
Technical Report 1999-12-03
Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

i

ORDERING PREFETCH IN
TREES, SEQUENCES AND GRAPHS

Javed I. Khan

Technical Report 1999-12-03

Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science

Kent State University, 233 MSB, Kent, OH 44242
December 1999

javed@kent.edu

ABSTRACT

Compared to hardware prefetching, the prefetching in Web systems faces quite high branching
factor. Decision points mostly bifurcate the control flow tree in hardware due to the predominant
if-then like program constructs. In contrast, in web there is no limit on the number of links in a
page. In the case of hardware quite often all the parallel branches are prefetched- and in some
cases condition can be pre-evaluated to determine the prefetch path. Neither is practical for web
systems. There is criti cal for web systems to carefully evaluate all prefetch options. This report
contains few analytical results, which show how to rank prefetch paths in various hyper linked
graphs shown in Fig-A-D. It seems in most cases optimum prefetch path should depend both on
the link transition probabilit y as well as loading time of the component –rather than just the
former.

1 Optimization Criterion
In a hyper-graph G, Lets U=(a1,a2,a3….al), where ui∈ G, is the anchor sequence-- the sequence of
nodes followed by a user. Let’s Γ is the loading sequence in which the nodes are loaded in the
cache (Clearly, U ⊆ Γ⊆ {nodes in G}). Let pi is the estimated probabilit y that a user traverses a
node ni in roaming sphere G, and TL,i is the time the node ai is fetched and TP,i is the time spent by
the user in that node. Thus, we define an overall penalty function-- the expected cumulative read-
time lag:

{ }∑ −− +−=Γ
U

i
iPiLiLi TTTpUT 0)],([max)|(1,1,,

 ...(1)

The objective is to find the loading sequence Γ that wil l minimize the expected penalty
E{ T(Γ|U)} . It is important to note that this function optimizes with respect to all probable
transitions of U, weighted by their transition probabilit y.

Technical Report 1999-12-03
Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

ii

2 Some Analytical Results
Theorem-1 (Branch Decision): Let A=nc is the current anchor point with direct transition paths
to a set of candidate nodes n1, n2, n3,-- nn, such that Ti is the estimated loading times of node ni, and
Pr[an+1=ni |an=A] is the conditional link transition probabil ity, then the average delay is
minimum if the links are prefetched in-order of the highest priority Qi, where:

i

nin
i T

Aana
Q

]|Pr[1 ==
= +

.....(A.1)

Proof: Let us consider two pre-fetching sequences Seq1= [no, n1, n2….nm-1, nm, nm+1,…nr-1, nr,

nr+1…,nN] and Seq2=[no, n1, n2….nm-1, nr, nm+1,…nr-1, nm, nr+1…,nN], where m<r. These two
sequences are identical, except only two of the nodes nm and nr have been switched their positions.
We also note that the nodes loaded prior to the mth node and the nodes loaded after the rth nodes
are identical in both the sequences. We use the following expressions to denote the cost function
due to these two nodes:

∑ ∑
−

= = 



î



=
1

0 0
.

m

j

j

i
ijprev TpC , and ∑ ∑

+= = 



î



=
N

rj

j

i
ijpost TpC

1 0
. ,

We also use ∑
−

=
=

1

0

m

i
ip TT to denote cumulative load time of nodes loaded before nm. Let 's also

denote]|Pr[1 Aanap nini === + . Thus, the expected cost factor for sequence 1 is given by:

11

1

1

1

1 1

11111

111

)...(

)...()()(

)...()...(

).....()(

KTTppT

CTTTpTTTpTTpC

CTTTTTpTTTTp

TTTpTTpCC

rmr

r

mj
jm

postrmpr

r

mj

j

mi
impjmpmprev

postrrmmprrmmpr

mmpmmpmprevseq

++⋅+




î



⋅=

+++⋅+




î



++⋅++⋅+=

+++++⋅++++⋅+

++⋅++⋅+=

−

−

+=

−

+= +=

−+−+−

++

∑

∑ ∑

.....(A.2)

Where:

postrpr

r

mj

j

mi
ipjmpmprev CTTpTTpTTpCK ++⋅+





î



+⋅++⋅+= ∑ ∑
−

+= +=

)()()(
1

1 1
1

In a similar way, the cost for the sequence 2 is given by:

21

1

1

1

1 1

11111

112

)...(

)...()()(

)...()....(

).....()(

KTTppT

CTTTpTTTpTTpC

CTTTTTpTTTTp

TTTpTTpCC

rmm

r

mj
jr

postrmpm

r

mj

j

mi
irpjrprprev

postmrmrpmrmrpr

mrpmrprprevseq

++⋅+




î



⋅==

+++⋅+




î



++⋅++⋅+=

+++++⋅++++⋅+

++⋅++⋅+=

+

−

+=

−

+= +=

−+−+−

++

∑

∑ ∑

.....(A.3)

