ellen W. Zegura. An Architedure for Active Networking. High
Performance Networking 97 ,White Plains, NY, April 1997 [dso avalable at
http://www.cc.gatech.edu/projeds/canes/papers/anarch.ps.gz, October 98]

[2] Haskell B. G., Atul Puri and Arun Netravali, Digital Video: An Introduction to MPEG-2, Chapman and Hall,
NY, 1997.

[3] Information Techndogy- Generic Coding d Moving Pictures and Asociated Audio Information: Video,
ISO/IEC International Standard 138182, June 1996

[4] Keesman, Gertjan; Hellinghuizen, Robert; Hoeksema, Fokke; Heideman, Geet, Transcodng d MPEG
bitstreams Signal Processng: Image Communication, Volume: 8, Isaie: 6, pp. 481-500, September 1996

[5] Tenrenhause, D. L., J. Smith, D. Sincoskie, D. Wetherall & G. Minden., "A Survey of Active Network
Research”, IEEE Communications Magazine, Vol. 35, No. 1, Jan 97, pp 80-86

[6] Wetherall, Guttag, Tennenhause, "ANTS: A Tod kit for Building and Dynamically Deploying Network
Protocols’, |IEEE OPENARCH'98, San Francisco, April 1998 Available at:
http://www.tns.| cs.mit.edu/publi cations/openarch98.html

[7] Youn, J, M.T. Sun, and J. Xin, "Video Transcoder Architedures for Bit Rate Scaling d H.263 Bit Streams,”
will beappeared to ‘ACM Multimedia 1999, Nov., 1999 pp243-250.

[8] Fluckiger, F, Understanding Networked Multimedia Appli cations and Techndogy, PrenticeHall, UK, 1995

Vi