Technical Report 1999-12-03
Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

iii

Where,

postmpm

r

mj

j

mi
ipjrprprev CTTpTTpTTpCK ++⋅+





î



+⋅++⋅+= ∑ ∑
−

+= +=

)()()(
1

1 1
2

We now compare the estimated delay costs of these sequences, and show that under the given
condition (A.1) one wil l be always lesser than the other. Both (A.2) and (A.3) can be expanded as
following:

11111)...()....(KTTpppTC rmrrmmseq ++⋅+++⋅= −−+

21112)...()....(KTTpppTC rmmrmrseq ++⋅+++⋅= +−+

Rearrangement of the terms wil l show that 21 KK = . Additionally, if:

im

im

m

m

T

p

T

p

+

+≥
.....(A.4)

Then immimm TppT ++ ⋅≤⋅ , and since r>m, irrirr pTTp −− ⋅≤⋅⋅ , for all positi ve i. Thus, the

left terms of (A.2) are smaller than the middle terms of (A.3). Similarly, the middle terms of (A.2)

are smaller than the left terms of (A.3). Thus,)...()....(111 rmmrmm TTpppT +⋅≤++⋅ +−+ and

)....()...(111 −+− ++⋅≤+⋅ rmrrmr ppTTTp . Thus, 21 seqseq CC ≤ is always true under

condition A.4, which is the priority given is equation (A.1) of individual nodes (proved).

Corollary-2.1 (Sequence Decision): If two nodes are in a sequence, then the preceding node has
to be loaded first.

Proof: below we provide a direct proof of this intuiti ve corollary. Let nodes n1 and n2 are in a
sequence, n1 preceding n2. We compare the costs for two sequences Seq1= [.. n1, n2…] Seq2=

[…, n2, n1…]. Since, n2 is traversed only after n2 the state probabiliti es 12 pp ≤ . The response
delay count begins for the second node, after the first node is loaded and then read i.e. at time
(T1+R1) . Thus, the cost of first sequence is given by:

{ } { }0),max0),(max 1221111212111 RTpTpRTTTpTpCseq −⋅+⋅=+−+⋅+⋅=(B.1)

Similarly, the cost for the second sequence is given by:
{ }

)(

0),(max)(

211

121122112

TTp

RTTTpTTpCseq

+⋅=

++−⋅++⋅=(B.2)

Since, the second node is loaded before the first node so it wil l be immediately available after the
first node is read. If { } 00),max 12 =− RT then,)(0 211 TTp +⋅≤ . Thus, 21 seqseq CC ≤ . On the

other hand, if, { } 1212 0),max RTRT −=− ,then also,)()(21112211 TTpRTpTp +⋅≤−⋅+⋅ ,

or
21122)(TpRTp ⋅≤−⋅ . Since, 12 pp ≤ and 222 TRT ≤− . Thus, for this case also

21 seqseq CC ≤ . Note: If node 2 can be reached via a second path, then state probabilit y p2<=p1

may not be true (proved).

Technical Report 1999-12-03
Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

iv

Theorem-2 (Tree Decision): If the sequence {n1, n2, n3,...nd} are the nodes in the path in a tree
from the current anchor A=n0 to a candidate node nd, at depth d and Td is it's estimated loading
time, then the priority Qd is given by the product of the conditional transition probabil ities along
the path such that:

d

d

ci
iiii

d T

nana

Q
∏

=
++ ==

=
]|Pr[11

.....(C.1)

Proof: Without loss of generalit y, the question we will address in this proof is that should we bring
a node from depth d before fetching a node from depth 1? Consequently, we compare two pre-
fetching sequences Seq 1 = […. n1, n2, n3,….] and Seq 2= […. n1, n3, n2,..]. Here node 1 is the
highest priority node at depth 1, and n2 is one of its lower priority sibling in the same depth and
thus yet not fetched, and n3 is the new node at depth d exposed by the fetching of node 1. For
removing some clatter in this proof, without loosing the generality of proof, we also this time
assume that the set of nodes between these switched nodes is empty. Lets also assume that

]|Pr[212 Aanap nni === += and ∏
=

++ ===
d

ci
iiii nanap]|Pr[113

.

Thus, the cost corresponding to these sequences are respectively given by the following
expressions.

{ }0),(max)(113213212111 RTTTTpTTpTpCseq +−++⋅++⋅+⋅=(C.2)

{ }0),(max)(113133212112 RTTTpTTTpTpCseq +−+⋅+++⋅+⋅=(C.3)

In both of the cases, we begun counting the response delay for n3 after n1 is loaded and read. The

proof that, 21 seqseq CC ≤ requires that we show under condition (1b):

{ } { }0,max0,max 133321323 RTpTpRTTp −⋅+⋅≤−+⋅(C.4)

Below, we show it by considering the following three cases.

Case-1: Let us consider that case, when, { } 132132 0,max RTTRTT −+=−+ ,

and { } 1313 0,max RTRT −=− . Then the above reduces that we show that:

)()(133321323 RTpTpRTTp −⋅+⋅≤−+ , i.e. 3223 TpTp ⋅≤⋅ , which is the case if
3

3

2

2

T

p

T

p ≥

Case 2: Let us consider that { } 00,max 132 =−+ RTT . Then we are required to show that

}0,max{0}0,max{ 133321323 RTpTpRTTp −⋅+⋅≤=−+⋅ , which is always the case.

Case 3: Let us consider the only remaining case where, { } 132132 0,max RTTRTT −+=−+ , but

{ } 00,max 13 =− RT . Then, 013 ≤− RT and we require to show that,

321323)(TpRTTp ⋅≤−+⋅ .

Technical Report 1999-12-03
Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

v

Since, 013 ≤− RT , then to show 321323)(TpRTTp ⋅≤−+⋅ , thus it should be suff icient to

show that 3223 TpTp ⋅≤⋅ . Which is the case if
3

3

2

2

T

p

T

p ≥ .Thus, for all situations

21 seqseq CC ≤ (proved).

Theorem-3 (Graph Decision): For general graph G(VG,EG) the node priority can be determined
by computing order-n Markov state probability pi. For a node ni, with the estimated loading time
Ti the priority function can be computed as:

i

i
i T

p
Q =

.....(D.1)

Proof: Let us consider that a general graph, with link transition probabiliti es pij and state
probabiliti es pn. Let the current anchor node is n0. We again consider two nodes, both un-fetched,
but one n2 at depth 1 from current anchor that can be called immediately, and another n3

somewhere deep in the graph, and which can be accessed via multiple paths and at least one
preceding node of which have been fetched. Since, n3 is now in the pre-fetch set, a root of n3 must
also be in the pre-fetch set with higher priority than n2. Let this node be n1. Let L (0,3) = { l1, l2, l3
.. ln} is the set of all the paths through which n3 can be reached from n0. Consequently, we consider
two pre-fetching sequences Sequence 1 = […. n1, n2, n3,….] and Sequence 2= […. n1, n3, n2,..].
Also, for reducing some clatter in this proof, without loosing the generality of proof, we also this
time assume that the set of nodes between these switched nodes is empty. Let Pr(l=l i | ao=no) is the
probabilit y of traversing path 0-2 via path l i. Let R(l i) is the cumulative rendering time of all nodes
in path l i except n3. Then the cost of sequence 1 and sequence 2 are respectively given by:

{ }0),(max]|Pr[)(033210032121
i

L

l
n

i
seq lRTTTnAllTTpC −++⋅==++⋅= ∑

.....(D.2)

[]{ }⋅−+⋅==+++⋅= ∑
L

l

i
n

i
seq lRTTnAllTTTpC 0),(max]|Pr[)(033100332122

.....(D.3)

Note, there are other nodes involved along each path, each of which must be loaded and read
before n3 is reached. In a more precise sense, only after the current node has been requested by the
user then the delay counter for the current node should begin. Thus D.3 overestimates the penalty
by not issuing credit for the time needed in loading the preceding nodes along the path, which may
or may not be already in the cache. (However, credit is issued for reading times). For fairness,
however, we have taken out this credit in both the sequences. Now we consider the following
cases:

Case A:

Now, if { } 00),(max 03321 =−++ ilRTTT , then also true is { } 00),(max 0331 =−+ ilRTT . Thus,

21 seqseq CC ≤ always.

Case B:

Technical Report 1999-12-03
Internetworking and Media Communications Research Laboratories
Department of Math & Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

vi

On the other hand, if { } 00),(max 0331 =−+ ilRTT then { } 203321 0),(max TlRTTT i ≤−++ .

Thus,

2321220032121)(]|Pr[)(TpTTpTnAllTTpC
L

l
n

i
seq ⋅++⋅=⋅==++⋅≤ ∑ .

⋅++⋅=)(32122 TTTpCseq Thus when, 3223 TpTp ⋅≤⋅ , then also 21 seqseq CC ≤ .

Case C: otherwise:

)(]|Pr[)()(0300332132121
i

L

l
n

i
seq lRnAllTTTpTTpC ⋅==−++⋅++⋅= ∑

)(]|Pr[)()(0300331332122
i

L

l
n

i
seq lRnAllTTpTTTpC ⋅==−+⋅+++⋅= ∑

Thus, when, 3223 TpTp ⋅≤⋅ , then also 21 seqseq CC ≤ (proved).

n0 n1

n3

n2

Fig-C Tree

n4

n0

n1

nm

nr

Fig-A Singular branch

n0 n3n1

n2

Fig-D General graph

l
i

n1 n2n0

Fig-B Sequence

